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Abstract

The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more
generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression
levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting
have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically
observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we
present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for
both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to
investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect
cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts
more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends
both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect
signaling at the molecular level to tissue-level morphogenesis.
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Introduction

The cadherin family of cell-adhesion membrane proteins plays a

key role in both early and adult tissue morphogenesis [1–3]. Spatio-

temporal variations in cadherin number and type help regulate

many normal and pathological morphogenetic processes, including:

neural-crest-cell migration [4], somite segmentation [5,6], epithe-

lial-to-mesenchymal transformations during tumor invasion and

metastasis [7,8], and wound healing [9,10]. Many of these processes

involve continuous variations in the expression level of a single type

of adhesion molecule: During proximo-distal limb growth [11] and

rostro-caudal body-axis elongation [12], adhesion gradients result-

ing from variations in the number of a single type of adhesion

molecule may maintain cells’ relative positions. In vitro and in

experiments in vivo, when cells from different domains of a limb are

mixed together, they can sort out according to their original

positions [11,13]. In Drosophila, an adhesion gradient drives the

oocyte towards the posterior follicle cell, which expresses the highest

level of DE-cadherin [14]. A cell-cell adhesion gradient along the

dorso-ventral axis directs lateral cell migration during zebrafish

gastrulation [15]. Thus, understanding the role of cadherins in

creating and stabilizing tissue structures, especially the role of

continuous variation in the level of a single cadherin, is crucial to

understanding embryonic morphogenesis.

Steinberg’s Differential Adhesion Hypothesis (DAH) originated the

idea that cell sorting can result from variations in cell-cell

adhesivity [16–19]. Cell sorting depends on the effective molecular

binding strength between opposing cadherins, which in turn

depends on their types and expression levels in each cell and

potentially the cells’ internal biochemistry and cytoskeletal

structures [20]. Both differences in expression levels of a single

type of cadherin [18,19] and differences in the types of cadherins

expressed [19,21] can lead to sorting.

The relation between forces at the molecular level (pairs of

cadherins), cell level (cell-cell adhesion), tissue level (surface tension)

and cell sorting is more complicated than the simple physics

suggested by the DAH. Experimental measurements of cadherin

binding employing a variety of approaches have obtained widely

differing estimates of the per-cadherin pair-binding force, cell-cell

adhesion force and surface tension at the tissue level [19,22–25]. In

some experiments, the scaling between cadherin expression levels

and surface tension, as given by equation (7), is quadratic (see

equation (9)) [23]; in others, the scaling between cadherin

expression levels and the cell-cell adhesion force is linear (see

equation (10)) [19]. The cadherin organization within the cell

membrane and the underlying cytoskeleton also change over a

period of hours after two cells come into contact [3,26–28]. Bindings

between cadherin pairs differ for cadherins in different conforma-

tional states [3], e.g., cadherin reorganization into adhesive patches

on the cell membrane due to both passive diffusion and interaction

with the actin cytoskeleton [26–28] can greatly increase the effective

binding strength per cadherin pair between two cells. Cluster
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formation depends on the proper functioning of the actin

cytoskeleton, so actin-disrupting drugs like cytochalasin-D and

latrunculin greatly decrease cell-cell adhesivity [29].

Multiple transcriptional and post-translational signaling cas-

cades can regulate cadherin expression levels, localization and per-

cadherin binding strengths [3,30]. In turn, cadherin binding can

modify gene expression [3]. This complexity obscures the role of

the cadherin-binding force in cell sorting [25]. As a result, different

classes of experiments on specific types of cadherin have led to at

least four simplified cadherin-binding models: the linear-zipper model

(LZM) based on experiments on N-cadherin [31–34], the cis-dimer

model (CDM) (equation (8)) based on experiments on E-cadherin

[35], the trans-homophilic-bond model (THBM) (equation (9)) based on

experiments on C-cadherin [36], and the saturation model (SM)

(equation (10)), based on the observation that, for both the CDM

and THBM models, when the cadherin binding between cells

saturates, the number of bonds depends on the cell with the

minimum cadherin concentration.

This paper therefore proposes a simple framework to explore

how homotypic cadherin binding at the molecular level could

produce intercellular adhesion and eventually determine cell

sorting at the tissue level. We neglect complex spatial and temporal

changes in cadherin behavior, assuming that cadherin distribu-

tions are uniform and constant on the cell membrane and that

adhesion-strength per molecular bond is also time-independent

(i.e., we assume no conformational changes in molecular structure

during a simulation). We then explore how the sorting configu-

ration and rate depend on a few essential parameters in our

models. Compared to the rate of sorting for an aggregate with two

levels of a single cadherin, simulations with more intermediate

levels sort more slowly but the sorting rate is similar for aggregates

with the same number of cadherin levels for all binding models.

