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Schizophrenia is associated with disconnectivity in the brain although it is still unclear whether changes within
or between hemispheres are of greatest importance. In this paper, an analysis of 152 schizophrenia patients com-
pared with 122 healthy controls was carried out. Comparisons were also made with 39 depression patients and
37 controls to examine whether brain-wide changes in inter- or intra-hemispheric functional connectivity are
most associatedwith the disorder and can distinguish it fromdepression. The authors developed new techniques
(first and second order symmetry) to investigate brain-wide changes in patients (45 regions per hemisphere)
and their association with illness duration and symptom severity. Functional connectivity between the same re-
gions in left- and right-hemispheres (first order symmetry) was significantly reduced as was that between the
same pairs of regions in the left- and right-hemispheres (second order symmetry) or using all possible
inter-hemispheric connections in schizophrenia patients. By contrast, no significant changes were found for
brain-wide intra-hemispheric links. First order symmetry changes correlated significantlywith positive and neg-
ative symptom severity for functional connections linked via the anterior commissure and negative symptoms
for those linked via the corpus callosum. Support vector machine analysis revealed that inter-hemispheric
symmetry changes had 73–81% accuracy in discriminating schizophrenia patients and either healthy controls
or depressed patients. In conclusion, reduced brain-wide inter-hemispheric functional connectivity occurs in
schizophrenia, is associatedwith symptom severity, and can discriminate schizophrenia patients fromdepressed
ones or healthy controls. Brain-wide changes in inter-hemispheric connections may therefore provide a useful
potential biomarker for schizophrenia.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Schizophrenia is a complex syndrome mainly defined by positive
symptoms of psychosis, such as paranoid delusions and auditory halluci-
nations (Wing and Agrawal, 2007). It is increasingly viewed as a
developmental disorder (Insel, 2010)with onset of first major symptoms
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occurring mainly between 20 and 28 years in men and 26 to 32 years in
women (Castle et al., 1991), with a prodromal period of some years
(Broome et al., 2005; Broome et al., 2012). Wernicke first proposed that
schizophrenia was a disorder of functional disconnection in the brain
(Wernicke, 1906) and this concept has re-emerged more recently
(Friston and Frith, 1995). Many brain imaging studies have now reported
either structural or functional connectivity evidence for widespread dis-
connection in resting-state brain networks, most notably in the default
network (Garrity et al., 2007; Greicius, 2008; Huang et al., 2010; Liang
et al., 2006; Lui et al., 2009; Lynall et al., 2010). We have recently
shown evidence for weakening of functional connectivity between the
two brain hemispheres involving a number of cortical and limbic regions
(Guo et al., 2012). Structural changes in the anterior part of the corpus
callosum (CC) are thought to be the most likely cause (Crow, 1998;
served.
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Table 1
Demographic and clinical characteristics of schizophrenia patients and controls.

Schizophrenia
patient
(n = 152)

Controls
(n = 122)

p value

Age (year) 27.11 ± 9.57 28.54 ± 7.76 0.182
Education (year) 13.66 ± 2.55 14.42 ± 2.92 0.022
Sex (M/F) 84/68 60/62 0.316
Illness duration (year) (n = 149) 4.06 ± 5.43 n.a. n.a.
PANSS aggregate score (n = 142) 71.46 ± 26.69 n.a. n.a.
PANSS—positive scale (n = 126) 15.82 ± 6.81 n.a. n.a.
PANSS—negative scale (n = 126) 17.52 ± 8.05 n.a. n.a.
PANSS—general psychopathology
scale (n = 126)

33.17 ± 12.25 n.a. n.a.
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Innocenti et al., 2003) of inter-hemispheric disconnection in schizophre-
nia and are even observed in non-psychotic high-risk offspring of schizo-
phrenia patients (Francis et al., 2011). A post-mortem reduction in CC
fiber numbers has also been reported to occur in female but not male
schizophrenia patients (Highley et al., 1999a). While complete surgical
section of the CC reduces functional resting state inter-hemispheric con-
nectivity (Johnston et al., 2008), evidence from individuals with congen-
ital callosal agenesis shows that functional connections can develop even
in the absence of the CC (Tyszka et al., 2011). Anterior commissure (AC)
size has also been shown to be reduced in schizophrenia by a diffusion
tensor imaging study (Choi et al., 2011) and reduced fiber numbers
have been reported in female but not male patients (Highley et al.,
1999b). However, as yet the potential functional importance of these
AC changes in schizophrenia is unknown. A consequence of reduced
inter-hemispheric connectivity in schizophrenia may be impaired hemi-
spheric co-operation and this has been shown in the language domain
(Mohr et al., 2008).

