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Abstract: Natural products and semi-synthetic compounds continue to be a significant source of drug
candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is
causing the current pandemic. Besides being attractive sources of bioactive compounds for further
development or optimization, natural products are excellent substrates of unique substructures
for fragment-based drug discovery. To this end, fragment libraries should be incorporated into
automated drug design pipelines. However, public fragment libraries based on extensive collections
of natural products are still limited. Herein, we report the generation and analysis of a fragment
library of natural products derived from a database with more than 400,000 compounds. We also
report fragment libraries of a large food chemical database and other compound datasets of interest in
drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment
libraries were characterized in terms of content and diversity.

Keywords: chemoinformatics; COVID-19; drug discovery; drug design; fingerprint; food chemicals;
natural products fragments; SARS-CoV-2

1. Introduction

Natural products (NP) have long been studied and used in medicine and chemistry, starting from
ancient civilizations throughout history. Natural sources were the basis of early research in medicinal
chemistry and drug discovery and have yielded valuable therapeutic agents still in use today [1].
A recent review reveals that 3.8% of drugs approved between 1981 and 2019 are NP, and 18.9% are NP
derivatives [2].

The unique and complex chemical structures of NP make them unique sources to explore
novel areas of the chemical space [3]. However, considering the structural complexity of NP, it is a
challenge to produce them in large quantities, which is typically required during drug development.
Therefore, in recent years novel methods and synthetic strategies have been developed to obtain
diverse and semi-synthetic compounds libraries based on NP [4]. Similarly, NP are becoming attractive
starting points to conduct fragment-based drug design and build the so-called “pseudo-NPs” [5].

The increasing use of NP in modern drug discovery has promoted the application of
chemoinformatic methods for natural product-based drug discovery. One such contribution is
the generation and development of compound databases [6–8]. The development of compound
databases of NP and synthetic analogs has been recently reviewed [8,9]. A recent notable example is
the COlleCtion of Open NatUral producTs (COCONUT), a compendium of 50 open-access databases
collecting more than 400,000 compounds. These and other public collections of food chemicals
are important sources to generate fragment libraries of compounds of natural origin. The authors
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recently reported and made public a library with 205,903 fragments derived from a drug-like subset
of the first version of COCONUT [10]. In that work, a total of 190,139 molecules were analyzed.
Recently COCONUT was updated, and a fragment library based on its full comprehensive collection
has not been reported.

The goal of this work was to generate a fragment library of the complete and most recent version
of COCONUT that contains 432,706 compounds. We also expanded the analysis to generate fragment
libraries of large public collections of 23,883 food chemicals that have a close association with NP [11] and
are part of the increasing research field of foodinformatics [12]. The fragment libraries were characterized
using chemoinformatic methods and compared with reference fragment libraries generated from
molecules in the Dark Chemical Matter (DCM). DCM is a collection of 139,352 compounds that showed
no activity when tested in at least 100 screening assays but that have recently led to the identification
of bioactive compounds [13]. In light of the current coronavirus disease 2019 (COVID-19) pandemic,
we also included in this study two large reference libraries with relevance in drug discovery in relation
to this disease [14]. Of note, food chemicals and DCM compounds analyzed in this work were recently
screened in silico to identify potential inhibitors of the main protease of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), one of the main promising molecular targets for the treatment
of COVID-19 [15].

2. Materials and Methods

2.1. Compound Databases

In this work, we generated fragment libraries of five compound databases of interest in drug
discovery, summarized in Table 1 and listed here: COCONUT, the largest database, with a total of
423,706 unique molecules [16], Food Database (FooDB) with 23,883 food chemicals [17], and a database
with 139,352 small molecules, classified as DCM [13]. We also analyzed a focused public library relevant
to COVID-19 research assembled by the Chemical Abstract Service (CAS) with 48,876 compounds [18]
and 280 inhibitors of the main protease of SARS-CoV-2 (3CLP) [15].

Table 1. Compound data sets analyzed in this work.

