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The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster

(Crassostrea gigas), an important aquaculture species. To understand the genetic

architecture of the defense against the pathogen, we studied genomic variations

associated with herpesvirus-caused mortalities by pooled whole-genome

resequencing of before and after-mortality larval samples as well as dead and

surviving adults from a viral challenge. Analysis of the resequencing data identified

5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692

SNPs and 28,314 regions covering 4,863 genes in adults that were significantly

associatedwith herpesvirus-causedmortalities. Only 1,653 of the implicated genes

were shared by larvae and adults, suggesting that the antiviral response or

resistance in larvae and adults involves different sets of genes or differentiated

members of expanded gene families. Combined analyses with previous

transcriptomic data from challenge experiments revealed that transcription of

manymortality-associated genes was also significantly upregulated by herpesvirus

infection confirming their importance in antiviral response. Key immune response

genes especially those encoding antiviral receptors such as TLRs and RLRs

displayed strong association between variation in regulatory region and

herpesvirus-caused mortality, suggesting they may confer resistance through

transcriptional modulation. These results point to previously undescribed genetic
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mechanisms for disease resistance at different developmental stages and provide

candidate polymorphisms and genes that are valuable for understanding antiviral

immune responses and breeding for herpesvirus resistance.
KEYWORDS

Ostreid herpesvirus, antiviral innate immunity, oyster, pooled-resequencing,
transcriptomic response, disease resistance, larval mortality, molluscan aquaculture
Introduction

Diseases of marine organisms, exacerbated by climate

change and other human activities, are becoming more

frequent and severe (1–3). Viruses, which account for 94% of

the nucleic-acid-containing particles in the ocean and are a

major cause of disease and mass mortality of diverse marine

organisms (4). Molluscs are a major group of marine animals,

many of which support important fishery and aquaculture

industries (5, 6). Disease and mass mortalities have seriously

affected molluscan aquaculture and led to immeasurable

economic losses (1). As invertebrates, molluscs lack adaptive

immunity and rely on an innate immune system for defense

against pathogens (7). Understanding how molluscs without

adaptive immunity cope with diverse viruses is of fundamental

interest to immunology and evolutionary biology.

The Pacific oyster, Crassostrea gigas, is a marine bivalve that

supports major aquaculture industries worldwide (8). The

Pacific oyster is highly susceptible to the Ostreid herpesvirus 1

(OsHV-1) (9, 10), variants of which also cause infection and

mass mortality of other marine bivalves such as scallops and

clams (11–14). Mass mortalities of Pacific oysters caused by

OsHV-1 have severely impacted global oyster production (1, 15–

20). The sustainable development of the oyster industry is

dependent on genetic improvement of cultured stocks

particularly in disease resistance. Depending on the genetic

architecture, disease resistance in oysters can be achieved by

selective breeding quickly as in the cases of resistance to

Haplosporidium nelsoni and Roseovarius crassostreae in the

Eastern oyster Crassostrea virginica, or more slowly as in the

case of Eastern oyster’s resistance to Perkinsus marinus (21, 22).

Investigating the genetic architecture of OsHV-1 resistance is

not only essential for genetic improvement of cultured stocks,

but also important for our understanding of genes and variations

that are critical in antiviral defense and adaptation in molluscs

that lack adaptive immunity.

Genetic and molecular studies have been performed to

understand and improve OsHV-1 resistance in the Pacific

oyster, where vaccination strategies cannot be applied.

Heritability values were estimated ranging from 0.078 to 0.63

(23–26) and varying among different developmental stages (24,
02
26). Breeding for OsHV-1 resistance has been conducted

including four-generations of selection of families (24, 27),

evaluation of triploids (28) and OsHV-1 variants (29). A

genome-wide association study in the Pacific oyster using a

SNP array identified a significant QTL in a region of linkage

group 6 for OsHV-1 resistance (23).

Transcriptomic and proteomic studies have been conducted

to understand host response to OsHV-1 and identified key genes

and pathways involved in antiviral immune responses (10, 30–

32). Genes and pathways that were significantly upregulated by

OsHV-1 infection included Toll-like receptors signaling

pathways (e.g., TLR, MyD88) (33, 34), RIG-I-like receptors

signaling pathway (e.g., RLR, interferon induced factors, IKKs,

and cGAS (10, 35–37), JAK/STAT signaling pathway (e.g., STAT

and SOCS2), and antiviral immune effectors such as

antimicrobial peptides (AMPs), Viperin, and SAMHD-1 (38,

39). Genes and proteins involved in apoptosis regulation (e.g.,

TNF, IAP, and caspase) and autophagy (e.g., ATG1, ATG8/LC3,

and BECN1) were activated by OsHV-1 infection (40). Proteins

that show significant changes after OsHV-1 infection are

involved in metabolic pathways such as host cytoskeleton,

DNA replication and protein modification (30, 32). Genes

involved in oxidation were upregulated, while genes involved

in anti-oxidation were downregulated by OsHV-1 creating an

oxidative burst that may be important for the destruction of viral

components but also contribute to oyster mortality (10). Taken

together, molecular investigations revealed a strong and complex

antiviral response to OsHV-1 that involves many canonical

innate immune response genes and pathways.