While there have also been extensive functional and structural stud-
ies revealing altered connectivity within both left and right hemi-
spheres in schizophrenia (Garrity et al., 2007; Greicius, 2008; Guo
et al., 2012; Huang et al., 2010; Liang et al., 2006; Lui et al., 2009;
Lynall et al., 2010) it is currently unclear whether inter or intra-
hemispheric changes play the major role.

We have recently conducted a brain wide functional connectivity
analysis on schizophrenia patients showing both intra and inter-
hemispheric changes associated with illness duration and symptom se-
verity (Guo et al., 2012). Herewe have used data from this same subject
set, together with that one from another hospital, to assess the relative
importance of brain-wide changes in inter- as opposed to intra-
hemisphere functional connectivity. Inter-hemispheric connections
were analyzed using novel approaches quantifying both first (direct
inter-hemispheric connections) and second (correlations between
pairs of structures in the two hemispheres) order symmetry. We have
also investigated the relative contributions of CC and AC connected
structures to inter-hemispheric changes since, as discussed above,
these are the major inter-hemispheric fiber tracts associated with
schizophrenia. We have also conducted a similar analysis on another
previously published dataset from depressed patients and their healthy
controls (Tao et al., 2011) and finally, we have used support vector ma-
chine (SVM) approaches to establish accuracy in identifying schizo-
phrenia patients compared to healthy controls and depressed patients.

2. Methods

2.1. Subjects

Our analysis included datasets from two schizophrenia and one uni-
polar depression patient groups and their respective healthy control
groups. Two of the three datasets have been described in detail in pre-
vious publications (Guo et al., 2012; Tao et al., 2011). For schizophrenia,
one patient group was recruited at the National Taiwan University
Hospital (group1) (Guo et al., 2012) and the other fromSecondXiangya
Hospital of Central South University in China (group 2). In total there
were 152 patients with schizophrenia (84males/68 females), identified
by structured interviewswith an experienced psychiatrist at each of the
two hospitals and usingDSM-IV diagnostic criteria. None of the patients
had co-morbidities with other axis-1 disorders. Illness durations ranged
from 6 months to 20 years (mean ± SD: 4.06 ± 5.43 years). The pa-
tients had a mean age of 27.11 ± 9.57 years and education duration
of 13.66 ± 2.55 years. Two patients were left handed and 150 were
right handed (Edinburgh Handedness Inventory). Symptom severity
was measured using the Positive and Negative Syndrome Scale
(PANSS) administered by hospital psychiatrists either one week before
or after theMRI scan. A total of 26 patients had no PANSS records due to
incomplete records or because they did not have a PANSS assessment
carried out. Only 22 patients (from group 2) were treatment naïve,
the remaining 130 were all taking antipsychotic medication (see
Supplementary Table S1).

122 (60 males/62 females) healthy control subjects were also
recruited by the two hospitals (60 from Xiangya Hospital and 62
from National Taiwan University Hospital) aged 28.54 ± 7.76 years
and mean education duration of 14.42 ± 2.92 years. One subject
was left handed and 121 right handed. All controls were assessed by
structured interviews with experienced psychiatrists in accordance
with DSM-IV criteria as being free of schizophrenia and other axis I
disorders. None had any neurological diseases or suffered from clini-
cally significant head trauma or had a history of any substance depen-
dence. Written informed consent was obtained from all individual
participants, and research procedures and ethical guidelines were
followed in accordance with the Institutional Review Board (IRB) of
the two hospitals. The patient and control groups were well matched
by gender (χ2 test, p = 0.316) and age (t test, p = 0.182) although
the controls had a slightly longer education duration (t test, p =
0.022). Patient and healthy control demographics are shown in
Table 1 and details of each dataset in Supplementary Table S2.

