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Abstract

Background: Endurance exercise training, especially the high-intensity training, exhibits a strong influence on the
immune system. However, the mechanisms underpinning the immune-regulatory effect of exercise remain unclear.
Consequently, we chose to investigate the alterations in the transcriptional profile of blood leukocytes in young
endurance athletes as compared with healthy sedentary controls, using Affymetrix human gene 1.1 ST array.

Results: Group differences in the transcriptome were analyzed using Intensity-based Hierarchical Bayes method
followed by a Logistic Regression-based gene set enrichment method.

We identified 72 significant transcripts differentially expressed in the leukocyte transcriptome of young endurance
athletes as compared with non-athlete controls with a false discovery rate (FDR) < 0.05, comprising mainly the genes
encoding ribosomal proteins and the genes involved in mitochondrial oxidative phosphorylation. Gene set enrichment
analysis identified three major gene set clusters: two were up-regulated in athletes including gene translation and
ribosomal protein production, and mitochondria oxidative phosphorylation and biogenesis; one gene set cluster
identified as transcriptionally downregulated in athletes was related to inflammation and immune activity.

Conclusion: Our data indicates that in young healthy individuals, intense endurance exercise training (exemplifed by
athletic training) can chronically induce transcriptional changes in the peripheral blood leukocytes, upregulating genes
related to protein production and mitochondrial energetics, and downregulating genes involved in inflammatory
response. The findings of the study also provide support for the notion that peripheral blood can be used as a
surrogate tissue to study the systemic effect of exercise training.
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Background

Endurance exercise training exhibits a powerful influence on
the immune system. As a physical stressor, exercise can
induce different immune responses, depending on the inten-
sity and the duration of the exercise. They can be immuno-
protective (e.g. enhancing wound healing and vaccination
responses), immunopathological (e.g. increasing allergic or
autoimmune responses) or immunoregulatory/inhibitory
(e.g. anti-inflammatory effect) [1, 2]. It is generally believed
that moderate intensity exercise can enhance immune func-
tion and reduce the risk of upper respiratory tract infection.
Conversely, prolonged bouts of strenuous exercise can result
in a transient depression of immune function [2, 3], which
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suggests that to protect immune function, individuals should
avoid strenuous exercise. Nevertheless, emerging evidence
suggests that high-intensity training can induce a more ad-
vanced anti-inflammatory response [4] which is favored in
the prevention and treatment of diseases associated with
chronic inflammation such as cardiovascular disease. Re-
cently, it has been reported that former elite athletes with a
history of vigorous physical activity had better metabolic
health in later life than their controls, and this was inde-
pendent of the effect of their current leisure-time physical
activity levels [5]. For this reason, it has been suggested that
increased susceptibility to minor infection is the small price
to be paid for the long-term health benefits of regular exer-
cise at high intensity [6].

To promote more effective use of high-intensity endur-
ance exercise training in health promotion and disease
prevention, a complete understanding of the nature of its
immune regulatory effect is required. However, this is
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currently lacking. Immune response and regulation is
complex involving a complicated interaction of a variety
of immune cells, various cytokines, and chemokines. It
has been widely accepted that assessing changes in tran-
script abundance in blood on a genome-wide scale, via
transcript profiling using microarrays, affords a compre-
hensive view of the status of the immune system in health
and disease, because leukocytes present in the blood con-
vey valuable information about the status of the immune
system [7]. Microarray has been used to study peripheral
blood leukocytes in response to exercise [8—10]. However,
the majority of studies have been undertaken to investi-
gate the immune response to acute exercise in either the
trained [8] or untrained state [9, 10]. Less is known con-
cerning the alterations in the transcriptional profile of leu-
kocytes induced by chronic high-intensity endurance
exercise training, although it has been demonstrated that
training influences the effect of acute exercise on immune
cells [11]. This may happen because the change in im-
munity that occurs after each prolonged exercise bout is
more clinically significant than training-induced alter-
ations at rest in athletes. Consequently, to produce an un-
biased global view of the primary and secondary
molecular and cellular processes associated with the im-
mune response to chronic high-intensity exercise training,
we used young endurance athletes as high-intensity en-
durance exercise training model, analyzing their blood
transcriptomic changes as compared with sedentary con-
trols, using genome-wide microarray. Specifically, our
aims were to gain a more complete understanding of the
mechanism underlying the altered immunity, and to reveal
molecular changes signifying latent immunological conse-
quences as a result of regular exercise at high intensity.

Microarray data from the present study provided tran-
scriptional evidence for the anti-inflammatory effect of
high-intensity endurance exercise training, and produced
novel data suggestive of immune enhancing effect of
high-intensity endurance exercise training mediated by
transcriptional upregulation of leukocyte mitochondrial
energetics and ribosomal protein production.