In this study, we investigated the genetic architecture of

OsHV-1 resistance in Pacific oyster larvae and adults by

identifying single-nucleotide polymorphism (SNPs), genomic

regions and genes associated with mortalities caused by

OsHV-1 using pooled whole-genome resequencing (41). We

show that antiviral response or resistance in larvae and adults

involves different sets of genes or differentiated members of

expanded gene families. Key immune response genes were

upregulated by OsHV-1 infection, including antiviral receptors

such as TLRs and RLRs identified in previous studies, whose

variation in promoter regions showed a strong association with

mortality, indicating that resistance may be conferred through
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transcriptional regulation. Therefore, this study revealed

previously undescribed genetic mechanisms for OsHV-1

resistance, and provided candidate polymorphisms that may

be valuable for our understanding and improvement of OsHV-

1 resistance.
Materials and methods

We identified SNPs, genomic regions and genes associated

with mortalities caused by OsHV-1 through pooled whole-

genome resequencing of larval samples collected before and

after mortalities, and of dead and surviving adult oysters from

a challenge experiment. These SNPs, genomic regions and genes

were regarded as mortality-associated or associated with OsHV-

1 resistance.
Samples collection and
pooled sequencing

The Pacific oyster larvae used in this study were from an

experimental cross of 1 male and 51 females from one family

produced at the Qingdao Laodong Mariculture Breeding

Company. A mass mortality of over 99% occurred during a

short period at umbo development stage, which was caused by

OsHV-1 (35). There was no known history of OsHV-1 infection

in this population. We collected larvae before and after the mass

mortality event as larval susceptible population (Ls) and larval

resistant population (Lr), respectively, for whole-genome
Frontiers in Immunology 03
resequencing (Figure 1). Notwithstanding, the Ls population

contained some Lr larvae, but proportionally neglectable because

of the high mortality rate of over 99%. A large number of larvae

(>10,000) were sampled to increase the accuracy of the pooled

sequencing. OsHV-1 virus was first diagnosed by conventional

PCR with OsHV-1 specific primers in dead larvae (42). A real-

time PCR assay was further performed to detect OsHV-1

according to Pepin JF et al. (43), indicating the virus load of

larvae reached the copy number of 7.5x105/ng DNA around 9

days after fertilization (Figure 1B). We also estimated relative

virus load before and after the larval mortality by sequence read

mapping ratio using the following formula:

Viral  mapping   ratio

= log10
Reads  mapped   to   the   reference   genome   of   virus   (OsHV − 1)  �   108

total   sequenced   reads
+ 1

The viral mapping ratio was about 4.4 before and 1.6 after

the mortality event, and the acute and specific peak is positively

correlated with larva mortality (Figure S1). DNA was extracted

from Ls and Lr samples using extraction kit (Omega, USA).

Adult Pacific oysters used in this study (~18-month old, may

also be referred as juveniles) were from an OsHV-1mVar
(instead of OsHV-1) challenge experiment conducted at

University of Caen, France by our team (10). Adult hatchery-

produced oysters, not intentionally selected for OsHV-1mVar
resistance, were obtained from a rack and bag system near

Cricqueville-en-Bessin, on the coast of Lower Normandy

(France), a location at least 4 km from any known oyster-

growing area and established as a site where experimental

oysters could be kept free of OsHV-1 μVar infections. Briefly,
A

B

FIGURE 1

The Pacific oyster response to OsHV-1mVar infection in both larvae and adults. (A) schematic diagram of experimental design. Ls, larval
susceptible population; Lr, larval resistant population; As, adult susceptible population; Ar, adult resistant population. (B) cumulative survival of
oyster larvae (survival number) and mortality rates of pooled sequenced populations in larvae.
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hatchery-produced oysters were injected with 1.5 ×109 viral

genomics units OsHV-1mVar. As determined with qPCR, only

1 VGU (viral genome unit) ng-1 of DNA extracted from the

oysters was detected at Time 0, which increased to 2 x 102, 1.9 x

104, 2.9 x 104 and 7.3 x 104 VGUs ng-1 DNA at 6, 12, 24 and 48 h

post-injection, respectively, compared with the 1 to 140 VGU

ng-1 of DNA observed in unchallenged controls throughout the

experiment (10). The 7.3 x 104-fold increase in viral DNA load

and its correlation with mortality suggest that the challenge was

effective. The viral load of dead juvenile individuals ranged from

4.46 to 5.65×104 VGUs ng-1 (10). Mortality began 20 hours after

injection and reached up to 74% by 180 hours after injection

(Figure 1). One hundred dead and 100 survivors were collected

as adult susceptible (As) and adult resistant (Ar) populations,

respectively. Genomic DNA was extracted from mantle and/or

gill of each oyster on an EpMotion5075 automated pipetting

system (Eppendorf®) with the Nucleospin 8 Blood kit

(Macherey Nagel®) according to manufacturer’s protocol.

Quality and quantity of template DNA was estimated on a

Nanodrop 2000 spectrophotometer (Thermoscientific®), and

equal amount of DNA from each individual was pooled to

create two pools for sequencing.

Sequencing libraries were generated via adapter ligation,

DNA cluster preparation, and subjected to 100 bp paired-end

sequencing on an Illumina Solexa platform. Sequencing depth of

each library was about 60 × for larvae and 45 × for adult

populations. Resequencing was conducted by Beijing

Genomics Institute Co., Ltd in Shenzhen, China.
Data processing, mapping, and
SNP calling

Clean data were obtained by trimming primer dimers and

adaptors, discarding low-quality bases (Q20 as cutoff). Burrows-

Wheeler Alignment Tool (BWA) software (http://bio-bwa.

sourceforge.net/bwa.s-html) (44) was used to map the clean

data to the Pacific oyster genome v9 (45). Duplicated reads

generated by PCR amplification were removed. SAMtools

(http://samtools.sourceforge.net/samtools.-shtml) (46), Picard

(http://broadinstitute.github.io/picard/), and BCFtools (46)

were used for SNP calling. Ambiguously mapped reads and

reads with low depth were removed. The major filter parameters

are: SNPs with sequencing depth no less than 10 and no more

than 150, RMS >= 20, Qual >= 20, no indel within 15 bp of SNPs.
Identification of SNPs, regions and genes
associated with OsHV-1 resistance

SNPs with large difference in allele frequencies between the

susceptible and resistant populations were extracted for both

larval and adult samples. SNPs with major allele frequency
Frontiers in Immunology 04
differing no less than 0.5 were identified as associated with

OsHV-1 or OsHV-1mVar susceptibility or resistance in this

study. Genes in the 100 Kb upstream and downstream

flanking regions were defined as associated genes.