The depression group also involved patients from Second Xiangya
Hospital used in a previous resting state fMRI study (Tao et al., 2011).
Subjects were 15 treatment-naïve adult patients with first episode
major depression (7 females/8 males; mean age 28.27 ± 7.45) and 24
with treatment-resistant major depression (16 females/8 males; mean
age 27.83 ± 7.86 years). Subject demographic details are given in Sup-
plementary Table S2. No patients had co-morbidities with other axis-1
disorders. A total of 37 age, gender and education duration matched
healthy control subjects (14 females/23males; mean age 28.22 ±
6.47 years) were used. Patients and healthy controls were excluded if
they had any of the following: (I) a history of neurological diseases or
other serious physical diseases; (II) a history of electroconvulsive
therapy; (III) history of substance (that is drugs, alcohol and other psy-
choactive substance) abuse; (IV) comorbidities with other disorders
(no evidence for schizoaffective disorder or axis II, personality disorders
and mental retardation); and (V) any contra-indications for MRI.

Patients and healthy controls in all three datasets were recruited
and scanned over the same time period.

2.2. Imaging acquisitions and data preprocessing

Although data were obtained from patients and healthy controls
in two different hospitals and using two different MRI scanners the
resting-state fMRI protocol, number of images per scan, movement
criterion and correction and data preprocessing techniques were sim-
ilar. Individuals were instructed to close their eyes during the scan
without falling asleep and scan the resting-state scan duration was
6 min. To further confirm similarities between the data obtained via
the different MRIs we made statistical comparisons between all the
healthy control groups scanned.

For the group 1 dataset, all subjects underwent a structural and
functional MRI scan in a single session using a 3 T MR system (TIM



Fig. 1. Reduced inter-hemispheric connectivity in schizophrenia patients. (A) Illustration
of first order (left) and second order symmetry (right). First order symmetry is the mean
z-values for all 45 pairs of functional connectivities. Second order symmetry is the sym-
metry between any two pairs of connectivity within the left- and right-hemispheres.
(B) z-Values in schizophrenia patients and healthy controls for first order (left) and sec-
ond order symmetry (right). (C) Contribution percentage of the significant altered links
to overall first order (left) and second order symmetry (right).
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Trio, Siemens). A total of 180 volumes of EPI images were obtained
axially, (repetition time, 2000 ms; echo time, 24 ms; slices, 34; thick-
ness, 3 mm; no gap; field of view (FOV), 256 × 256 mm2; resolution,
64 × 64; flip angle, 90°).

For the group 2 dataset, image data were acquired using a 1.5 T Sie-
mens MRI scanner. A total of 180 volumes of EPI images were obtained
axially (repetition time, 2000 ms; echo time, 40 ms; slices, 20; thick-
ness, 5 mm; gap, 1 mm; field of view (FOV), 240 × 240 mm2; resolu-
tion, 64 × 64; flip angle, 90°).

Prior to preprocessing, the first 10 volumes of these two datasets
were discarded to allow for scanner stabilization and the subjects' adap-
tation to the environment. fMRI data preprocessing was then conducted
by SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and a Data Processing Assis-
tant for Resting-State fMRI (DPARSF). In all cases head movements did
not exceed the criterion of greater than ±1.5 mm or ±1.5°. The
remaining functional scans were first corrected for within-scan acquisi-
tion time differences between slices and then realigned to the middle
volume to correct for inter-scan head motions. Subsequently, the
functional scanswere spatially normalized to a standard template (Mon-
treal Neurological Institute) and resampled to 3 × 3 × 3 mm3. After nor-
malization, BOLD signal of each voxel was firstly detrended to abandon
linear trend and then passed through a band-pass filter (0.01–0.08 Hz)
to reduce low-frequency drift and high-frequency physiological noise. Fi-
nally, nuisance covariates including head motion parameters, global
mean signals, white matter signals and cerebrospinal signals were
regressed out from the BOLD signals. For the depression subject database
the same protocols were used as for schizophrenia database 2.

After data preprocessing, the time series were extracted in each
ROI by averaging the signals of all voxels within that region. In our
present study, the automated anatomical labeling atlas (AAL) was
used to parcellate the brain into 90 regions of interest (ROIs) (45
per hemisphere). The names of the ROIs and their corresponding ab-
breviations are listed in Supplementary Table S3.