Results

Physiological characteristics of subjects

Twelve endurance athletes and 12 healthy sedentary
volunteers were included in the study. The athletes and
non-athlete controls were group-wise matched for age,
gender and BMI. The immune function markers in blood
showed no significant difference between athletes and
controls except for interleukin 1 receptor antagonist (IL-
1ra), which was significantly lower in athletes (Table 1).

Genes with differential expression in leukocytes in athletes
Results of an intensity-based Bayesian moderated t-test
(IBMT) revealed extensive transcriptional differences
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Table 1 Characteristics of the subjects
Athletes (n=12)

Non-athlete controls (n=12)

Age (years) 184+10 191+ 1.1

BMI (kg/m?) 203+18 206+ 20
Gender 50% Female 50% Female
IgA (g/) 20+086 223+096
IgM (g/1) 1374052 144 + 044
19G (g/)) 11.92 +147 1231+ 231
IL-Tra (pg/ml) 24237 +79.2° 480.56 + 243.9

Values are expressed as mean =+ sd; ? Significantly different from controls

between athletes and controls across the leukocyte gen-
ome (Fig. 1). At the significance level of p <0.05, 1723
genes exhibited higher transcript levels and 984 genes
lower transcript levels in athletes compared with con-
trols. The magnitude of change across the transcriptome
was generally moderate. Using a stringent significance
level of FDR <0.05, 72 genes showed a differential ex-
pression with a mean fold change of 1.34 + 0.13(mean +
std). The majority of them were up-regulated in athletes
(70 genes) and only two were down-regulated. The in-
formation about these 72 genes is included in Table 2.
The upregulated genes included mainly the genes encod-
ing ribosomal proteins, and the genes involved in mito-
chondrial oxidative phosphorylation (OXPHOS).

Identification of biological processes whose genes tend
to be up- or down- regulated across the leukocyte
genome in athletes

Differentially expressed genes were further analyzed using
directional LRpath analysis. To capture the small, coordi-
nated changes in gene expression that occur across a
whole pathway, we used a less stringent significance level
of p < 0.05 for gene selection and 2707 genes were selected
as input. LRpath analysis revealed 57 GO BPs and 5
KEGG pathways significantly enriched (FDR<0.05).
Among them, 52 were upregulated and 10 downregulated.
Based on the semantic grouping of the enriched GO terms
using ReviGO (with manual refinement), two super clus-
ters were identified for upregulated biological processes
including mitochondrial oxidative phosphorylation and
gene translation (Table 3). Downregulated biological pro-
cesses were centered on inflammatory responses. Other
biological processes related to anti-apoptosis, gene tran-
scription and regulation of RNA metabolic process were
also downregulated in athletes (Table 4).

Technical validation of cDNA microarray data

To confirm the validity of the microarray data, we
randomly selected two upregulated (HRH4, FC = 1.55,
p=0.029; MS4A1, FC=160, p=0.0004) and two
downregulated (ANXA3, FC=0.55 p=0.004 SLC22A4,
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Fig. 1 Heatmap of differential gene expression in young endurance
athletes as compared with non-athlete controls. 2,658 genes with
IBMT p-values < 0.05 are included. Green represents downregulation of
transcripts and red represents upregulation. Each column represents
each subject and their identity (athlete vs. control, Female vs. male) is

marked on the bottom of the map

FC=0.67, p=0.003) genes identified by microarray and
analyzed them using RT-PCR. The results showed
that consistent with microarray analysis, HRH4 and
MS4A1 were upregulated in athletes (HRH4, FC=
1.68, p=0.006; MS4AI, FC=1.49, p=0.031), and
ANXA3 and SLC22A4 were downregulated (ANXA3,
FC =0.45, p=0.009; SLC22A4, FC =0.50, p = 0.052).

Discussion

We investigated the transcriptional changes in the
complete genome of peripheral blood leukocytes in
young endurance athletes as compared with non-athlete
controls. Gene-level testing and pathway analysis
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revealed that genes involved in mitochondrial OXPHOS
and gene translation and ribosomal protein synthesis
were significantly up-regulated in endurance athletes as
compared to their non-athletic counterparts. The path-
way analysis also revealed that the biological processes
linked to inflammation were downregulated in athletes.

We observed extensive moderate changes (transcript
changes <2 fold) in the leukocyte transcriptome of
athletes. These moderate changes were expected. In our
previous work as well as the research by others, we
observed changes in transcript abundance in response to
acute exercise stimuli that are largely transient [9, 12, 13],
and most of these changes return to basal levels within
48 h [12, 13]. It is conceivable that genomic expression
adapts over time to a new steady-state level, with small
differences in transcript abundance, as found in yeast cells
subjected to various environmental changes [14]. The co-
ordinated changes we observed, albeit moderate, in the
transcription levels of multiple genes within a particular
biological process or a signaling pathway, may be critical
to the alteration of immunological state and immune
function in highly trained individuals.