Dataset Original
Compounds

Processed
Compounds

Generated
Fragments Reference

COCONUT 432,706 382,248 52,630 [16]
FooDB 23,883 21,319 3186 [17]

Dark Chemical Matter (DCM) 139,352 139,326 14,001 [13]
Chemical Abstract Service (CAS) set

focused on COVID-19 48,876 44,692 8432 [18]

Inhibitors of the main protease of
SARS-CoV-2 (3CLP) 280 256 108 [15]

COCONUT, COlleCtion of Open NatUral producTs, FooDB, Food Database (FooDB, COVID-19, coronavirus disease
2019, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

2.2. Data Curation

Similar to our previous work [10], the preparation of the five datasets was performed with the
open-source cheminformatics toolkit RDKit [19], (version 2020.03.2.0, RDKit, San Francisco, CA, USA)
and the functions Standardizer, LargestFragmentChoser, Uncharger, Reionizer, and TautomerCanonicalizer
implemented in the molecule validation and standardization tool MolVS [20]. SMILES strings [21],
with no stereochemistry information, were generated because not all compounds in the datasets
have a defined stereochemistry. Compounds with valence errors or any chemical element other
than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and I were removed. With the chemical compounds retained,
neutralized, and reionized, a canonical tautomer was generated. The average molecular weight (AMW)
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was calculated, and all compounds with AMW ≤ 1300 were retained. Table 1 summarizes the number
of compounds used for the fragmentation analysis and the number of unique fragments generated.

2.3. Generation of Unique Fragments Using the RECAP Algorithm

Fragment libraries were produced with the Retrosynthetic Combinatorial Analysis
Procedure (RECAP) as implemented in RDKit (version 2020.03.2.0, RDKit, San Francisco, LA, USA).
The RECAP algorithm is based on 11 cleavage rules derived from chemical reactions [22].
A molecule is cleaved into fragments if it contains any of the following bonds:
amide, ester, amine, urea, ether, olefin, quaternary nitrogen, aromatic nitrogen–aliphatic carbon,
lactam nitrogen–aliphatic carbon, aromatics carbon–aromatic carbon, and sulphonamide. For this
study, only terminal fragments were generated.

All curated datasets and fragments libraries used in this work are available at https://doi.org/10.
6084/m9.figshare.13064231.v1. Datasets contain the curated structures and the following information:
identification number (ID), simplified molecular input line entry system (Smiles), Average Molecular
Weight (AMW), number of carbons, oxygens, nitrogens, heavy atoms, aliphatic rings, aromatic rings,
heterocycles and bridgehead atoms, fraction of sp3 carbon atoms and chiral carbons, and a list of
fragments generated from each compound. Fragment libraries contain structures generated (Fragments)
from each compound library (Dataset) and the following information: number of compounds that
contain that fragment in a dataset (Count) and fraction of them (Proportion), Average Molecular
Weight (AMW), number of carbons, oxygens, nitrogens, heavy atoms, aliphatic rings, aromatic rings,
heterocycles and bridgehead atoms, fraction of sp3 carbon atoms and chiral carbons.

2.4. Structural Diversity and Complexity

The structural diversity of the compounds and fragment datasets was evaluated by calculating
the median value of the distribution of the pairwise similarity values generated with the Tanimoto
coefficient for both Morgan fingerprint with radius 2 (Morgan2, 1024-bits) [23] and Molecular ACCes
System (MACCS) keys (166-bits) [24]. For 4 sets of entire compounds (except 3CLP), the calculation
was done for 10 random samples of 10,000 compounds each, and the medians were then averaged.
For 3CLP, all 256 molecules were used. For the fragment datasets, all fragments were employed for the
calculation, except for COCONUT, for which 10 random samples of 10,000 fragments were used. It has
been shown that for large datasets, several random samples of 1000 compounds each are a reasonable
approach to quantify the pairwise fingerprint-based diversity of the entire datasets [25].

The structural differences between compound and fragment datasets were evaluated,
calculating 14 molecular descriptors, namely, number of carbon, oxygen, nitrogen, and heavy atoms,
the number of rings and heterocycles—both aliphatic and aromatic—spiro atoms, bridgehead atoms,
the fraction of sp3 carbons, and chiral carbons.

2.5. Chemical Space Visualization

Morgan fingerprints with radius 2 (Morgan2, 1024-bits) were generated for each compound and
fragment data set. To generate a visual representation of the chemical space, we used the recently
developed algorithm TMAP (Tree MAP). This method allows the visual representation of many
molecules that are difficult to visualize using other standard methods such as principal component
analysis. Basically, TMAP allows the visualization of large data sets (such as the ones studied in this
work—Table 1) through the distance between the clusters and the cluster’s detailed structure through
branches and sub-branches [26,27]. Fingerprints for each data set (input data) were indexed in a local
sensitive hashing (LSH) forest data structure, enabling c-approximate k-nearest neighbor (k-NN).
Fingerprints were encoded using the MinHash algorithm. An undirected weighted c-approximate
k-nearest neighbor graph (c-k-NNG) is constructed from the data points indexed in the LSH forest.
This graph takes two arguments, k, the number of nearest-neighbors, and kc, the factor used by the
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augmented query algorithm. In this work, we used k = 50 and kc =10. Further details of the TMAP
approach are published elsewhere [28].