In view of recent evidence for a potential contribution of move-
ment to functional connectivity measures even after the standard
precautions detailed above we additionally applied a DVARS motion
scrubbing protocol to eliminate any final images identified as having
motion artifact (see Power et al., 2012). Using this approach the
rate of change in the BOLD signal is measured across the entire
brain for each frame of data. A temporal mask is then generated for
each region of interest, marking frames whose DVARS exceeds 3.
We choose those frames with a number of masks greater than 20
out of the total 90 of temporal masks to generate a final temporal
mask for each subject. The temporal mask was then applied to elimi-
nate marked frames from the analysis. The proportion of data re-
moved within each subject was very small (10%–40% in only a total
of 38 subjects see Supplementary Fig. S1).

2.3. First and second order symmetry

The simplest measure of symmetry between the hemispheres is the
correlation (functional connectivity) between the same ROIs in the left
and right, i.e., 45 pairs in the whole brain. In the majority of cases this
value is higher than functional connectivity between any two ROIs
which are not symmetric (see Guo et al., 2012). A Fisher's r-to-z trans-
formation was utilized to convert each correlation coefficient r ij into
Z ij to improve the normality. Here we use the mean Z value of all 45
pairs and call it first order symmetry (see Fig. 1A). For every subject,
we define S1 as the measure of first order symmetry:

S1 ¼ 1
45

X45

i¼1

z i; iþ 45ð Þ ð1Þ

where z(i, i + 45) is Fisher's r-to-z transformation of the ordinary
Pearson correlation coefficient between the left ROI i and the
corresponding right ROI i. Further we examined the symmetry be-
tween the left- and right-hemispheric functional networks, i.e., the
symmetry between any two pairs of connections within the left-
and right-hemispheres, as shown in Fig. 1A. LL = z(i,j), i = 1, …,
45, and j = 1, …, 45, j ≠ i represent the Fisher's r-to-z transforma-
tion of the Pearson correlation coefficients betweenROI i andROI jwith-
in the left-hemisphere and RR = z(i + 45, j + 45) between ROI i and
ROI j within the right-hemisphere. There are C45

2 = 990 pairs of links
in total, and if the left and right hemispheres have similar functional
networks the correlation between LL and RR will be large. Then we
can define the correlation between LL and RR to measure the symmetry
between the left- and right-hemispheric functional networks. A Fisher's
r-to-z transformation is also utilized to improve the normality. For
every subject, second order symmetry S2 is defined by:

S2 ¼ z LL;RRð Þ: ð2Þ

2.4. Percentage contribution to first and second order symmetry

For every subject, first order symmetry S1 represents the mean
z-values of all 45 symmetric pairs of ROIs in the left- and right-
hemispheres. Similarly, second order symmetry S2 represents the

http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. First and second order symmetry of corpus callosum and anterior commissure
connected functional links. (A) Neuroanatomical localization of corpus callosum vs.
anterior commissure connected ROIs with anterior commissure (AC) connected re-
gions shown in orange and those connected via the corpus callosum (CC) in green.
(B) Plots show differences (z-values) in first and second order symmetry of functional
connections in schizophrenia patients (blue) and healthy controls (red) and associated
p-values.
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correlation between the intra-hemispheric correlation patterns. In order
to calculate the between-group difference in the contribution of a partic-
ular link k to the first order symmetry, we have the formula:

Contribution1 kð Þ ¼
1
t1

Xt1

t¼1

z t; kð Þ− 1
t2

Xt2

t¼1

z t; kð Þ
�����

�����
X45

k¼1

1
t1

Xt1

t¼1

z t; kð Þ− 1
t2

Xt2

t¼1

z t; kð Þ
�����

�����

;k ¼ 1;…;45 ð3Þ

where z(t,k) is the Fisher's r-to-z transformation of Pearson correlation
coefficient for subject t and a particular link k, t1 is the number of pa-
tients and t2 is the number of healthy controls. For second order sym-
metry, we use the following formula to calculate the between-group
difference in the contribution of a functional network k:

Contribution2 kð Þ

¼
1
t1

Xt1

t¼1

zl t; kð Þ−zr t; kð Þð Þ− 1
t2

Xt2

t¼1

zl t; kð Þ− zr t; kð Þð Þ
�����

�����
X990

k¼1

1
t1

Xt1

t¼1

zl t; kð Þ− zr t; kð Þð Þ− 1
t2

Xt2

t¼1

zl t; kð Þ− zr t; kð Þð Þ
�����

�����

;k ¼ 1;…;990

ð4Þ

where z l(t,k) and z r(t,k) represent the strength of the network k for
subject t within the left- and right-hemispheres respectively.