Blood, a fluid tissue functioning to connect the entire
biological system at the physical level, expresses over
80% of the genes in the human genome. It has been
found that the expression profiles of circulating blood
cells contain a specific signature in response to various
physiological, pathological and environmental changes
[15, 16]. Overall, the findings from the present study
support this notion. The upregulation of mitochondrial
OXPHOS and ribosomal protein synthesis, and down-
regulation of inflammation, as a consequence of en-
durance exercise training, have been frequently
reported in skeletal muscle [17-19] and adipose tissue
[20]. Thus, the results of the present study support
the idea that peripheral blood can serve as a surro-
gate tissue to assess the effect of exercise training on
the whole system.

The alterations in the athlete’s leukocyte transcriptome
may not only reflect cellular changes occurring in other
tissue types, such as skeletal muscle and adipose tissue,
but may also reflect alterations in immune function,
since blood cells constitute the first line of the immune
defense system [15]. In the present study, we found that
genes implicated in the cellular translation machinery
were consistently upregulated in athletes. This included
genes involved in RNA processing (e.g, SNORDI4E,
SNORD4B, MIR15B, SNHG12, NCRNA00188), and ribo-
some biogenesis (e.g., RPLIOA, RPL21, RPS27, RPSIS,
RPLPO, RPL23). Vigorous exercise exerts a heavy assault
on the biological system of participants, such as alter-
ations in energy substrates, accumulation of metabolites,
increases in body temperature, and changes in neuro-
endocrine activity, etc. Living cells, including blood cells,
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Table 2 Significantly differentially expressed genes in young endurance athletes as compared with non-athlete controls

Gene Symbol FC ibmt p-value FDR Gene Description

SNORD14E 2.00 2.02E-05 2.02E-02 small nucleolar RNA, C/D box 14E

CKS2 1.82 4.56E-06 1.65E-02 CDC28 protein kinase regulatory subunit 2

SNORD4B 1.74 3.89E-06 1.65E-02 small nucleolar RNA, C/D box 4B

HLA-DPB1 1.58 4.40E-05 2.29E-02 major histocompatibility complex, class Il, DP beta 1
ATP5G1 1.53 3.28E-05 2.02E-02 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1
DDT 1.51 6.90E-05 3.09E-02 D-dopachrome tautomerase

TMEM141 1.51 3.71E-05 2.13E-02 transmembrane protein 141

BST2 1.50 1.39E-04 3.85E-02 bone marrow stromal cell antigen 2

LSM3 149 2.79E-05 2.02E-02 LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae)
COX7B 149 1.35E-04 3.78E-02 cytochrome ¢ oxidase subunit VIlb

RPL10A 149 1.12E-04 3.78E-02 ribosomal protein L10a

RPL21 146 9.21E-05 3.74E-02 ribosomal protein L21

HNRNPC 145 2.48E-05 2.02E-02 heterogeneous nuclear ribonucleoprotein C (C1/C2)
MLLT4 145 1.77E-04 4.46E-02 myeloid/lymphoid or mixed-lineage leukemia

RPS27 144 1.12E-04 3.78E-02 ribosomal protein S27

RPS19 143 2.29E-04 4.70E-02 ribosomal protein S19

MRPL51 142 4.08E-05 2.20E-02 mitochondrial ribosomal protein L51

FASTKD3 142 2.00E-04 4.52E-02 FAST kinase domains 3

RPLPO 141 2.17E-04 4.69E-02 ribosomal protein, large, PO

MIR15B 141 1.89E-04 4.46E-02 microRNA 15b

UQCR10 141 1.10E-06 1.15E-02 ubiquinol-cytochrome ¢ reductase, complex Il subunit X
RAB33A 140 5.50E-06 1.65E-02 RAB33A, member RAS oncogene family

RPL23 140 6.30E-05 2.96E-02 ribosomal protein 23

EDF1 140 3.02E-05 2.02E-02 endothelial differentiation-related factor 1

RPL36A 140 2.25E-04 4.70E-02 ribosomal protein L36a

RPL31 1.38 1.31E-04 3.78E-02 ribosomal protein 31

RPS18P9 1.38 1.29E-04 3.78E-02 ribosomal protein S18 pseudogene 9

CD79B 138 2.72E-05 2.02E-02 CD79b molecule, immunoglobulin-associated beta

RPL6 1.37 6.25E-06 1.65E-02 ribosomal protein L6

SEC61G 1.37 1.08E-04 3.78E-02 Sec61 gamma subunit

SF3B5 137 8.80E-06 1.65E-02 splicing factor 3b, subunit 5, 10 kDa

TP 1.37 8.13E-06 1.65E-02 triosephosphate isomerase 1

MRPL28 137 2.08E-06 1.15E-02 mitochondrial ribosomal protein 128

ACOT13 1.36 2.26E-05 2.02E-02 acyl-CoA thioesterase 13

SNHG12 135 2.28E-04 4.70E-02 small nucleolar RNA host gene 12 (non-protein coding)
C150rf57 1.35 3.05E-05 2.02E-02 chromosome 15 open reading frame 57