3. Results and Discussion

3.1. Overlapping Fragments and Compounds

Figure 1 shows the number of unique and overlapping compounds and fragments. We found
533,961 unique compounds among all datasets which comprising 364,070 COCONUT compounds
(93.54%), 352 from FooDB (1.6%), 134,251 from DCM (96.35%), 35,070 from CAS (78.31%), and 218
from 3CLP (85.15%). The largest compound overlap occurred between COCONUT and FooDB (21,591
(98.37%) FooDB compounds in COCONUT). The second largest overlap was between COCONUT and
3CLP (concerning 35 (13.67%) 3CLP compounds), followed by the overlaps between COCONUT and
DCM (concerning 3693 (2.65%) DCM compounds) and COCONUT and CAS (concerning 361 (0.26%)
CAS compounds).
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Regarding the fragments, Figure 1 indicates that there we identified 64,844 unique fragments
among all datasets, including 46,608 COCONUT fragments, 36 FooDB fragments (1.12%), 10,910 DCM
fragments (77.92%), 7270 CAS fragments (86.21%), and 20 3CLP fragments (18.51%). The largest
fragment overlap occurred for 3150 FooDB fragments (98.87%) overlapped with COCONUT fragments,
followed by 84 3CLP fragments (77.77%), 2993 DCM fragments, and 1065 CAS fragments. We also
found that 28 fragments were shared by all fragment libraries (Figure 1).

It should be noted that around 13% of 3CLP inhibitors are found within a global dataset of NP.
Likewise, 77% of 3CLP fragments can be obtained from NP. This observation reinforces our hypothesis
that previously isolated and characterized NP are potential sources of compounds against COVID-19.
In turn, this is also in agreement with several reports of virtual screenings of NP databases aimed to
identify compounds with activity against 3CLP [29,30].
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3.2. Fragment Analysis

As described in the Methods Section 2.3, molecular fragments (terminal fragments only)
were obtained from the five compound datasets. The NP fragments in COCONUT and the food
chemicals in FooDB were compared with molecules of three reference datasets: small molecules with
no biological activity despite having been exhaustively tested in high-throughput screening (HTS) and
two collections for COVID-19 drug discovery. Table 1 summarizes the results. The largest number of
different fragments was generated for COCONUT (52,630), while the smallest number of fragments
was calculated for 3CLP (108). Figures 2–6 show the chemical structures of the 10 most frequent and
unique fragments in the 5 databases studied. The figure indicates the frequency and percentage of
each fragment in the corresponding dataset.
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Figure 2 shows that COCONUT fragments contain the largest number of oxygen atoms
(carbonyls, alcohols, and aldehydes), aliphatic rings, like tetrahydrofurans and pyranones, and other
oxygen-containing heterocycles. FooDB fragments are characterized by having macrocycles
(porphyrin rings) and triphosphates groups (Figure 3). In contrast, fragments from CAS,
3CLP, and DCM have larger numbers of nitrogen atoms and aromatic rings than fragments from
COCONUT and FooDB as shown in Figures 4–6. The most frequent DCM fragments contain various
triazole and pyrimidine rings, and 3CLP fragments comprise pyrrole, imidazole, and pyrazole rings.

The chemical structures of the 28 fragments common (overlap) to all five data sets (Figure 1)
are represented in Figure 7, which shows the sum of frequencies of each fragment in all databases
and the cleavage bonds in gray color (also marked with *). Relevant overlapping fragments
include acetophenones (5642, 1377, and 647), 2-acetylfuran (2156), cyclopropyl methyl ketone
(12,223), benzylacetone (493, 419), 2-acetylthiophene (1101 and 11), 2-aminohexane-2,5-dione (98),
2-aminoacetophenone (74), 2-acetylindole (57).
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Tables 2 and 3 summarize the distribution of carbon, oxygen, nitrogen, and heavy atoms for the
entire compounds and fragment datasets, respectively. The tables also summarize the fraction of sp3

carbon atoms and chiral carbons as representative structural complexity measures. Finally, both tables
indicate the distribution of the number of rings (total number, aliphatic, and aromatic) and other
important structural features of the compound and fragment datasets. Table 2 shows that compounds
from COCONUT and FooDB have the highest mean fraction of sp3 carbons, 0.506 and 0.620, respectively,
whose values range from 0.45 and 0.59 for NPs [31]. CAS, DCM, and 3CLP show the largest
number of aromatic rings and aromatic heterocycles, which are characteristic of drugs and synthetic
compounds [32]. Compounds in COCONUT and FooDB have the largest number of carbon and



Biomolecules 2020, 10, 1518 10 of 16

oxygen atoms, fraction of chiral carbons, and number of aliphatic rings and bridgehead atoms, a trend
that is preserved for their respective fragments (see Table 3). However, fragments from COCONUT
and FooDB overlapping with those from CAS, DCM, and 3CLP have the lowest number of carbon,
oxygen, and aliphatic rings, compared to unique fragments (Table 3).