2.5. Corpus callosum vs. anterior commissure links

According to non-humanprimate and human studies (Demeter et al.,
1990; Paul et al., 2007; Schmahmann and Pandya, 2006) the ROIs con-
sidered to connect primarily via the AC are: amygdala, parahippocampal
gyrus, olfactory bulb, all 4 regions of orbitofrontal cortex, superior and
inferior temporal gyri and medial and superior temporal poles (11 in
total). The remaining 34 ROIs were considered to be connected via the
CC (see Fig. 2A). In view of previous findings of structural changes occur-
ring particularly in the anterior part of the CC (Crow, 1998; Francis et al.,
2011; Highley et al., 1999a; Innocenti et al., 2003) we also carried out
some analyses contrasting this (8 connected regions, inferior frontal
gyrus (opercular and triangular), medial frontal gyrus, superior frontal
gyrus (dorsal and medial), rectus gyrus and anterior and medial cingu-
late gyri) with the remaining part of the CC (26 connected regions).

2.6. Support vector machine (SVM) classifier

The SVM is a learningmachine for a two-class classification problem.
Since first proposed by Vapnik as a logistical extension of statistical
learning theory, SVM has become widely used in many areas because
of their ability to handle very high-dimensional data, and their accuracy
in the classification and prediction. Because of these properties, they
have proven useful in the analysis of functional magnetic resonance im-
aging data.

SVM conceptually implements the idea that vectors are non-linearly
mapped to a very high dimension feature space. In the feature space, a
linear separation surface is created to separate the training data bymin-
imizing themargin between the vectors of the two classes. The training
ends with the definition of a decision surface that divides the space into
two sub-spaces. Each sub-space corresponds to one class of the training
data. Once the training is completed, the test data are mapped to the
feature space. A class is then assigned to the test data depending on
which sub-space they are mapped to. In this paper, a SVM toolkit
named libsvm written by Lin Chih-Jen from Taiwan University (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) is used. A radial basis function
(RBF) is selected as a kernel function (t = 2) and parameter C is fixed
to 10 to trade-off learning and extend ability while other parameters
are kept as default values.
We also used permutation tests for statistical assessment of classi-
fier performance (see Golland and Fischl, 2003; Ojala and Garriga,
2010). Choosing the generalization rate as the statistic, permutation
tests are employed to estimate the statistical significance of the ob-
served classification accuracy. In permutation testing, the class labels
of the training data are randomly permuted prior to training. Leave
one out cross validation is then performed on the permuted training
set, and the permutation was repeated 1000 times. It is assumed
that a classifier is learned reliably from the data when the generaliza-
tion rate r0 obtained by the classifier trained on the real class labels
exceeds the 95% confidence interval of the classifier trained on ran-
domly relabelled class labels. For any value of the estimated r0, the
appropriate p-value represents the probability of observing a classifi-
cation prediction rate of no less than r0.

3. Results

3.2. Comparisons between the two schizophrenia patient and healthy
control groups

There were a number of significant demographic differences be-
tween subject groups in the two datasets summarized in Supplemen-
tary Table S2. For healthy control groups the average age and
education duration were significantly higher in the group 2 compared
with the group 1 dataset. In the schizophrenia groups, illness duration
and PANSS scores were also higher in group 2 compared with the

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
image of Fig.�2
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group 1 dataset. The depression patients and their healthy control
group did not differ significantly from the combined schizophrenia
groups and their healthy controls for age and sex although in both
cases education duration was slightly but significantly less in both
the depression patients and their healthy controls (see Table S2). In
view of some demographic differences between the groups (age and
education duration), in the following group comparisons, we take
age, and education into account by including them as confound vari-
ables in an ANCOVA. There were no significant differences between
the healthy control groups for any of the inter- or intra-hemispheric
measures analyzed (Supplementary Table S4) suggesting that neither
age nor education duration differences per se are likely to have a sig-
nificant impact on them. No significant differences in signal to noise
were found in the BOLD data between schizophrenia patient and
healthy control groups in the two datasets, alone or combined, or be-
tween the two datasets (t-tests — dataset 1: schizophrenia vs healthy
controls: p = 0.2751; dataset2: schizophrenia vs healthy controls:
p = 0.6061; datasets 1 and 2 combined: schizophrenia vs healthy
controls: p = 0.4737; patients and healthy controls in dataset 1 vs
dataset 2: p = 0.7738). Additionally both of the schizophrenia
groups showed similar overall significant changes in first and second
order symmetry (see Supplementary Fig. S2) although the magnitude
of changes was significantly greater in dataset 2 than in dataset 1 (see
Table S4). Thus to increase statistical power we have carried out our
main analysis of results using the combined data from the two
healthy control and schizophrenia groups.