To further explore genomic regions associated with oyster

mortality, we estimated fixation index FST. Based on our pooled

resequencing data, we refer to the 2009 study (47) by Kent E.

Holsinger et al. and choose to use FST to describe a measure of

allele frequency differences between populations. We defined FST
as (Molecular Population Genetics 1st Edition: by Matthew W.

Hahn (Author)):

FST =
s 2
s

s 2
T
=

s 2
s

�p(1 − �p)

s 2
s represents the variance in allele frequency among

populations; s 2
T represents the variance of the allelic state in

the total population; �p   is the average frequency of the allele in

the total population; �p(1 − �p) is the variance in the allelic state for

an allele chosen randomly from the entire population, so it can

be regarded as a measure of genetic diversity in the entire

population (47).

We estimated FST in the sliding window of 20Kb. We first

calculated the FST values of four bases at each site, and took the

largest absolute value among the four values as the final FST value

of the site. The mean FST is the ratio of the total FST of the

window to the length of the window, which is used to sort and

select the top 5% values for the regions under selection or related

to disease/mortalities.

To detect large genomic regions in oyster that had

experienced selection by the mortality, we mapped all the

disease associated SNPs, regions, and genes onto the

chromosomes of the genome. Ragtag (version=1.1.1) (48) was

first used to assemble the v9 reference genome into chromosomes

based on VN1 version information (GCA_011032805.1 (49)). The

positions of the associated SNPs, regions, and genes were

converted to the new chromosomal assembly through custom

Python script. Circos software (version=0.69-9) (50) was used to

draw the circle diagram.
Transcriptome and transcription factor
binding site analysis

To study the relationship between the transcription of

immune response genes and genes associated with OsHV-1

resistance identified in this study, we downloaded and

analyzed larval (33) and adult (10) transcriptomes under

OsHV-1 infection that were obtained from the same challenge

experiments (with the same larval and adult populations) as this

study. Briefly, filtered sequencing reads were mapped to the

oyster genomes by Tophat2 software (v2.1.1 (51)). Gene

expression levels were calculated by fragments per kilobase of
frontiersin.org
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exon per million fragments mapped (FPKM) using HT-seq (52).

The differentially expressed genes (DEGs) were identified with the

edgeR tool (53) of the R programming language with the threshold

value |log2FC| ≥ 1.5 (multiple of fold change, FC: difference) and

FDR ≤ 0.05. In addition, the immune geneset used for comparison

were obtained from Zhang L. et. al., 2015 (33).

The gene ontology (GO) and KEGG enrichment analyses

were conducted with TBtools software (54) with the threshold

value p-value ≤ 0.05. Fisher’s LSD and c2 test was used to test

significant enrichment when the number of genes in a GO term

was< 5 and ≥ 5, respectively.

Transcription factor binding sites of upstream and

downstream 300 bp of SNPs were predicted using an online

transcription factor-binding site database, TRANSFAC via the

PATCH™ 1.0 platform (http://gene-regulation.com/cgi-bin/

pub/programs/patch/-bin/patch.cgi) with default parameters.
Results

Resequencing and SNP calling in
larval samples

From the two larval pools collected before (Ls) and after (Lr)

the mass mortality caused by OsHV-1 (Figure 1A), we generated

94 Gb sequences which, after filtering and mapping, covered

92.3% of the genome at average depth of 60-fold in both samples

(Table S1). Depth analysis showed that the base depth

distribution was similar to that of Poisson distribution in both

samples (Figure S2).

After quality filtration, a total of 2,346,155 (4.75 SNPs/Kb)

and 2,226,998 (4.52 SNPs/Kb) SNPs were identified in the Ls and

Lr populations, respectively (Table 1). Among them,

approximately 1.57 Mb and 1.49 Mb SNPs were transitions

(variation between nucleotides of the same class, such as A/G

and C/T), and 1.51 Mb and 1.44 Mb SNPs were transversions

(variation between nucleotides of different classes, such as A/C,

A/T, C/G and G/T) in Ls and Lr populations, respectively,

corresponding to a Ts/Tv (transition/transversion) ratio of

1.04 in both populations (Table 1). In both populations, about

635 K (17.9%), 155 K (4.4%), 1,147 K (32.3%), 1,004 K (28.3%),
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and 609 K (17.2%) SNPs were located in downstream, exons,

intergenic, introns, and upstream regions, respectively (Table

S2). Among SNPs located in exons, about 61% were silent, 37%

were non-synonymous, and 0.56% were nonsense (Table 1).
Genomic loci associated with
OsHV-1 resistance

To detect SNPs experienced selection by the mortality and

associated with OsHV-1 resistance/susceptibility (also referred to

as selective SNPs hereafter), we compared allele frequencies in

larval samples collectedbefore (Ls,mostly susceptible) andafter (Lr,

resistant)mortalities. Overall, we detected 117,613 and 5,271 SNPs

withmajor allele frequency differing by at least 0.3 and 0.5 between

the two larval populations, respectively (Table 2). Among the SNPs

with allele frequency changes no less than 0.5, 217,158, 2057, 223

and 2630 were in upstream, exons, introns, downstream and

intergenic regions, respectively. We further compared the

number and frequency change level of the selective SNPs per Mb

in different genomic regions (Figures 2A, B). Introns and intergenic

regionshavemore selectiveSNPs thanexonsperMb(Figure2A). In

addition, the number (42%) of genic selective SNPs (exons and

introns, 227Mb) was less than that (50%) in the intergenic regions

(278 Mb). More SNPs with top 1% base frequency changes were

located in genic region (especially introns) than intergenic regions,

indicating that introns might plays an important role in virus

resistance regulation. Among those selective or mortality-

associated SNPs in coding regions, 110 SNPs were synonymous,

and 46 were non-synonymous. We also found 2 pre-mature stop-

codons inopen reading frames, andnomutations fromstopcodons

to amino acid codons (Figure 2C).Overall, 44%of selective SNPs in

non-coding regionswere not in the flanking regions around a gene.