The speed of sorting increases strongly with the interfacial tension,

which depends both on the maximum difference in number of

cadherins per cell and on the binding model.

Methods

Reaction-Kinetic Models of E-Cadherin Binding
The nature of cadherin-cadherin binding determines the way the

cell-cell adhesion energy, depends on cells’ cadherin surface

densities, and thus the correct binding model to use in simulations

of cell sorting. Since more recent mutagenesis studies do not support

the linear-zipper model [3], we use the cis-dimer (CDM), the trans-

homophilic-bond (THBM), and the saturation (SM) models to relate

the cells’ cadherin surface densities to the cell-cell adhesion energy.

The cis-dimer model (CDM) [35] assumes that cis-dimers first

form on the surfaces of individual cells and that two dimers on

apposing cells then bind together to form homophilic tetramers.

Dimerization of monomers (A and A or B and B) on individual

cells’ surfaces to form dimers A2 and B2 has the form:

AzA'A2; BzB'B2: ð1Þ

Similarly, when the trans-tetramer A2B2 forms between dimers

(A2 and B2) on two apposing cells, the reaction has the form:

A2zB2'A2B2: ð2Þ

We assume that the cadherin concentrations on the cells’

surfaces are constant and that we can apply the Law of Mass Action.

Dimerization and tetramerization quickly equilibrate if KD and KT ,

the equilibrium dimerization and equilibrium tetramerization dissociation

constants are large and the cadherin concentrations, CA~NA=(SAh)
and CB~NB=(SBh), are lower than the dissociation constants [37].

Here NA and NB are the number of cadherin molecules distributed

on the cell surfaces SA and SB, respectively, and h is the amplitude

of cadherin fluctuations normal to the cells’ surfaces. In this case, the

total number of tetramers is less than the number of dimers, which

in turn is less than the number of monomers. Then, the equilibrium

concentration of tetramers in the CDM is, approximately,

½A2B2�~C2
AC2

B=(K2
DKT )~kT N2

AN2
B, ð3Þ

where kT~(K2
DKT (SASBh2)2){1 is the tetramer effective equilibrium

constant.

According to the trans-homophilic-bond model (THBM) [36],

cadherins bind individually between cells, so the concentration of

bound pairs is given by:

½A2B2�~CACB=KD~kDNANB, ð4Þ

where kD~(KDSASBh2){1 is the dimer effective equilibrium constant.

Finally, for the saturation model (SM), which applies for strong

clustering of cadherins, or large differences in the number of molecules

per cell, the concentration of bound cadherin pairs is given by

½A2B2�~minfCA,CBg~kMminfNA,NBg, ð5Þ

where kM~((SAjSB)h2){1 is the effective equilibrium constant and the

surface S~SAjSB corresponds to the smaller of CA or CB.

We relate the concentration of cadherin pairs to the cell-cell

intercellular adhesion energy density due to cadherin binding via the

relation:

J(NA,NB)~½A2B2�Dgzc, ð6Þ

where Dg is the cadherin-cadherin-binding free-energy per

cadherin bond [37], which is negative, since bond formation

releases energy, and where c is the energy density due to adhesion

unrelated to cadherins [19].

The interfacial-tension density over the contact area between two

cells expressing different numbers of a single type of cadherin is

defined [38,39] as:

c
A,B

~½J(NA,NA)zJ(NB,NB)�=2{J(NA,NB)

~((½A2�z½B2�)=2{½AB�)Dg
ð7Þ

For the three models just listed, equations (3–5), we have:

c
CDM

~{kT (N2
A{N2

B)2Dg=2, ð8Þ

c
THBM

~{kD(NA{NB)2Dg=2, ð9Þ

c
SM

~{kM (NA{NB)Dg=2, for NAwNB: ð10Þ

Glazier-Graner-Hogeweg Simulations of Cell Sorting
To simulate cell sorting due to cell-cell adhesion, we used the

Glazier-Graner-Hogeweg model (GGH) [40] (also known as the Cellular

Cell Sorting Simulations
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Potts Model [38,39]). The GGH is a multi-cell, lattice-based model,

which uses an effective energy, H, to describe the behavior of cells, for

instance, due to cell-cell adhesion. GGH simulations agree

quantitatively with simple cell-sorting and other experiments

[41–49].