BEX4 1.35 1.24E-04 3.78E-02 brain expressed, X-linked 4

TMEM223 1.34 9.57E-05 3.74E-02 transmembrane protein 223

PSMG3 134 1.12E-05 1.65E-02 proteasome (prosome, macropain) assembly chaperone 3
MZT2A 1.34 2.25E-04 4.70E-02 mitotic spindle organizing protein 2A

LIPT1 1.34 9.42E-05 3.74E-02 lipoyltransferase 1

ATP5J 133 1.93E-06 1.15E-02 ATP synthase, H+ transporting, mitochondrial Fo complex
HSF5 133 1.32E-04 3.78E-02 heat shock transcription factor family member 5

CCbC72 133 3.52E-05 2.11E-02 coiled-coil domain containing 72
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Table 2 Significantly differentially expressed genes in young endurance athletes as compared with non-athlete controls (Continued)

RPP21 1.32 8.65E-05 3.69E-02
THYN1 1.32 1.09E-05 1.65E-02
SNRPG 1.32 1.17E-04 3.78E-02
Clorf220 1.32 1.20E-04 3.78E-02
SSBP2 1.31 3.20E-05 2.02E-02
DPY30 1.31 1.10E-05 1.65E-02
COox4i 1.31 1.89E-06 1.15E-02
Cl4orf2 1.31 8.66E-05 3.69E-02
C130rf27 1.30 6.09E-05 2.96E-02
C6orf226 1.30 1.89E-04 4.46E-02
NDUFA12 1.30 6.42E-05 2.96E-02
MRPS11 1.30 2.28E-05 2.02E-02
CCDCs6 1.30 2.05E-05 2.02E-02
NDUFA2 1.30 1.77E-04 4.46E-02
PFDN1 1.30 1.82E-04 4.46E-02
PDE6D 1.30 2.69E-05 2.02E-02
SENP1 1.29 6.98E-05 3.09E-02
MIF 1.28 2.72E-05 2.02E-02
NCRNAO0O188 1.28 1.34E-04 3.78E-02
MRPS33 1.28 1.98E-04 4.52E-02
IFI1271L2 1.27 9.80E-05 3.74E-02
ATP5H 1.27 3.10E-05 2.02E-02
ZNF140 1.27 3.84E-05 2.13E-02
ATP5F1 1.27 2.29E-05 2.02E-02
SKP2 1.26 1.04E-04 3.78E-02
ZNF786 1.25 2.57E-05 2.02E-02
TUBB4Q 0.78 141E-04 3.85E-02
PIM2 0.74 242E-04 4.91E-02

ribonuclease P/MRP 21 kDa subunit

thymocyte nuclear protein 1

small nuclear ribonucleoprotein polypeptide G

chromosome 1 open reading frame 220

single-stranded DNA binding protein 2

dpy-30 homolog (C. elegans)

cytochrome ¢ oxidase subunit IV isoform 1

chromosome 14 open reading frame 2

chromosome 13 open reading frame 27

chromosome 6 open reading frame 226

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12
mitochondrial ribosomal protein S11

coiled-coil domain containing 56

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8 kDa
prefoldin subunit 1

phosphodiesterase 6D, cGMP-specific, rod, delta

SUMO1/sentrin specific peptidase 1

macrophage migration inhibitory factor

non-protein coding RNA 188

mitochondrial ribosomal protein S33

interferon, alpha-inducible protein 27-like 2

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d
zinc finger protein 140

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1
S-phase kinase-associated protein 2 (p45)

zinc finger protein 786

tubulin, beta polypeptide 4, member Q

pim-2 oncogene

Significantly differentially expressed genes having a false discovery rates (FDRs, significance statistic adjusted for multiple testing) of <0.05 from an intensity-based
Bayesian moderated t-test (IBMT) are shown. FC, fold change, calculated as the ratio of mRNA levels (athletes/controls)