A total of 2,949 (56%) of selective SNPswere located in the genic or

flanking regions around a gene.

To identify regions in oysters that experienced selection by

the OsHV-1 caused larval mortality, we conducted selective

sweep analysis with the FST statistics. Of the 37,660 20-Kb

windows screened, 1,883 regions spanning 23 Mb had FST
values among the highest 5%. In these regions, we detected

1401 genes as showing selection signal (Table 2).
TABLE 1 Statistics of SNPs identified in the larval and adult populations.

Samples SNP
numbers

SNP rate
(/gene)

Functional class Transitions Transversions Ts/Tv

NON-
SYNONYMOUS

% NONSENSE % SILENT %

Ls 2,346,155 84 61,046 37.855 904 0.561 99,312 61.584 1,570,879 1,510,186 1.040

Lr 2,226,998 79 57,584 37.753 853 0.559 94,092 61.688 1,492,136 1,435,381 1.039

As 2,552,189 91 67,191 36.414 800 0.434 116,530 63.153 1,513,023 1,433,387 1.056

Ar 2,808,259 100 72,636 36.312 912 0.456 126,486 63.232 1,661,994 1,577,039 1.054
frontie
Ls, larval susceptible population; Lr, larval resistant population; As, adult susceptible population; and Ar, adult resistant populations.
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A B

DC

FIGURE 2

Description of mortality associated SNPs and genes in oyster larvae. (A) The number (per Mb) of mortality associated SNPs with base frequency
not less than 0.5 between the susceptible and resistant larvae. (B) Statistics of the number (per Mb) of different classes of top 1% selective SNPs.
(C) Characterization of mortality associated SNPs in exonic region. synonymous: causing no amino acid changes; non-synonymous: causing
amino acid changes; stop gain: gain of stop codons. (D) Gene Ontology (GO) enrichment analyses of disease resistance associated genes in
larvae. The 3,111 candidates were identified based on base frequency changes (no less than 0.5) and top 5% highest values of FST analyses in the
oyster larvae population.
TABLE 2 Number of mortality-associated SNPs and FST outlier regions in larval and adult populations.

Mortality-associated SNPs Mortality-associated FST regions

Allele
Frequency

Changes≥0.3

Allele
Frequency

Changes≥0.5

Rate of Allele
Frequency Changes

≥0.5

Overlapped
Genes

FST
Regions

The Length of
Sliding
Window

Top 5%
FST

regions

Overlapped
Genes

Larvae 117,613 5,271 3.95% 1,831 37,660 20kb 1,883 1,401

Adult 344,832 18,692 5.42% 3,683 566,294 1kb 28,314 1,401
Frontie
rs in Immunology 06
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Candidate genes associated with OsHV-1
resistance in larvae

We identified candidate genes associated with OsHV-1

resistance by examining allele-frequency shifts and FST signals. A

total of 1,831 genes were identified by SNP allele-frequency shift

analysis. The highest allele-frequency shift (0.77) was observed at a

SNP at base 81,745 of scaffold 41,452, which was flanked by two

peripheral myelin protein 22 (PMP22) genes, with crucial roles in

peripheral nervous system pathological processes (55–57). Since

the nervous system is the main target tissue of oyster herpesvirus

(57, 58), we speculate that SNP 81,745 might be associated with

regulatory elements of PMP22 and hence affect virus resistance. In

addition, BTG3 associated nuclear protein (BANP) was found in a

regionwith the highest FST value in scaffold 448. BANP is known to

negatively regulate the transcription of tumor protein p53 (59) and

apoptosis (60). A telomere-associated protein RIF1-like gene, which

promotes DNA repair (61), was located in a regionwith the second

highest FST value in scaffold 448. Analyses of those 1,831 genes

(Table S3) revealed enrichment of GO terms for many biological

processes including ‘G protein-coupled receptor signaling’, ‘cell

division’, ‘electron transport chain’, ‘carbohydrate derivative

metabolic processes’, ‘positive regulation of exocytosis’, and

‘regulation of lipase activity’. A total of 1,401 candidate genes

were identified by the FST distribution analysis where GO terms

related to viral penetration into cells, envelope assembly and release

were significantly enriched (Table S3), including ‘regulation of

DNA replication’, ‘cytokinesis and cellular response to xenobiotic

stimulus’, ‘vesicle fusion’, and ‘glycoprotein biosynthetic process’.

Together, allele-frequency changes (no less than 0.5) and FST
outlier (largest 5%) analyses produced a set of 3,111 candidate genes

that were regarded as under selection by mortalities or associated

with OsHV-1 resistance. Analysis of those genes revealed

significant enrichment of GO terms related to immune response

(Figure 2D and Table S3) including ‘regulation of leukocyte

mediated immunity’, ‘regulation of B cell mediated immunity’,

‘positive regulation of immunoglobulin mediated immune

response’, and ‘myeloid cell activation’. The following enriched

GO terms may be related to the assembly and release of OsHV-1

viruses: ‘negative regulation of gene expression and chromatin

organization involved in negative regulation of transcription’,

‘exocytosis and regulation of regulated secretory pathway’. In

addition, 121 candidate genes were implicated by both allele-

frequency shift and FST outlier analyses, including ten genes

annotated as TRIM genes, which are involved in the PRR

signaling pathway and play important roles in innate immune.
Genomic loci and regions associated
herpesvirus resistance in adults

To identify genomic loci and regions related to herpesvirus

resistance in adults, we performed whole-genome resequencing
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of pooled samples of dead and survived oysters from an OsHV-

1mVar challenge experiment. We generated ~67 Gb high quality

sequences which, after filtering and mapping, led to an average

mapping depth of 45-fold (Table S1). Alignment and SNP

calling identified 2.55 and 2.81 million SNPs in the dead/

susceptible (As) and survivor/resistant (Ar) populations,

respectively (Table 1). A total of 18,692 SNPs showed

significant allele-frequency differences between As and Ar

populations, involving 3,683 genes (Table 2). In addition, we

found that the number of selective SNPs per Mb was greatest in

intronic and intergenic regions than that in exons (Figure S4A).