Cells in the GGH are extended domains of pixels (on a regular

lattice, denoted ~ii), which share the same cell index, s(~ii). The

effective energy governs how the lattice evolves as cells attempt to

displace other cells by extending their pseudopodia [50]. At each

step, we select a lattice site~ii
0
and change its index into the index of

a neighboring lattice site~ii with probability:

P(s(~ii
0
)?s(~ii))~

exp({DH=T) if DHw0;

1 if DHƒ0,

�
ð11Þ

where DH is the energy gain from the change and T is the intrinsic

cell motility corresponding to membrane fluctuations resulting from

cytoskeleton fluctuations. If the lattice has Q pixels, we define one

Monte Carlo Step (MCS) to be Q displacement attempts.

For a two-dimensional simulation of an aggregate containing

cells expressing varying levels of a single type of cadherin, we

assume that: (1) The effective energy between cells is due to cell-

cell adhesion. (2) The cells have fixed and identical target volumes,

membrane areas, and intrinsic motilities. (3) Cells do not grow,

divide or die. (4) Cells are isotropic, so cadherins are uniformly

distributed on the cell membrane and the cadherin concentration

is constant in time. With these assumptions, the effective energy is:

H~
X

~ii,~ii
0
neighbors

J0zJ Ns(~ii),N
0
s
0
(~ii
0
))

� �
1{d

s(~ii),s
0
(~ii
0
)

� �n o

z
X

s

l V(s){Vtð Þ2,

ð12Þ

where, J0 is the energy per unit contact area between two cells in

the absence of cadherin binding, which may be positive since such

cells may not cohere. J(Ns(~ii),Ns(~ii
0
)
) is the adhesion-energy per

unit contact area between cells s and s
0

expressing N and N
0

adhesion molecules, respectively. This term is always negative,

since forming cadherin bonds decreases the effective energy. Sums

go up to fourth nearest neighbors on a square lattice. l, V (s), and

Vt are the volume elasticity, actual volume and target volume of

cell s, respectively. d
s(~ii),s(~ii

0
)

is the usual Kronecker delta function.

Each cell expresses a specific number of cadherins. The cell-cell

adhesion energy relates to N and N
0

according to equation (6)

together with equations (3), (4) or (5). Since we can rescale the

energy by the intrinsic cell motility, we are free to pick the energy

scale and set Dg~{1.

The relative strengths of cell-cell adhesions result in net forces

which act on each cell. Depending on the relative hierarchy of cell-

cell adhesive interactions the generated forces can either drive or

suppress cell sorting. Equation (13) is the condition for the sorting

to occur.

Why does sorting occur for most of the conditions that we

consider in this paper? For two cadherin levels with NAwNB,

complete sorting requires that the less cohesive cell type wet the

more cohesive cell type [39]:

J(NA,NA)v½J(NA,NA)zJ(NB,NB)�=

2vJ(NA,NB)vJ(NB,NB):
ð13Þ

Since {
N2

AzN2
B

2
v{NANB for the THBM, {

N4
AzN4

B

2
v

{N2
AN2

B for the CDM, and {
NAzNB

2
v{minfNA,NBg for

the SM, the binding energies all satisfy the sorting condition.

Therefore, cells should sort for all three binding models. Even cells

with a continuous distribution of cadherin levels satisfy the sorting

inequality, so cells with fewer adhesion molecules envelop cells

with more adhesion molecules, which sort towards the center of

the aggregate, creating an adhesion gradient, decreasing from the

center to the periphery (Figure 1E), with a small amount of local

mixing due to intrinsic cell motility. As mentioned above, sorting is

a simple mechanism for cells to reach and maintain their positions

during morphogenesis, e.g., during limb outgrowth, in which cells

maintain both their antero-posterior and proximo-distal positions

through differential adhesion.

In an ideal, fully-sorted configuration, cells expressing the

higher levels of cadherins will cluster together and round up into a

solid sphere, surrounded by successive spherical shells of cells

expressing successively lower levels of cadherins. To monitor the

progress of cell sorting in our simulations, we define the

heterotypic boundary length (HBL), the total contact length

between cells with different cadherin levels, measured in pixels:

Lh~
X

~ii,~ii
0
neighbors

1{d(Ns(~ii),N
0
s
0
(~ii
0
)
)

� �
: ð14Þ

The simulations time evolution gradually minimizes Lh.