exposed to these environmental changes, may respond
with activation of protein synthesis, and accordingly ac-
tivation of transcription, pre-mRNA processing, alterna-
tive splicing, etc. It is conceivable that the upregulation
of genes involved in these processes is part of the mo-
lecular basis associated with the adaptation to long-term
exercise training. Based on our results, the leukocyte
transcriptional profile suggests that endurance athletes
have a higher translation capacity and thus, protein
production rate. Presumably, a higher protein turn-
over rate should be linked to an improved immune
function due to the replacement of defective proteins
with newly synthesized functioning proteins. However,
the evidence linking this transcriptional change to im-
mune function is lacking. Interestingly, a downregula-
tion of these pathways and the pathways related to

mitochondrial OXPHOS, has been identified as a key
feature of aging immune cells (ie, immunosenes-
cence) [21]. Therefore, the results of our study sug-
gests that transcriptional upregulation of leukocyte
mitochondrial OXPHOS and ribosomal protein syn-
thesis may be implicated as a protective effect of en-
durance exercise on immunosenescence.

In the present study, genes involved in mitochondrial
OXPHOS and biogenesis were upregulated in athletes.
They included those encoding electron transport chain
proteins (such as UQCRI10, COX411, NDUFA12, ATP5],
ATP5H), and genes encoding mitochondria ribosomal
proteins (such as MRPL5I, MRPL28, MRPS33). A
similar finding has been made previously, in which genes
encoding enzymes in the oxidative cycle had an
upregulation in blood leukocytes following six months of
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Table 3 GO terms and KEGG pathways significantly enriched with
genes showing higher transcript levels in blood leukocytes in
athletes vs. controls

Name No.of Odds P Value FDR
Genes  Ratio

Cellular Oxidative Phosphorylation

KEGG: Huntington's disease 13 2620  0.0001 0.0007

KEGG: Oxidative phosphorylation 13 793 0.0027 0.0037

KEGG: Alzheimer's disease 14 6.86 0.0029 0.0037

KEGG: Parkinson's disease 15 330 0.0139 0.0139

GO BP: generation of precursor 14 4.95 0.0044 0.0227

metabolites and energy

Gene Translation

KEGG: Ribosome 27 5.19 0.0003 0.0008

GO BP: translation 47 2.69 0.0001 0.0073

GO BP: translational elongation 27 512 0.0001 0.0073

GO BP: RNA splicing " 6.21 0.0058 0.0274

GO BP: RNA processing 25 2.30 0.0082 0.0329

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene
Ontology (GO) terms having false discovery rates (FDRs, significance statistic
adjusted for multiple testing) of <0.05 from logistic regression-based method
(LRpath analysis) are shown. No. Genes indicates how many analyzed genes
belong to each enriched category; P value indicates significance of enrichment
testing by LRpath analysis

high volume endurance exercise training [22]. Research
over the past several years provides evidence that mito-
chondria play a fundamental role in the innate immune
response involved in pattern-recognition, anti-bacterial
immunity and sterile inflammation [23, 24]. Further,
leukocyte mitochondria dysfunction, manifested by a de-
crease in mitochondria O, consumption and an increase
in the production of reactive oxygen species, has been
implicated in the pathology of various diseases such as
neurodegenerative disease [25], insulin resistance [26],
type II diabetes [27], and cancer [28]. Accordingly, the
data from our study suggest that intense exercise train-
ing can augment individual innate immunity and resist-
ance to certain types of diseases via upregulation of
mitochondrial energetics in circulating leukocytes. It is
also plausible that this transcriptional change in leuko-
cytes reflects a low metabolic and inflammatory stress
from the whole system in athletes as compared with
non-athlete controls.

Consistent with the majority of the studies on endurance
exercise and inflammation, the anti-inflammatory effect of
chronic exercise training was reflected in the leukocyte tran-
scriptional profile of athletes. This finding was revealed
through pathway analysis. The inflammation-related path-
ways, such as response to endogenous/external stimulus,
defense response, regulation of cell proliferation, were sig-
nificantly enriched among genes showing downregulation in
athletes. However, the downregulation did not reach the sig-
nificance level of FDR < 0.05 based on a gene-level test. The
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genes driving the enrichment of inflammation-related
biological processes included both pro- (IL-8, IL-15) and
anti-inflammatory cytokines (DUSPI), chemotactic factors
(CXCLS8, CXCLI1, PROK2), and factors related to leukocyte
migration (ACTA2, PLSCRI1, IFITM3). At the protein level,
the circulating immunoglobulins A, G and M were not sig-
nificantly different between athletes and controls, which is
consistent with some studies, suggesting that in the resting
state, the plasma immunoglobulin levels of athletes and
non-athletes are very similar [3]. However, the anti-
inflammatory factor, IL-1ra, was significantly lower in ath-
letes. At the transcriptional level, IL-1RN, the gene encoding
IL-1ra, was downregulated (fc = 0.82) in athletes, but did not
reach significance (p = 0.12). These results are in agreement
with a previous study [29] that reported a coordinated
downregulation of pro- and anti-inflammatory cytokines (in-
cluding IL-1ra) in chronically trained elite kayakers. A simi-
lar finding in former elite athletes suggested that the
decrease of cytokines was associated with high volume of
current leisure time physical activity [5]. In our study, other
cytokines (TNF-a, IL-1p, IL-6, IL-10) were not detectable in
most of our samples likely related to the use of frozen blood
samples. Overall, the transcriptional downregulation of in-
flammatory pathways and decreased plasma levels of IL-1ra
appears to indicate a depressed inflammatory status in
athletes. Interestingly, the genes associated with antigen
presentation, including HLA-DPB, HLA-DPB1, HLA-DPB2,
HLA-DQA1I, and HLA-DRA, were upregulated in athletes.
Thus, it is plausible to suggest that chronic vigorous exercise
training has an anti-inflammatory effect; however, the im-
mune function, especially the adaptive immune function, is
less likely to be affected if not improved.