The SNP at base 19,753 of scaffold 37,760, located in the first

intron of an epidermal growth factor (EGF) gene, showed the

highest 0.92 allele-frequency shift. The EGF superfamily plays an

important role in regulating growth, proliferation, and

differentiation of the numerous cell types, which might also be

involved in herpesvirus resistance.

In addition, analysis of FST between the two populations

identified 28,314 regions in the top 5% of FST distribution,

covering 1,401 genes (Table 2), including a sacsin-like gene, a

member of heat shock proteins (62–66), located in a region of

scaffold 942 with the highest FST value. In combination, the two

methods identified 4,863 candidate genes associated with OsHV-

1mVar resistance in adults. Among these genes, the GO terms

‘regulation of Toll-like receptor signaling pathway’, a canonical

immune response pathway, was significantly enriched (Table

S4). Enriched pathway and functional terms also included

‘regulation of production of molecular mediator of immune

response’, ‘protein localization to Golgi apparatus’, ‘translational

initiation’ and ‘exosomal secretion’. In addition, GO terms

related to stress response was also significantly enriched

including ‘regulation of JNK cascade’, ‘positive regulation of

JUN kinase activity’, and ‘activation of MAPKK activity’. These

observations indicate that genetic variation in genes related to

innate immune, virus assembly, and stress response are

important for herpesvirus resistance in adults.

To determine if those candidate genes from adults were the

same as those identified from larvae, we mapped the differential

SNP and FST sites at the chromosome level with a circular map

(Figure 3A). Mortality-associated sites were distributed on all

chromosomes in both larvae and adult populations with few

concurrent peaks, suggesting OsHV-1 resistance in larvae and

adults involve different genomic regions or genes. In addition,

1,234 (23%) selective SNPs identified with allele-frequency shifts

were located in regions with the top 5% FST value in larvae, and

7,404 (40%) in adults. In terms of genes under selection by the

mortality, 1,653 genes were shared by larvae and adults, while

1,458 and 3,210 genes were specific to larvae and adult oysters,

respectively (Figure 3B and Table 3). Our results show that there

are fewer mortality-related genes in larvae than in adults

(Figure 3B). The larval and adult populations were from China

and France, respectively. Differences in genetic background,

OsHV-1 or OsHV-1mVar virulence and exposure history may
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contribute to the difference in the number of selective genes

observed. SNP polymorphism of the larval population (2.69%

before and 2.74% after mortality) was similar to that of the adult

population (2.60% for dead and 2.55% for survivors). It is

possible that the difference in the number of genes under

selection between larvae and adults is caused by developmental
Frontiers in Immunology 08
differences in immune response, as the types of genes identified

were also different.

The genes shared by larvae and adults included those coding

for Toll-like receptor, tripartite motif-containing (TRIM), NF-

kappa B, Extracellular superoxide dismutase (SODE) and

immunoglobulin, all key members of antiviral immune signal
A B

D

E

C

FIGURE 3

Comparative analysis of genomic loci and genes associated with larval and adult disease resistance. (A) Circos analysis of mortality associated
genomic loci and regions. The allele frequency of the locus is proportional to the column height. From outside to inside (named a-g): the a and
b layers represent the mortality associated SNP loci and FST regions of the adult population; the c layer represents ten chromosomes of the
oyster genome; the d and e layers represent the mortality associated SNP loci and FST regions of the larval population; the f and g layers
represent mortality associated genes in the adult and larval populations. (B) Venn diagram showed the difference of disease selected gene sets
between larvae and adults based on base frequency and FST analyses. (C–E) Gene Ontology (GO) enrichment analyses of 1,458 larvae specific,
3,210 adult specific, and 1,653 larva-adult shared selective genes.
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pathway. Although large numbers of the mortality-associated

genes were specific to larval or adult populations, some of them

were paralogs and potentially have similar functions. For

example, C1qDC (OYG_10002102) showed significant

association in larvae, whereas a member of the same gene family

C1qDC (OYG_10002498) was associated with OsHV-1 mVar
resistance in adult oysters. The findings of relatively fewer genes

(1,653 genes) shared between larvae and adults, and the

involvement of divergent paralogs with similar functions support

the hypothesis that herpesvirus response and resistance has

diverged somewhat between different developmental stages.

Again, virus strain difference may also be a contributing factor.

Despite the variation in mortality-associated genes between

larvae and adults, the most prevalent or highly enriched genes in

both populations included those involved in immune response,

virus assembly and release (Figures 3C–E; Table 3 and Tables S3,

S4, S5). For example, GO terms related to T cells regulation,

white blood cells, lymphocytes, and apoptosis were enriched

(Figure 3C). The immune response genes under those GO terms

include tyrosine-protein kinase JAK2, polycomb complex protein

BMI-1-A, interferon regulatory factor 1-like, and Toll-like

receptors. In adults, GO terms related to encapsulation of

foreign target, regulation of JNK cascade and p38 MAPK

cascade were also enriched (Figure 3D).
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Innate immune genes associated with
OsHV-1 caused mortalities

To assess whether the mortality-associated genes are

involved in immune response to herpesvirus infection, we

analyzed transcriptome data for the same larval (33) and adult

(10) populations subjected to OsHV-1 infections collected in

previous studies. Our analyses identified 1,376 and 1,954

differentially expressed genes (DEGs) in larvae and adult

oysters, respectively (Figure 4A). In larvae, 160 (5.2%)

mortality-associated genes were differentially expressed during

OsHV-1 infection, whereas 318 (6.5%) mortality-associated

genes were differentially expressed in adults under OsHV-1

mVar infection (Figure 4B). Analyses of the mortality-

associated DEGs in the larvae and adult oysters revealed

enrichment of similar GO terms related to ‘response to virus’,

‘response to cytokine’ ‘immune effector process’ (Figure 4C), but

somewhat different KEGG pathways (Figure 4D). In larvae,

pathways ‘PRR signaling pathway’ and ‘development and

regeneration’ were significantly enriched (Table S7). In adults,

pathways related to stress response ‘PI3K-Akt signaling pathway’

(p = 0.01), innate immune related pathways ‘immune system’,

‘complement and coagulation cascades’ and ‘immune disease’,

and cellular processes related pathway ‘phagosome’ were also
TABLE 3 Selected mortality associated genes in Pacific oyster larval and adult populations identified by allele-frequency shift and fixation
statistics (FST).