If cells express multiple cadherin levels, LW , the heterotypic

boundary length weighted by the energy differences between

neighboring cells is a better metric for cell sorting. This weighted

heterotypic boundary length (WHBL) is simply the total interfacial

tension (equations (8–10)) multiplied by the lengths:

LWCDM
~{kT

X
~ii,~ii
0

neighbors

N2
s(~ii)

{N
02
s
0
(~ii
0
)

� �2

1{d
N

s(~ii)
,N
0
s
0
(~ii
0
)

 !
Dg=2,

ð15Þ

LWTHBM
~{kD

X
~ii,~ii
0

neighbors

Ns(~ii){N
0
s
0
(~ii
0
)

� �2

1{d
N

s(~ii)
,N
0
s
0
(~ii
0
)

 !
Dg=2, and

ð16Þ

LWSM
~{kM

X
~ii,~ii
0

neighbors

Ns(~ii){N
0
s
0
(~ii
0
)

� �

1{d
N

s(~ii)
,N
0
s
0
(~ii
0
)

 !
Dg=2:

ð17Þ

Different aggregates may have different maximum (initial) and

minimum heterotypic boundary lengths (HBL) or weighted

heterotypic boundary lengths (WHBL). To compare sorting in

different aggregates, we normalize these lengths using the

transformation:

Cell Sorting Simulations
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lnorm~
L(t){LMin

LMax{LMin

, ð18Þ

where LMax~maxfL(t)g, LMin~Lk or Ltheo, and L(t) is the HBL

or WHBL at time t. Lk~minfL(t)g is the minimum value of HBL

or WHBL over the typical simulation duration of 106 MCS. Ltheo

is the theoretical minimum HBL or WHBL for the fully sorted and

rounded aggregate, assuming that the cells form perfect concentric

rings with perimeters equal to 2pR (R is the real radius of the ring

of cells from the center of the aggregate). Experimentally, this

value is easily calculated with digital imaging analysis, which gives

us the total area of each type of cell. The sorting relaxation time, t, is

the time at which the aggregate reaches its typical, maximally-

sorted configuration. t is defined via the relation:

lnorm(t)~
lnorm(0)

e
, ð19Þ

The sorting rate, RS , is the inverse of the sorting relaxation time:

RS~t{1: ð20Þ

Simulation Implementation
We first investigated sorting completeness for the trans-

homophilic-bond model (THBM, equation (4)), with kD~0:02,

as we moved from two levels of cadherin expression towards a

continuous distribution of levels (two, three, five, nine and

continuous levels) with the same range of cadherin numbers,

[Nmin~1, Nmax~23]. The same range of cadherin expression

numbers provides the same range of adhesion energies, indepen-

dent of the number of levels.

We implemented our simulations using the open-source

software package CompuCell3D (downloadable from http://

www.compucell3d.org/) which allows rapid translation of biolog-

ical models into simulations using a combination of CC3DML and

Python scripting. We presented our simulation codes in Codes S1.

All our simulations for cell sorting use aggregates of 305 cells,

close to the size of a 2D section of the 3D aggregates

experimentally studied by Armstrong, Steinberg and others

[18,41,51], which are about 200 microns in diameter. Each cell

has a 25-pixel target volume, which sets the lattice length scale to

approximately 2 microns per pixel. We begin with a circular-disk

aggregate with cells randomly assigned cadherin expression

numbers, with each allowed number having equal probability.

Each simulation uses T~20 and runs for 106 MCS, to allow for

complete sorting for continuous variations of cadherin expression

over the range [1, 23]. We set l~25, which allows patterns to

evolve reasonably fast without large cell-volume or cell-surface-

area fluctuations. Changing l around this value does not greatly

affect the relaxation of cells’ shapes and positions. We further set

J0~16 (in equation (12)) for all simulations. For different cadherin

binding models and for the cadherin expression range [1, 23], we

choose the values of kT , kD and kM (according to equation (3–5)),

so that cells neither pin to the lattice nor dissociate.

Results

Figures 1A–E show final aggregates for cells expressing discrete

or continuous levels of cadherins. Cells with higher expression

(darker gray in Figures 1A–D, red in Figure 1E) assume more

central positions, while cells with lower expression (lighter gray in

Figures 1A–D, blue in Figure 1E) move to the periphery. For

multiple discrete levels, cells follow a sorting hierarchy [17]; each

layer of cells has a given expression number and surrounds the

layer of cells with the next-higher level. For continuous levels,

expression numbers decrease continuously from the center to the

periphery of the aggregate (Figure 1E).

We investigated the evolution of the effective energy and the

heterotypic boundary length (HBL)/weighted heterotypic bound-

ary length (WHBL) for the THBM (equation (16)) in three cases:

1. Cells with different numbers of levels of cadherin expression,

but the same range between maximum and minimum

expression number.