The clinical importance of these transcriptional changes
is hard to predict because of the complexity of the im-
mune system and the redundancy of immune functions.
Additionally, the post-transcriptional regulation of gene
expression might shift the profile of the end product of
proteins. Nevertheless, if the actual activation status of the
peripheral blood does mirror the expression data, the re-
sults of the present study suggest that chronic intense ex-
ercise training might be a double-edged sword with
respect to affecting one’s health. It adversely influences
participants’ efficacy of wound healing and their resistance
to minor infection [30]. It also positively reduces one’s risk
for inflammation-associated chronic disease (such as car-
diometabolic diseases) and autoimmune conditions.

The biological processes related to the regulation of
apoptosis, transcription, and regulation of cellular meta-
bolic process, were also enriched among the downregu-
lated genes. However, the genes driving the enrichment of
these processes significantly overlapped (>80%) with those
responsible for the enrichment of inflammation-related
pathways. Thus, they may not have specific implications
towards the impact of exercise training on leukocytes.
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Table 4 GO terms significantly enriched with genes showing
lower transcript levels in blood leukocytes in athletes vs.

controls
Name No.of Odds Pvalue FDR
Genes Ratio
Response to stimuli (immune responses)
response to biotic stimulus 25 043 00002 0.0073
response to organic substance 29 043 00001 0.0073
regulation of developmental process 19 039 00003 0.0073
response to other organism 23 043 00003 0.0073
response to external stimulus 30 052 00010 00124
response to endogenous stimulus 18 041 00010 00124
multi-organism process 40 058 00022 00162
reproductive process 16 038 00009 00124
blood vessel development 11 035 00034 00187
response to wounding 31 056 00034 00187
myeloid cell differentiation 11 038 00055 00274
defense response 32 059 00062 00279
response to virus 12 041 00063 0.0279
hemopoiesis 18 050 00067 0.0279
regulation of cell proliferation 21 047 00016 00157
regulation of cell differentiation 14 038 00018 00157
response to extracellular stimulus 11 042 00095 0.0366
leukocyte differentiation 10 042 00138 0.0492
positive regulation of cell proliferation 14 049 00142 0.0492
cellular response to chemical stimulus 16 052 00142 00492
regulation of multicellular organismal 16 038 00008 00124
development
negative regulation of developmental 10 034 00044 0.0227
process
response to hormone stimulus 16 041 00017 00157
response to steroid hormone stimulus 10 038 00078 0.0320
homeostatic process 24 050  0.0021 00162
Regulation of Apoptosis
negative regulation of apoptosis 17 035 00003 0.0073
regulation of apoptosis 24 049 00014 00148
anti-apoptosis " 031 00020 00162
transcription
transcription from RNA polymerase Il 20 042 00006 00119
promoter
regulation of transcription from RNA 18 045 00022 00162
polymerase Il promoter
negative regulation of transcription 10 031 00031 00187
Regulation of cellular metabolic process
positive regulation of cellular 23 046 00009 00124
metabolic process
positive regulation of nucleobase, 12 034 00020 00162

nucleoside, nucleotide and nucleic
acid metabolic process
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Table 4 GO terms significantly enriched with genes showing
lower transcript levels in blood leukocytes in athletes vs.
controls (Continued)

negative regulation of macromolecule 12 037 00032 00187
biosynthetic process

negative regulation of nucleobase, 10 031 00031 00187
nucleoside, nucleotide and nucleic
acid metabolic process

positive regulation of nitrogen 13 039 00028 00187
compound metabolic process

positive regulation of cellular 14 044 00058 0.0274
biosynthetic process

positive regulation of RNA 10 040 0.0099 0.0373

metabolic process

positive regulation of multicellular 10 041 00122 00453
organismal process

negative regulation of cellular 20 055 00139 00492
metabolic process

Gene Ontology (GO) terms having false discovery rates (FDRs, significance
statistic adjusted for multiple testing) of <0.05 from logistic regression-based
method (LRpath analysis) are shown. No. of Genes indicates how many analyzed
genes belong to each enriched category. P value indicates significance of
enrichment testing by LRpath analysis