Gene Scaffold Gene_Start Gene_End Gene_Annotation Larvae Adult

FST Max (Allele
Frequency shift)

FST Max (Allele
Frequency shift)

larvae-
specific

OYG_10002102 scaffold36732 18064 24631 C1qDC 0.08 0.45 – –

OYG_10007060 scaffold1758 11397 20838 IFRD1 0.08 – – –

OYG_10021170 scaffold4 155258 160967 IRF1 0.06 – – –

OYG_10023843 scaffold406 351742 352809 HIP 0.01 – – –

adult-
specific

OYG_10001779 scaffold598 6664 7095 C1qDC – – – 0.53

OYG_10002498 scaffold37790 1900 11693 C1qDC – – 0.03 0.54

OYG_10002780 scaffold38448 38584 39306 TRIM3 – – 0.01 0.61

OYG_10001483 scaffold74 22091 23733 C1qDC 0.007 – 0.06 0.48

OYG_10003270 scaffold1598 18526 29890 IRF8 0.043 – – 0.61

OYG_10014035 scaffold983 353704 360265 RLR 0.008 – 0.09 0.65

OYG_10003004 scaffold38884 44613 50381 C-type lectin A – – – 0.71

OYG_10003934 scaffold40224 80124 80803 C1qDC – – – 0.54

shared by
larvae
and
adults

OYG_10004092 scaffold1558 2192 4793 SOD 0 0.55 – 0.62

OYG_10004837 scaffold41296 5403 5996 NF-kappa B 0 0.53 – 0.46

OYG_10004826 scaffold178 58024 92952 CD109 0.1 0.51 – 0.73

OYG_10004656 scaffold41064 24043 43070 TBK1 0.059 0.51 0.14 0.61

OYG_10005133 scaffold41522 11479 33348 IRF 0.154 0.58 0.38 0.52

OYG_10005135 scaffold41522 44800 58091 C1qDC 0.058 0.58 0.16 0.52

OYG_10005421 scaffold1256 20370 32211 Toll-like 0.06 0.53 – 0.58
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significantly enriched (Table S7). In both larvae and adults,

immune pathways were enriched in mortality-associated DEG,

indicating immune response genes were more likely associated

with OsHV-1 caused mortalities.

To determine how many immune genes are associated with

herpesvirus caused mortalities, 1,403 canonical innate immune

genes, belonging to 61 families and 4 innate immune pathways

(33), were analyzed, among which 340 genes (24.2%) were

associated with OsHV-1 caused mortalities (Figure 5A).

Specifically, 166 and 264 mortality-associated genes identified

in larvae and adults, respectively, were canonical innate immune

genes (Figure 5B). Among them, 90 were mostly immune
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receptors associated with OsHV-1 caused mortalities in both

larvae and adults, including those from the Toll-like signaling

pathway (seven TLR receptors, ECSIT, TBK, IKK, IRF, NF-kappa

B, and Interleukin-like) and other immune receptors (20

C1qDCs, 16 C-type lectins, five SRCRs, eight FBGDCs, and one

Alpha-2-macroglobulin like), and effectors (SODs and Serine/

threonine-protein kinase) (Table S8).

Analysis of mortality-associated immune genes from larvae

and adults revealed the enrichment of two KEGG pathways

central to immune signaling, ‘Toll-like receptor signaling

pathway’ and ‘RIG-I-like receptor signaling pathway’ (Table S9

and Table S10). Other enriched pathways included viral
A B

D

C

FIGURE 4

Analysis of differentially expressed and mortality-associated genes. (A) Venn diagrams of differentially expressed and mortality associated genes
in larval and adult populations, respectively. DEG: differential expressed genes under virus infection. (B) The number of mortality-associated
DEGs (MADEG) in larvae and adult populations, respectively. (C) The Gene Ontology (GO) and (D) Kyoto Encyclopaedia of Genes and Genomes
(KEGG) enrichment analyses of the MADEGs in larvae and adult populations, and their comparisons with all DEGs.
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proliferation related ‘Ras signaling pathway’, proinflammation

related ‘IL-17 signaling pathway’, and viral multiplication related

‘proteoglycans and glycosaminoglycan binding proteins’.
Antiviral immune receptors associated
with mortality

The oyster’s innate immune system plays a major role in

oyster resistance to pathogens through pattern recognition

receptors (PRRs). We found the receptors TLRs and RLRs

were strongly associated with virus infection based on the

presented results including the number and frequency change

level of selective SNPs nearby (genic, upstream 50Kb, and

downstream 50Kb). We sorted all the 28,027 genes in the

oyster genome based on the number of selective SNPs nearby

and found 12 TLRs rank in the top 5%. Meanwhile, one RLR

genes have five selective SNPs nearby, which ranks top 2% of all

the oyster genes. Meanwhile, we also sorted all the 28,027 genes

based on the maximum frequency change level of selective SNPs

nearby. Virus resistance associated TLRs and RLRs in this study

fall in the top 10% of the all the genes.

Given that the antiviral pattern recognition receptor genes

TLRs and RLRs showed significant allele-frequency differences

between susceptible and resistant populations, we conducted

detailed analysis of these receptors. Among the three TLRs and

nine RLRs responding transcriptionally to OsHV-1 (33, 35), two

TLRs and two RLRs were associated with OsHV-1 caused

mortalities in both larvae and adults in this study (Table S11).