Figure 1. Typical simulated sorted configurations for aggregates of cells for the trans-homophilic-bond model (THBM). All images
shown at time t = 999,000 MCS. In A–D, the gray-scale represents the cadherin-expression level. The darkest color (gray level = 0) represents the
highest cadherin-expression level. The lightest color (gray level = 200) represents the lowest cadherin-expression level. The cell culture medium is
white (gray level = 255). In (E), HSV colors represent the expression levels, (H~½1{(N{Nmin)=(Nmax{Nmin)�255, S~255, V~255), where N is the
cadherin-expression level, and Nmin and Nmax are the minimum and maximum cadherin-expression levels, respectively. Red (H~0) is the highest
expression level, blue (H~255) the lowest expression level. The cell culture medium is white. Sorting for: (A) 2 levels. (B) 3 levels. (C) 5 levels. (D) 9
levels. (E) Continuous levels. Cadherin expression ranges from Nmin~1 to Nmax~23. In all simulations, T~20 and l~25.
doi:10.1371/journal.pone.0024999.g001

Cell Sorting Simulations
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2. Cells with different ranges between maximum and minimum

expression number but with the same number of levels (two, for

simplicity).

3. Cells with different motilities, but with the same cadherin

levels.

We also investigated:

4. Cells with different cadherin binding models, but the same

range between maximum and minimum expression number

for two, five, nine and continuous levels.

Figure 2 shows sets of snapshots of simulations for cell

aggregates with the THBM (equation (4) with kD~0:02, T~20,

and l~25) with cells expressing two [1, 23], three [1, 12, 23] , five

[1, 6.5, 12, 17.5, 23], nine [1, 3.75, 6.5, 10.25, 12, 14.75, 17.5,

20.25, 23] cadherin levels. The corresponding animations are in:

Movie S1, Movie S2, Movie S3, and Movie S4.

Figure 3A shows the evolution of the effective energy H for the

cell aggregates presented in Figure 2, and for cell aggregates with

continuous cadherin levels in the range [1, 23] calculated using the

THBM (equation (4) with kD~0:02, T~20, and l~25).

Figures 3B and 3C illustrate the evolution of the normalized

weighted heterotypic boundary length (NWHBL) for the cell

aggregates in Figure 3A, setting Lmin~Lk and Lmin~Ltheo,

respectively. Aggregates with two or three levels sort quickly, while

those with more levels take more time to sort (Figure 2D).

Figure 4A shows the evolution of the effective energy H for

aggregates with two cadherin levels, but different expression

ranges: [1, 12], [1, 14.75], [1, 17.50], [1, 20.25], [1, 23], [12, 23],

and [19.62, 23], also calculated using the THBM (equation (4)

with kD~0:02, T~20, and l~25). Figures 4B and 4C show the

evolution of the NWHBL for the same aggregates, using Lmin~Lk

and Lmin~Ltheo, respectively. Sorting is quickest (t^14,000

Figure 2. Simulation snapshots for aggregates with differing numbers of cadherin levels, with the same maximum to minimum
expression range [1, 23], for the THBM. (See the animations in the supporting information.)
doi:10.1371/journal.pone.0024999.g002

Figure 3. Evolution of the effective energies (H) and normal-
ized weighted heterotypic boundary lengths (NWHBL) for
aggregates with differing numbers of cadherin levels, with
the same maximum to minimum expression range [1, 23], for
the THBM. (A)–(C) &– 2 levels;N – 3 levels; m – 5 levels; . – 9 levels;
% – continuous levels. The black horizontal lines mark 1/e. (A)
Evolution of H . (B)–(C) Evolution of the NWHBL for the simulations in
(A), with Lmin~Lk in (B) and Lmin~Ltheo in (C). (D) Relaxation time vs.
number of levels. &: Lmin~Ltheo. N: Lmin~Lk . The graphs are
calculated from ten simulation replicas.
doi:10.1371/journal.pone.0024999.g003

Cell Sorting Simulations
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MCS) for aggregates with the widest cadherin expression range [1,

23], and is slowest (no complete sorting, t~?) for aggregates with

the smallest expression range [19.62, 23].