In the present study, we chose to study young and
healthy athletes to minimize the influence of potential
confounding factors such as aging and disease, that is
known to influence immune function [31]. Also, it is
worth mentioning that to avoid the potential immune dys-
regulation associated with intensified training and exces-
sive emotional stress [3] , thus to best mimic the general
population who undergo intense endurance exercise train-
ing for health and fitness purposes, the athletes were in
their regular training period and were not preparing for
any competition in the following three months.

Our study has a few limitations. First, we used the whole
blood and did not account for the influence of changes in
peripheral leukocyte subpopulations on the transcription
profile. However, considering that gene expression may be
influenced by manipulation inherent to the sorting pro-
cedure and the focus of the study is the overall immune
status of the peripheral blood leukocytes, we believe that
involvement (or not) of minor shifts in leukocyte popula-
tions/subpopulations, would not influence the valuable
biological information conveyed by the results of the
study. Second, due to a limited sample size, we could not
examine males and females separately. However, in the de-
sign, the athlete and the control group were matched for
sex. Thus, we believe that the findings of the study are the
common features in both females and males. The sex ef-
fect of immune function should be investigated in a fo-
cused study in the future.

Conclusions
In conclusion, our data indicate that in young healthy
individuals, high intensity endurance exercise training
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can chronically induce transcriptional changes in the
peripheral blood leukocytes. The directional changes in
the transcriptional profile of leukocytes suggest that ex-
ercise can induce an upregulation of genes involved in
leukocyte protein production rate and mitochondria bio-
genesis, as well as a downregulation of inflammation.
The findings of the study also provide support for the
notion that peripheral blood can be used as a surrogate
tissue to study the systemic effect of exercise training.

Methods

Subjects

Twelve well-trained young endurance-swimming ath-
letes (six males and six females; age, 18.4 + 1 years; BMI,
20.3 +1.82 kg/m? volunteered to participate in the
study. Twelve sex-, age- and BMI-matched individuals
(age, 19.1 + 1.1; BMI, 20.6 + 2.0 kg/m?) without training
history were included as controls. All participants were
recruited from the Shanghai University of Sport,
Shanghai, China. All the athletes were grouped as being
‘national level, who had participated in national competi-
tions (such as National Youth Swimming Champion-
ships) and were ranked in the top 16 in their sport
discipline. They were all experienced athletes and had
been engaged in training for 5 to ten years (on average
8.7 £ 2.5 years). To avoid the potential immune dysregu-
lation associated with intensified training and excessive
emotional stress, the study was conducted when the ath-
letes were in their regular training period and were not
preparing for any competition in the following three
months. During this period, the training regime of the
athletes consisted of 8.8 + 2.2 h/week of exercise at high-
intensity including both in-water exercise and various
forms of conditioning exercises. To ensure that none of
the athletes suffered from overtraining syndrome, the
athletes were asked to complete a standardized over-
training questionnaire proposed by the French consen-
sus group on overtraining (French Society for Sports
Medicine, SEMS), and no sign of overtraining was de-
tected in any individual athlete. The Chinese translation
of the SFMS questionnaire was used in the study. The
English translation of the SFMS questionnaire was in-
cluded in the Additional file 1.

None of the sedentary controls reported to have en-
gaged in any type of vigorous exercise or perform more
than 100 min of light-moderate intensity weekly exer-
cise. Characteristics of all subjects are presented in
Table 1. None of the athletes suffered from acute or
chronic diseases or reported taking medications or anti-
oxidant supplements. The female participants of the
study had regular menstrual cycles and reported no use
of oral contraception, and a blood sample was collected
from them during the luteal phase of their menstrual cy-
cles. All subjects were non-smokers. Subjects were fully
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informed as to the purposes and risks of the study be-
fore voluntarily giving their written informed consent.
The study was approved by the Shanghai University of
Sport Research Ethics Committee according to the prin-
ciples set forth in the Declaration of Helsinki of the
World Medical Association.