To explore the potential function of mortality-associated sites,

we predicted transcription factor binding sites around the TLRs

and RLRs. Transcription factor binding sites were densely

populated upstream and downstream of the four PPR genes,
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which were also where most of mortality-associated SNPs

located (Figure 6). Few SNPs were located in exons, and the

only one in TLR2-1 was non-synonymous. The concurrence of

mortality-associated SNPs with transcription factor binding sites

suggests that these SNPs may affect transcription factor binding

and regulate the expression of antiviral immune receptors

(Figure 6). The predicted transcription factors included that

for IRF, NF-kappa B, HSF, C/EBP, and AP-1, all important for

immune and stress responses. Overall, these results suggest that

PRRs are critical for host-defense against viral infection, and

variations at transcription factor binding sites may determine

resistance to viral infections.
Discussion

Massive mortality outbreaks affecting Pacific oyster larvae

and adults are often caused by OsHV-1 (including mVar).
Mortality caused by OsHV-1 infection is rapid and heavy, but

some oysters can survive with greatly reduced virus load,

indicating that some oysters may be resistant (10). While

studies have examined host responses to OsHV-1 in juvenile

or adult oysters (10, 23, 30, 67, 68) and selected for OsHV-1

resistance (37, 69), the genetic architecture of OsHV-1 resistance

is largely unknown especially for larvae. In this study, we took

advantage of larval samples collected just before and after a mass

mortality event where over 99% of the larvae died due to OsHV-

1 infection (Figure 1). We conducted pooled whole-genome

sequencing of these samples to identify polymorphisms and

genes associated with OsHV-1 caused mortalities. We further

compared mortality associated genes from larvae with that

identified from dead and surviving adults from an OsHV-1

(mVar) challenge experiment. Our analyses identified many
A B

FIGURE 5

Comparative analysis of mortality-associated and canonical immune genes. (A) The Venn diagram represents the differences of mortality-
associated and canonical immune genes in larvae and adult populations, respectively. (B) The number of mortality-associated genes annotated
as canonical immune genes in larval and adult populations, respectively.
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immune response genes associated with OsHV-1 resistance,

especially two TLRs and two RLRs. Some of the genes

identified in this study may not be canonical immune

response genes, and most of variants associated with resistance

appeared to be intergenic and anonymous. Nevertheless, this

study provides a set of candidate genes and polymorphisms that

are valuable to our understanding of antiviral defense and the

development of OsHV-1 resistant oysters for aquaculture. It

should be noted that, despite the use of stringent thresholds and

two different methods (allele-frequency changes and FST
outliers), the depth of pooled resequencing is limited, and the

function of some of immune related genes is uncertain. Further

studies may be needed to confirm some of the findings.

Several findings from our study are interesting and worth

highlighting. First, genes associated with OsHV-1 resistance in

larvae and adults are largely different. Overall, more mortality-

associated genes were observed in adults than in larvae, but more
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genes related to antiviral defense and viral proliferation were

implicated in larvae than in adults. These findings suggest that

antiviral defense in larvae and adults may be different or involve

different set of genes, although differences in genetic

background, OsHV-1 strain and exposure history, and

environmental conditions may also be partly responsible.

Previous studies have shown that young juveniles are more

susceptible to OsHV-1 infection than adults (70), and the

difference may be due to a gradual maturation of immune

system as oysters develop into adults, or due to the adults

being selected by the virus during the larval stage. The fact

that different sets of genes were implicated suggests that larvae

and adults may differ in their antiviral defense, which is not

surprising as they represent very different developmental stages.

In some cases, different members of expanded gene families are

implicated in larvae and adults, suggesting some differentiation

or specialization in gene function. The differentiation or
FIGURE 6

Distribution of polymorphism and transcriptional factor binding sites at four pattern recognition receptors (RLR-1, RLR-2, TLR2-1, and TLR2-4)
associated with OsHV-1 caused mortality. The blue rectangles are exons. The stars represent SNPs, and the red stars indicate SNPs whose allele
frequency changes is no less than 0.5. The purple triangle represents the predicted transcription factor binding sites that covers SNPs. The canonical
antiviral transcription factor binding sites IRF and NF-kappa B near SNPs are marked with yellow and green ellipses, respectively.
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specialization of immune response genes in larvae and adults

may be the consequence of the great expansion of immune/stress

response genes observed in bivalve molluscs (33, 71–75).

Duplicated gene members may diverge and become specialized

in assuming the same or similar functions in different organs, at

different developmental stages or under different environmental

conditions (45, 76). The expansion and diversification of stress

and immune related gene is considered central to the adaptation

of marine bivalves.

Second, we found more (58% in larvae and 59% in adults)

selective SNPs in non-genic regions compared to the proportion

(3% in both larvae and adult) of SNPs in coding regions (exonic

regions). This suggests that regulation of target genes is the main

function of these selective SNPs, rather than altering protein

structure. These selective SNPs in noncoding regions might be

located in non-coding RNAs, enhancer, and promoters that

regulate the expression of genes nearby or far away (77–79).

Our finding is consistent with previous studies that non-coding

region SNPs were important targets of selection (80, 81).

Previous studies in oysters revealed many distant regulatory

SNPs around heat-responsive genes in oysters (82), involving

transcription factors, nuclear receptors, miRNAs and small

nuclear RNAs (83). Future studies on non-coding variation

with miRNA-seq, BS-seq, ATAC-seq, Histone marker CHIP-

seq, are needed to illuminate the function of those intergenic

selective signals.