According to the theory of phase separation in liquids, the

sorting rate for simple fluids is proportional to the interfacial

tension divided by the viscosity’ [52]. A similar relationship may

hold for cell sorting [53]. Figure 4D plots the sorting relaxation

time against the interfacial tension (equation 9) for the simulated

aggregates in Figure 4A, and a power law (of form t~acb
THBM

, with

a and b constants), fitting for both the cases Lmin~Lk and

Lmin~Ltheo, respectively:

tk~4:75|105c{2:13

THBM
and ð21Þ

ttheo~4:87|105c{1:67

THBM
: ð22Þ

The fitting is reasonable, since for Lmin~Ltheo, the adjusted

coefficient of determination R2~0:89, and for Lmin~Lk,

R2~0:98, suggesting that the sorting relaxation time and

interfacial tension may obey an approximate power law with an

exponent b^{2.

In Figure 5 we compare the evolution of the effective energy H

and of the NWHBL for the different cadherin binding models

(CDM, THBM, and SM), with two, five, nine and continuous

Figure 4. Evolution of the effective energies (H) and normal-
ized weighted heterotypic boundary lengths (NWHBL) for
aggregates expressing 2 cadherins levels modeled with the
THBM. Expression ranges: & – [1, 23];N – [1, 20.25]; m – [1, 17.50]; . –
[1,14.75]; b – [12, 23]; % – [1, 12]; c – [19.62, 23]. Black solid horizontal
lines mark 1/e. (A) Evolution of H . (B)–(C) Evolution of NWHBL for the
simulations in (A) with: (B) Lmin~Lk , and (C) Lmin~Ltheo . (D) Relaxation
time vs. interfacial tension c. Dots – simulation, and Lines – fitting
curves axb .N – Lmin~Lk ; & – Lmin~Ltheo . The error bars in the graphs
are calculated from ten simulation replicas.
doi:10.1371/journal.pone.0024999.g004

Figure 5. Evolution of the effective energies (H) and normalized weighted heterotypic boundary lengths (NWHBL) for aggregates
with 2, 5, 9 or continuous cadherin levels using CDM, THBM or SM for the same expression range [1, 23]. In (A1)–(A3), (B1)–(B3), (C1)–
(C3), and (D1)–(D2), Red lines & – CDM; Green linesN – THBM; Blue lines m – SM. In (A2), (A3), (B2), (B3) and (C2)–(C4), the time at which the
heterotypic boundary length of a given simulation crosses the horizontal black line is defined as its relaxation time. In (A2), (B2), (C2) and (D2)
Lmin~Lk . In (A3), (B3) and (C3) Lmin~Ltheo. (A1), (B1), (C1) and (D1) Evolution of the H for aggregates with cells expressing 2, 5, 9 and continuous
cadherin levels respectively. (A2), (B2), (C2) and (D2) Evolution of NWHBL for the aggregates in (A1), (B1), (C1) and (D1), respectively, with
Lmin~Lk . (A3), (B3) and (C3) Evolution of the NWHBL for the aggregates in (A1), (B1) and (C1) respectively, with Lmin~Ltheo. (D3) Relaxation time
vs. bond model for different cadherin expression levels. Blue – 2 levels; Red – 5 levels; Green – 9 levels. Circles – Lmin~Ltheo. Squares – Lmin~Lk .
The error bars in the graphs are calculated from ten simulation replicas.
doi:10.1371/journal.pone.0024999.g005
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cadherin levels (the same levels as in Figure 3). We chose the

effective equilibrium constants (see equations (8)–(10)), kD~0:02,

kT~0:000038, and kM~0:46, so the cell-cell adhesion energies

fell in the same range, excluding changes in cell sorting rates due

to differences in these ranges. Figure 5D3 shows that as the

number of expression levels increases from 2 to 5 to 9, the

relaxation time increases for each model.

For different models with the same cadherin expression levels,

for two-level aggregates (Figure 5A1), sorting times are equal, as

we expect because equations (8–10) give almost identical

interfacial tensions. For aggregates with five and nine cadherin

levels (Figures 5B1 and 5C1), sorting is more rapid for the

saturation model (SM) and slowest for the trans-homophilic-bond

model (THBM). The average minimum WHBLs are largest for

the SM, but are the same for the cis-dimer model (CDM) and

THBM. Since the weighted heterotypic boundary length (WHBL)

is actually the interfacial tension, it is the main factor which

determines the sorting rate.

Figure 6 shows sets of snapshots of simulations for cell

aggregates with the THBM (equation (4) with kD~0:02, T~20,

and l~25) with five cadherin levels [1, 6.5, 12, 17.5, 23] and

different cell motilities: 5, 10, 20, 40, 60, and 80. The

corresponding animations are in: Movie S5, Movie S6, Movie

S3, Movie S7, Movie S8, and Movie S9.