Table 2. Summary of the structural composition of compounds from COCONUT, FooDB, and reference
datasets a.

Structural Feature COCONUT FooDB DCM CAS 3CLP

Carbon atoms 25.640 26.563 18.059 22.496 25.828
Oxygen atoms 6.167 7.343 3.252 5.773 4.922

Nitrogen atoms 1.445 0.668 2.859 4.157 3.582
Heavy atoms 33.611 34.942 25.139 33.535 35.352

Fraction of sp3 carbons 0.506 0.620 0.342 0.489 0.291
Fraction of chiral carbons 0.154 0.152 0.028 0.145 0.069

Rings 3.962 2.243 2.881 3.628 3.617
Aliphatic rings 2.250 1.426 0.791 1.372 0.645
Aromatic rings 1.712 0.817 2.089 2.256 2.973
Heterocycles 1.711 1.020 1.408 2.056 1.500

Aliphatic heterocycles 1.166 0.770 0.619 0.865 0.363
Aromatic heterocycles 1.712 0.817 2.089 2.256 2.973

Spiro atoms 0.167 0.051 0.018 0.019 0.000
Bridgehead atoms 0.493 0.137 0.056 0.254 0.023

a Mean of the distribution.

Table 3. Summary of the structural composition of fragments from COCONUT, FooDB, CAS, DCM,
and 3CLP and overlapping fragments a.

Structural Feature COCONUT FooDB DCM CAS 3CLP Overlapping
Fragments

Carbon atoms 18.504 12.991 10.181 9.904 8.926 5.179
Oxygen atoms 3.524 3.173 1.748 3.678 1.556 1.107

Nitrogen atoms 0.795 0.394 1.475 0.883 0.713 0.107
Heavy atoms 23.034 16.760 14.057 15.532 11.537 6.464

Fraction of sp3

carbons
0.557 0.615 0.330 0.656 0.298 0.318

Fraction of chiral
carbons 0.189 0.199 0.054 0.240 0.071 0.062

Rings 2.999 1.739 1.686 1.496 1.398 0.571
Aliphatic rings 2.013 1.237 0.447 0.837 0.398 0.071
Aromatic rings 0.986 0.503 1.239 0.660 1.000 0.500
Heterocycles 1.087 0.577 0.899 0.787 0.574 0.179

Aliphatic heterocycles 0.751 0.390 0.313 0.573 0.176 0.036
Aromatic heterocycles 0.986 0.503 1.239 0.660 1.000 0.500

Spiro atoms 0.190 0.085 0.013 0.010 0.000 0.000
Bridgehead atoms 0.507 0.288 0.043 0.109 0.056 0.000

a Mean of the distribution.

In general, NPs have been reported to have a higher fraction of sp3 carbons (associated with a
greater structural complexity) and number of oxygen atoms and a lower number of nitrogen atoms
and aromatics rings as well as NP fragments [31,33]. Therefore, the fragments from COCONUT and
FooDB are also attractive as building blocks for designing drug candidates.
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3.3. Structural Diversity and Complexity

The fingerprint-based structural diversity was measured as the median value of the distribution
of the pairwise similarity values calculated with the Tanimoto Coefficient, both MACCS keys and
Morgan2 (see Methods, Section 2.4). The results are summarized in Tables 4 and 5. Regarding the
diversity of the compound libraries, FooDB was the most diverse in terms of Morgan2 and MACCS
keys fingerprints (median similarity of 0.092, 0.322), followed by COCONUT (0.107, 0.380) (Table 4).
The structural diversity of the most recent version of COCONUT (studied in this work) is similar
to the fingerprint diversity calculated for a drug-like subset of COCONUT (0.117, 0.314) computed
recently [10]. CAS appeared to be one of the least diverse sets, which is consistent because the datasets
were selected by focusing on COVID-19 research (vide supra).

Table 4. Summary of the fingerprint-based structural diversity of the entire compounds.

Dataset Morgan2 a

(1024-bits)
MACCS Keys a

(166-bits)

COCONUT 0.107 0.380
FooDB 0.092 0.322
DCM 0.136 0.407
CAS 0.117 0.473

3CLP inhibitors 0.127 0.403
a Median similarity.