Third, the identification of genes associated with OsHV-1

caused mortalities provided insights into antiviral defense

mechanisms in the Pacific oyster. Among the mortality or

resistance associated genes, genes of the PI3K-Akt signaling

pathway were significantly enriched. Previous studies (84–86)

have shown that the PI3K signaling pathway inhibits the

transcription of pro-apoptosis genes, thereby reducing

apoptosis, promoting cell survival or inhibiting host cell death

caused by viral infection. We hypothesized that variation in

genes of the PI3K pathway affects survival or OsHV-1 resistance

through its regulation of host-cell apoptosis. This finding is

consistent with the significant upregulation of 6 inhibitors of

apoptosis in OsHV-1 infected Pacific oyster (10). The PI3K

pathway genes were also associated with columnaris resistance

in catfish (87), and Porphyromonas gingivalis could activate PI3K

in mice (88). In addition, the mortality associated genesets from

both larvae and adults included a gene coding for superoxide

dismutases (SOD), where three SNPs nearby showed

significantly changes in allele frequency. SODs are critical in

protecting cells against damage caused by ROS (89–91). A qRT-

PCR study has shown that this SOD gene showed lower mRNA

expression in heavily than lightly OsHV-1 infected oysters

(92).Another study in the Pacific oyster found that five SOD

genes were down-regulated by OsHV-1 by an average of 34-fold,

along with the down-regulation of other anti-oxidation genes

and upregulation of oxidative genes (10). Variations in SODmay
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confer OsHV-1 resistance by regulating a robust oxidative burst

is critical in the destruction of viral components but may also be

harmful to the host. Another gene significantly associated with

OsHV-1 mortality encodes CD109 of the thioester-containing

proteins superfamily, which plays important roles in activating

T-cells and endothelial cells (93–95), affecting cell proliferation,

cell death and other processes by negatively regulating

transforming growth factor beta (TGF-beta) signaling pathway

(96). The gene encoding CD109 was associated mortality from

Ovine Johne’s disease in Turkish sheep (97). Therefore,

variations near CD109 may affect OsHV-1 resistance through

its regulation of cell proliferation via TGF-beta signaling

pathway, affecting OsHV-1 pathogenesis.

Although the 10 SNPs showing strongest association with

survival and OsHV-1 load identified in a previous (23) did not

show significant base frequency changes (≥ 0.5) in our study,

many of those genes were in the mortality associated geneset

from this study including four of the survival associated genes

(KPNA1, CASP, AP1AR and KIF6) and four viral load associated

genes (FBN2, CARS, TNIK and SCARF2). The differences in the

results may be due to difference in OsHV-1 strain, genetic

background of the oysters used and experimental conditions.

Fourth, our study suggests two canonical antiviral immune

receptors TLR and RLR play important roles in herpesvirus

resistance in the Pacific oyster. TLRs are important PRRs that

function in pathogen recognition and immune response (98–100).

Previous research has shown that the two selective TLRs identified

in this study were significantly upregulated in response to OsHV-

1μVar infection (10, 35, 101, 102). In addition to TLRs, retinoic

acid-inducible gene I (RIG-I)-like receptors (RLRs) that are

localized in the cytosol, are the main nucleic acid sensors for

pathogen recognition critical for sensing viral nucleic acids (103,

104). Previous knockout studies in mice and mouse-derived cells

established that RLRs are essential for antiviral defense and type I

interferon induction in virus infection models (105, 106). Almost

all RLRs were significantly up-regulated by OsHV-1mVar in the

Pacific oyster (10, 33, 35), and two of them were associated with

herpesvirus caused mortalities in both larvae and adults in this

study. In addition, KEGG enrichment analysis indicates that TLR

and RLR pathways were significantly enriched in DEGs in infected

larvae and adults. Taken together, these evidences suggest that

SNPs around TLR and RLR genes are closely related to OsHV-1

resistance in oysters. Importantly, most mortality-associated SNPs

near the four PRR genes are found in regulatory regions rich in

transcription binding sites of immune regulators such as IRF and

NF-kappa B. This finding suggests that these polymorphisms may

confer disease resistance through transcriptional regulation of

PRRs and downstream immune signaling pathways. In the

Eastern oysters, resistance to Perkinsus marinus is influenced by

polymorphism in the promoter region of a serine protease

inhibi tor (107) , and shel l growth is regulated by

both transcriptional modulation and functional polymorphism,
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two separate mechanisms that may act on different sets of

genes (108).

In summary, pooled whole-genome resequencing of

susceptible and resistant samples of larvae and adults provided

insights into the genetics of herpesvirus resistance in the Pacific

oyster. Our analyses identified a large number of loci and genes

associated with herpesvirus caused mortality including canonical

immune response genes related to antiviral response, many of

which also showed significant transcriptional upregulation in

herpesvirus infected oysters. We showed that antiviral defense

may differ between larvae and adults as indicated by differences in

mortality-associated genes observed. Polymorphisms in regulatory

regions of two TLRs and two RLRs exhibited strong association

with herpesvirus caused mortality, revealing the importance of

PRRs and transcriptional regulation in effecting viral defense and

resistance. Overall, this study provides previously undescribed

genetic mechanisms for disease resistance at different

developmental stages and a rich set of polymorphisms and genes

that may be valuable for understanding antiviral immune response

and breeding for herpesvirus resistance.
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SUPPLEMENTARY FIGURE 1

Response of oyster larvae to OsHV-1 infection. Ratio of RNA-seq reads

mapping to the OsHV-1 genome and the mortality of oyster larvae are
shown (35) (the data refers to Huang et al,. 2017).

SUPPLEMENTARY FIGURE 2

Depth distribution of the four pooled sequenced samples. Depth was
calculated for each base from the aligned reads. Reads with multiple

alignment were assigned to one best-hit location. Sequencing depth

exhibited a Poisson-like distribution on different samples, respectively.

SUPPLEMENTARY FIGURE 3

Box plots of the allele frequency changes of selective SNPs between

different genomic regions (upstream, downstream, exons, introns, and
intergenic) in larvae (A) and adults (B).

SUPPLEMENTARY FIGURE 4

Description of mortality associated SNPs in oyster adults. (A) The number

(per Mb) of mortality associated SNPs with base frequency not less than
0.5 between the susceptible and resistant adult. (B) Statistics of the

number (per Mb) of different classes of top 1% selective SNPs.
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