Figure 7 shows the effect of cell motility on the evolution of the

effective energy and normalized WHBL for aggregates with two

Figure 6. Simulation snapshots for aggregates with five levels [1, 6.5, 12, 17.5, 23] of cadherins and different cell motilities (5, 10,
20, 40, 60, 80), for the THBM. (See the animations in the supporting information.)
doi:10.1371/journal.pone.0024999.g006
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cadherin levels using the THBM (with kD~0:02 and l~25).

Figures 7A and 7B show the evolution of the effective energy for

fixed l. If the cell motility is very low (T~5), cells pin before

reaching their lowest-energy positions and sorting is slow. As the

motility grows, the aggregates sort faster (Figure 5A). However, if

the cell motility is too large (T~60 and T~80), sorting is rapid

but remains incomplete (Figures 7B, 7C and 7D).

When cells’ expression of cadherin varies continuously, sorting

still occurs, but more slowly than for discrete expression levels. The

final configuration is imperfectly sorted since the intrinsic cell

motility can overcome small differences in adhesion energy due to

local missorting. The sorting rate depends on the interfacial

tension rather than directly on the expression levels or the

cadherin-binding model. Again, insufficient or excessive motility

prevents complete sorting.

From the considerations above we can say that, although

individually the sorting kinetics in aggregates with each binding

model are sensitive to the number of cadherin levels and the

energy range, all models have similar global behaviors. For each

model, sorting is always faster for smaller numbers of cadherin

levels, independent of the energy expression range. The

dependence of sorting time and completeness on the number of

cadherin levels is also similar for the three models, although the

SM model seems to sort slightly faster and more completely for

large numbers of cadherin levels. In the absence of experiments

determining the model to use, the SM is computationally more

efficient for larger aggregates.

Our results could be checked by experiments controlling

cadherin expression. E.g. we could transfect a GFP-cadherin

plasmid construct into normally non-adherent CHO cells, so the

amount of cadherin in each cell would be proportional to its

fluorescence intensity. For discrete levels we could use multiple

fluorescent tags. Cotransformation with a nuclear-targeted fluo-

rescent protein of a different color would allow real-time cell

tracking to determine cell motilities and positions.

Using the interfacial boundary length as a measure of sorting is

experimentally inconvenient because current automated image

segmentation cannot accurately extract the interfacial lengths from

a stack of images. Instead, measuring the autocorrelation of the

intensity in experimental and simulation image stacks would be

much simpler. To represent a nuclear-targeted label in our

simulations we could place a dot at each cell’s center of mass with

an intensity proportional to the cell’s the number of cadherins. To

represent cytoplasmic labeling, we could fill the entire cell volume

with an intensity corresponding to the cadherin level and similarly

for membrane labeling, we could label the cell’s contour.

An alternative measure of sorting would use a clustering

algorithm to track the number and size of homotypic cell clusters.

This approach is straightforward in CC3D and relatively easy to

implement in experiments using K-Means or K-Median clustering

algorithms, as described in [54]. Figure 8 shows an example of this

procedure. We have used a bigger aggregate, with about 5000 cells

in order to have a reasonable statistics. The cells have five levels of

cadherins (as in Figure 6) and initially they are randomly

distributed within the aggregate (top left snapshot). In our simple

clustering algorithm, cells that express the same amount of

cadherin and are in direct contact belong to the same cluster. The

initial small clusters rapidly coalesce and form large clusters (top

right and second row snapshots). The graphs at the bottom row

show that the clustering rates decrease with time (left graph) and

that they are adequately fitted by a power law of abt, as can be

seen from black lines in the log-log graph at right. Mean and error

bars for these graphs are calculated from six simulation replicas.

Comparing any of these bulk cell-sorting measures for

experiments and simulations would allow us to infer the specific

binding mechanism in a particular experiment, information

otherwise difficult to obtain.

Discussion

At the beginning of a particular developmental phase, patterns

of gene expression are often fuzzy initially, then gradually become

distinct. Both changing cell identity and cell movement are

possible mechanisms for refining initially fuzzy expression patterns

or for fixing transient patterns of morphogens. Glazier et al. 2008

[49] and Watanabe et al. 2009 [55], found that, during somite

segmentation, the fuzzy boundary formed by cells, disregarding

positional cues and differentiating inappropriately, can reorganize

to form a sharp boundary due to cell motility and differential

adhesion. The sorting rate, and hence the rate of patterning,

depend on the interfacial tensions, which in turn depend on the

range of cadherin expression, equilibrium constants and free

energies of cadherin bonds (see equations (8–10)). These

mechanisms may act in parallel with, or coordinate with, other

morphogenic mechanisms, such as Turing-type reaction-diffusion

instabilities or Wolpertian threshold-based positional coding.