3.3. Reduced first and second order symmetry in schizophrenia and
depression

Functionalmapswere constructed for the 152 schizophrenia patients
and 122 healthy controls from the two groups. Fig. 1B shows that both
first symmetry and second order symmetry are reduced in schizophre-
nia patients. First order symmetry is considerably reduced (z1 =
0.8596 for patients, z1 = 0.9158 for healthy controls, p b 0.001), imply-
ing that synchronization between the hemispheres is weakened. Second
order symmetry is also reduced (z2 = 0.7108 for patients, z2 = 0.7415
for healthy controls, p b 0.001), implying that the difference between
the left and right functional networks is enlarged. Fig. 1C shows that
there are many different links making minor contributions to the first
and second symmetry changes. Supplementary Fig. S2 shows that
both first symmetry and second order symmetry were significantly
altered in each individual group of schizophrenia patients (first order
symmetry: dataset 1 — p = 0.033; dataset 2 — p = 0.0262; second
order symmetry: dataset 1 — p = 0.0088; dataset 2 — p = 0.0130). In
view of some previous evidence for sex differences in inter-
hemispheric connections in schizophrenia (Highley et al., 1999a,b) we
carried out a separate analysis for male and female patients. This did
not reveal any significant difference in either first (t150 = −0.5719,
p = 0.5682) or second (t150 = −0.9348, p = 0.3514) order symmetry
between male and female patients.

When we sub-divided ROIs into those connected via either the CC or
AC this revealed that both had significantly reducedfirst order symmetry
in schizophrenia patients (AC: p = 0.0101; CC: p b 0.001) but only the
CC group showed reduced second order symmetry (AC: p = 0.1088;
CC: p = 0.0021) (see Fig. 2B). When we sub-divided the CC into an
anterior andmedial/posterior part this revealed that connections involv-
ing both showed significantly reduced first order symmetry (anterior:
p = 0.0371 and medial/posterior: p b 0.0001) although for second
order symmetry only the medial/posterior-based connections were sig-
nificant (anterior: p = 0.1838 and medial/posterior: p = 0.0014).

Next we analyzed correlations between first and second order sym-
metry changes and illness duration and symptom severity (PANSS
scores). There were no overall significant correlations between the
first and second order symmetry of functional connections via AC,
CC or AC + CC and illness duration (correlations between +0.05 and
−0.12; p = from 0.15 to 0.86). To determine if significant changes
occurred across all illness durations we calculated symmetry changes
at short (0 to 2 years, 79 subjects), medium (3 to 9 years, 50 subjects)
and long term (10+ years, 23 subjects). Fig. 3A and B shows that first
order symmetry is reduced in schizophrenia patients across all illness
durations for functional connections via AC + CC, although CC-based
connections were more affected than AC ones. The same pattern was
also seen for second order symmetry (see Supplementary Fig. S3 for in-
dividual datasets). When the CC was sub-divided, the medial/posterior
part was most strongly correlated with illness duration for both first
order symmetry and secondorder symmetry although therewasno sig-
nificant difference between anterior and medial/posterior connected
regions (data not shown).

Correlations between symmetry and PANSS positive and negative
scores are shown in Fig. 3C and Supplementary Table S5. First order
symmetry was significantly negatively correlated with the PANSS posi-
tive and negative scores for AC connected regions (positive: r =
−0.2480, p = 0.0051; negative: r = −0.2271, p = 0.0106), negative
scores for CC (negative: r = −0.2091, p = 0.0188) and positive and
negative scores for AC + CC (positive: r = −0.1781, p = 0.0460; neg-
ative: r = −0.2276, p = 0.0104). For second order symmetry there
was a significant negative correlation with positive PANSS scores for
AC connected regions (r = −0.1850, p = 0.0381) but no correlations
with negative PANSS scores.When the CCwas sub-divided into connec-
tions involving the anterior and middle/posterior parts the latter
showed a significant negatively correlation with negative PANSS scores
(r = −0.1993, p = 0.0252) and the former a non-significant trend
(r = −0.1698, p = 0.0574). Overall the patients in group 2 showed
stronger correlations with symptom severity than those in group 1
(Supplementary Table S5), possibly due to patients in group 1 having
significantly lower and a narrower range of PANSS scores than those
in group 2.