Table 5. Summary of the fingerprint-based structural diversity of the fragment datasets.

Dataset of
Fragments

Morgan2 a

(1024-bits)
MACCS Keys a

(166-bits)

COCONUT 0.111 0.300
FooDB 0.106 0.241
DCM 0.125 0.243
CAS 0.095 0.222

3CLP inhibitors 0.147 0.214
a Median similarity.

Regarding the fingerprint-based diversity of the fragment datasets (Table 5), in general, all fragment
libraries showed a larger diversity than their parent compounds. Specifically, the CAS fragments
were the most diverse according to both molecular fingerprints (0.094, 0.222), followed by FooDB
(0.106, 0.241) and COCONUT (0.111 only for Morgan2). Possibly, the difference in the diversity of the
fragments from NP in COCONUT and food chemicals in FooDB is associated with the fragmentation
algorithm (i.e., the RECAP fragmentation algorithm terminal fragments only as compared to our
previous work [10]). This result means that the diversity of fragments appears in the intermediate
compounds generated throughout the fragmentation process.

3.4. Chemical Space Visualization

A visual representation of the chemical space of the entire compounds and fragments was
explored using the TMAP approach, as described in Methods, Section 2.5. Of note, TMAPs facilitate
the visualization of very large datasets (e.g., more than 380,000 molecules from COCONUT, Table 1).
The visual representation of the chemical space for the entire compounds and fragments is shown in
Figures 8 and 9, respectively. The figures display the chemical space of all compounds and fragments
using the same coordinates. To improve the visualization’s clarity, each set of unique compounds
and fragments from the five datasets is shown individually. The figures also present three panels
showing direct comparisons of COCONUT with the other datasets, highlighting in different colors
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the compounds that are in common, i.e., COCONUT–FooDB (purple); COCONUT–CAS (black);
COCONUT–DCM (green), and COCONUT–3CLP (magenta).Biomolecules 2020, 10, x 12 of 16 
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Figure 8 shows that all compound datasets converged in the chemical space largely defined
by COCONUT, followed by that of DCM. The density distribution of the compounds appeared
concentrated between COCONUT and FooDB, in association with the large (98%) overlap between
FooDB and COCONUT compounds (vide supra, Figure 1); a lower density was evidenced for DCM,
CAS, and 3CLP. Figure 9 shows that the chemical space of the fragments was mostly defined by
COCONUT fragments. Nevertheless, FooDB fragments presented a lower density compared to FooDB
compounds, whereas a higher density was found for DCM fragments and CAS fragments concentrating
in the chemical space covered by COCONUT fragments.

On the other hand, small molecules with scarce biological activity, like DCM, still converged
in a large portion of chemical space covered by NPs (COCONUT) and CAS datasets. To further
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illustrate this point, Figures 10 and 11 show a direct comparison of DCM, CAS, and the overlapping
compounds and fragments. DCM compounds and CAS compounds hardly converged on chemical
space, while CAS fragments and DCM fragments appeared to cover a large area of chemical space.
For this reason, DCM fragments showed a significant larger overlap with CAS fragments in comparison
with the original compounds. This observation suggests that fragments generated from DCM can be
used as building blocks in de novo design of bioactive molecules, despite the source compounds’ lack
of biological activity.
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4. Conclusions

Herein, we generated, analyzed the composition, and made publicly available a fragment
library obtained from an extensive collection of NP. The source compounds and fragment
libraries were compared to herein assembled fragment libraries of compounds of interest in drug
discovery, including molecules with significance in COVID-19 research. It was concluded that,
in general, the fragments generated retained the structural characteristics of the source compounds
(COCONUT, FooDB, CAS, DCM, and 3CLP). This analysis found that compounds from NP and food
chemicals were structurally more diverse and complex than compounds from CAS, DCM, and 3CLP.
Fragments generated from COCONUT and FooDB were more diverse than those from DCM and 3CLP
and less diverse than those of the CAS fragments. It was also concluded that fragments from DCM
overlapped with bioactive compounds like those of the CAS subset studied in this work. This reinforces
previous observations of DCM as a source of building blocks for designing bioactive molecules.
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Similarly, fragments of NP from COCONUT and FooDB appear to be important and valuable building
blocks for the future de novo design of bioactive compounds. The fragment libraries of the reference
databases generated in this work and focused on COVID-19 research (CAS and 3CLP) can be used to
identify novel compounds of medical interest and are not currently available in commercial libraries.
The fragment libraries for COCONUT and FooDB and the reference libraries DCM, CAS, and 3CLP that
we developed in this work are publicly available at https://doi.org/10.6084/m9.figshare.13064231.v1.
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