Adhesion mechanisms act as an effective low-pass filter, reducing

the effect of stochasticity in gene expression. During development,

signaling cascades modulate cadherin expression. Because cell

sorting is slow compared to fluctuations in gene-expression levels

and because sorting rectifies noise into a stable gradient, transient

fluctuations in cadherin expression will not change final morphol-

ogy, increasing developmental robustness.

To provide better links/interplay between computer simulations

and biological experiments, we would suggest carrying out

measurements of the following key parameters [19,22–25]: individual

cell motilities, positions, contours and boundary lengths and tissue

and single-cell level adhesion protein expression, elasticity and

viscosity. While not always accessible, measurements of one or more

Figure 7. Evolution of the effective energies (H) and normal-
ized weighted heterotypic boundary lengths (NWHBL) for
aggregates with 5 cadherin levels and the same maximum to
minimum expression range [1, 23] using the THBM with
different motilities. & – 5; N – 10; m – 20; . – 40; % – 60; b –
80. (A) Evolution of H . In (B) and (C) the time at which the heterotypic
boundary length of a given simulation crosses the horizontal black line
is defined as its relaxation time t. In (B) Lmin~Lk and in (C) Lmin~Ltheo .
(D) Relaxation time vs. relative cell motilities. & – Lmin~Ltheo; N –
Lmin~Lk . The error bars in the graphs are calculated from ten
simulation replicas.
doi:10.1371/journal.pone.0024999.g007
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adhesion-related parameters such as interfacial tension between cell

aggregates, cell-cell adhesion forces or energies, molecular binding

forces or energies and molecular binding and junction-formation

kinetics would facilitate constructions of more realistic computer

simulations. In particular, the ability to measure and then model

temporal variation of adhesion related parameters is essential for

simulations of complex developmental phenomena such as somito-

genesis, limb growth, etc…. Therefore future measurements should

concentrate on dynamics of intra and inter-cellular mechanisms (e.g.

intercellular signaling and regulatory networks) related to cellular

adhesion [3,26–28].

Our studies based on the Glazier-Graner-Hogeweg model,

investigated how homotypic cadherin binding at the molecular

level affects cell-cell adhesion and determines cell sorting speeds at

the tissue level. We have used three different microscopic models

of cadherin-binding for discrete and continuous levels. The three

Figure 8. Clustering dynamics. First and second rows: snapshots taken from a 5000 cell aggregate simulation with five levels of cadherins [1(l1),
6.5(l2), 12(l3), 17.5(l4), 23(l5)] showing the dynamics of cluster formation. Bottom row: the left graph shows the evolution of the number of cluster for
each cadherin level. The log-log graph (right) shows that the dynamics is adequately fitted by a power law of atb , as indicated by the black lines. The
error bars in the graphs are calculated from six simulation replicas.
doi:10.1371/journal.pone.0024999.g008
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binding mechanisms lead to similar cell-sorting behavior, although

the saturation binding model is somewhat faster for larger

aggregates with more cadherin levels. Sorting speed decreases

with increasing numbers of cadherin levels. For classical sorting

with two cadherin levels, sorting speed increases with the ratio

between the two levels. Additionally, in each case a single

optimum value for the cell motility results in the fastest sorting.

Cell motilities above or below the optimum sort more slowly.

Supporting Information

Codes S1 XML configuration file and python scripts for
the simulations presented in the text.
(BZ2)

Movie S1 Sorting of cells expressing two cadherin levels -
[1, 23].
(WMV)

Movie S2 Sorting of cells expressing three cadherin
levels - [1, 12, 23].
(WMV)

Movie S3 Sorting of cells expressing five cadherin levels -
[1, 6.5, 12, 17.5, 23].
(WMV)

Movie S4 Sorting of cells expressing nine cadherin
levels - [1, 3.75, 6.5, 10.25, 12, 14.75, 17.5, 20.25, 23].

(WMV)

Movie S5 Sorting of cells expressing five cadherin levels
(as above) and motility = 5.

(WMV)

Movie S6 Same five cadherin levels but motility = 10.

(WMV)

Movie S7 Same five cadherin levels but motility = 40.

(WMV)

Movie S8 Same five cadherin levels but motility = 60.

(WMV)

Movie S9 Same five cadherin levels but motility = 80.

(WMV)
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