Blood sampling and circulating levels of cytokines and
immunoglobulins

Venous blood samples (5 x 2.5 ml whole blood) were
drawn from the antecubital vein at rest in a sitting pos-
ition in mornings after an overnight fast (~10 h). The
subjects were instructed to avoid any strenuous exercise
48 h preceding the blood draw, and no exercise the day
before. The concentrations of cytokines IL-1f, IL-1ra,
IL-6, IL-10 and TNF-ain plasma were determined by
Magnetic Luminex Screening Assays, according to the
manufacturer’s instructions (R&D systems, Minneapolis,
MN). However, IL-1fB, IL-6, IL-10 and TNF-awere all
below detectible levels in our subjects and were not in-
cluded in the results. Serum levels of IgM, IgG and IgA
were measured by nephelometry. The inter- and intro-
assay coefficients of variation of these measures are
0.81% and 1.51% for IgM, 0.88%and 6.1% for IgG, and
2.54% and 4.09% for IgA.

RNA isolation and microarray gene expression procedures
Total RNA from blood samples of all subjects was iso-
lated using PaxGene Blood RNA Kit (Qiagen) according
to the manufacturer protocols. RNA quality and integrity
were assessed using Bioanalyzer 2100 (Agilent Tech-
nologies, Santa Clara, CA). Total RNA (250 ng) from
each sample was reverse transcribed to complementary
DNA (cDNA), followed by overnight in vitro transcrip-
tion to generate complementary RNA (cRNA). Then,
cRNA was reverse transcribed, and the 7.5 pg of sense
¢DNA were fragmented and labeled. The quality of
¢DNA and fragmented cDNA was assessed using Bioa-
nalyzer 2100 (Agilent Technologies, Santa Clara, CA).
Labeled and fragmented ¢cDNA was hybridized onto hu-
man gene 1.1 ST array strips (Affymetrix, Inc, Santa
Clara, CA). The reactions of hybridization, staining,
scanning and imaging were performed on the Affymetrix
Gene Atlas instrument according to the manufacturer’s
protocol.

Microarray data analysis

Microarray hybridizations were analyzed on the software
platform R 3.1.0 with Bioconductor 2.14.0 [32]. Initially,
the expression data from all chips were background cor-
rected, quantile normalized and summarized with RMA
(Robust Multichip Average) [33]. One control sample
was removed due to poor quality. Differentially
expressed genes were tested by using an intensity-based



Liu et al. BMC Genomics (2017) 18:29

Bayesian moderated t-test (IBMT) [34], with proven ad-
vantages in accuracy and stability of variance estimation.
The resulting p-values were corrected for multiple
testing with Benjamini-Hochberg method [35]. The
data discussed in this publication have been deposited
in the National Center for Biotechnology Information
(NCBI)'s Gene Expression Omnibus (GEO) and are
accessible through GEO Series accession number
[GEO:GSE68072].

Reverse transcription and quantitative real-time PCR

To confirm the validity of the microarray data, we se-
lected four genes identified in the microarray analysis as
significantly up- (HRH4 and MS4A1) and down-
regulated (ANXA3 and SLC22A4) for a further evalu-
ation by real-time PCR. Two micrograms of total RNA
were used for cDNA synthesis using random hexamers
primers (Invitrogen-Life Technologies, CA, USA) and
superscript II reverse transcriptase (Invitrogen). The
PCR was performed using StepOnePlus Real Time Sys-
tem (Applied Biosystem Foster City, CA, USA). Target
gene levels were normalized by the geometric means of
two housekeeping genes: -actin and GAPDH. All reac-
tions were performed in duplicate. For each gene, the
fold change was calculated using 2"**“T method, nor-
malizing the single values with the mean of the control
group transcript levels.

Functional enrichment testing

To gain insight into which biological processes or mo-
lecular signaling pathways are responsible for the ob-
served changes in transcription induced by chronic
intense exercise training (athletic training), we used the
data generated from the IBMT, including Entrez gene
IDs, p-values, and fold-changes for enrichment analysis.
Enriched Gene Ontology (GO) Biological Process terms
[36] and Kyoto Encyclopaedia of Genes and Genomes
(KEGG; http://www.genome.jp/kegg/) pathways [37] were
tested by LRpath [38], a logistic regression -based gene set
enrichment method. LRpath relates the odds of gene set
membership with the significance of differential expres-
sion (p values from IBMT). LRpath’s ability to implicate
important biological pathways in high-throughput data
has been well established. GO terms and KEGG pathways
with an FDR of less than 0.05 were deemed significant.
We used a directional LRpath test to distinguish between
upregulated and downregulated groups. Redundant/over-
lapping GO terms were removed by clustering similar
terms semantically with REVIGO [39]. We employed a se-
mantic similarity (SimRel) cutoff of 0.7.

Statistical analysis
Statistical analysis was performed using SAS. The Wilcoxon
Rank Sum test was used to test significant differences

Page 9 of 10

between groups in characteristics. P-values <0.05 were con-
sidered statistically significant.

Additional file

[Additional file 1: Overtraining questionnaire. (PDF 85 kb) }
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