To address the possibility that anti-psychotic medication was
influencing symmetry changes we compared the 22 medication free
subjects with the remaining 130 receiving medication. This showed
no significant difference in first order symmetry (p = 0.2784) although
second order symmetry was significantly reduced in the medicated pa-
tients for CC connected regions (p = 0.047) and showed an overall
trend in AC + CC ones (p = 0.055 — see Supplementary Fig. S4).
We found no evidence for a correlation between first (r = −0.122,
p = 0.404) or second (r = 0.097, p = 0.506) order symmetry and
daily drug doses (converted to chlorpromazine equivalents) in the 49
medicated patients from group 2 where we had daily medication dose
details (see Supplementary Fig. S5).

A similar analysis of first and second order symmetry changes in
depressed compared to healthy subjects did not find any significant
differences in first order symmetry (p = 0.1480) and a small differ-
ence in second order (p = 0.0415 — Supplementary Fig. S6).
3.4. Inter vs. intra-hemispheric links

In order to compare the relative importance of intra-compared to
inter-hemispheric functional changes in the brain in schizophrenia we
also calculated brain-wide changes in both. For every subject, there are
4005 different links, where 45 ∗ 45 = 2025 are inter-hemispheric
links and 990 links are within each hemisphere. For every subject, we
obtained the strength of left- and right-hemispheric links by averaging
z-scores of corresponding links. Fig. 4A and B shows that in contrast
to overall functional connectivity for all inter-hemispheric links
(p b 0.001) there were no overall changes in intra-hemispheric ones
in schizophrenia patients (left: p = 0.1122; right: p = 0.7230). A simi-
lar pattern was found in depression although overall inter-hemispheric
changes were less marked (inter-hemispheric: p = 0.0205; left hemi-
sphere p = 0.3876; right hemisphere p = 0.8879— see Supplementary
Fig. S6).



Fig. 3. Associations between altered functional connections via the corpus callosum and anterior commissure and illness duration and symptom severity. Mean ± SD z-values com-
paring first (A) and second (B) order symmetry in schizophrenia patients (blue) at short, medium and long illness durations vs healthy controls for functional connections involving
the corpus callosum (CC) and anterior commissure (AC). (C) Correlations between first and second order symmetry z-values in schizophrenia patients and positive and negative
PANSS scores for functional connections involving either the corpus callosum (CC) or anterior commissure (AC).
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3.5. Support vector machine analysis

In SVM analysis, we used Fisher z-values for each symmetric pair of
ROIs in the left- and right-hemispheres (first order symmetry) and also
for matched pairs of intra-hemispheric links (second order symmetry)
as features with each condition (AC, CC, AC + CC). A summary of the
SVM analyses carried out is given in Table 2. It can be seen that in
terms of discrimination accuracy the leave one out calculation showed
that with both datasets combined, using AC + CC connections there
was 73.4% (permutation test, p b 0.001) accuracy in identifying individ-
ual schizophrenia patients and healthy controls with AC connections
alone being 65.3% (p b 0.001) and CC 68.6% (p b 0.001). Specificity
and sensitivity values showed that 73–79% of individuals in the schizo-
phrenia group were accurately identified compared to 56–66% of
healthy controls.When the two datasets were analyzed separately sim-
ilar resultswere obtained although discrimination accuracies were gen-
erally higher for dataset 1 than dataset 2. Table 2 also shows that the
SVM accuracy in discriminating individual schizophrenia patients and
those with depression was 79.6% (p b 0.001) for AC, 80.6% (p b 0.001)
for CC and 80.6% (p b 0.001) for AC and CC combined. Sensitivity and
specificity values showed that in this case 100% of individuals could
be identified from the schizophrenia group but none of the depression
ones using AC connections, and 95% of them using CC or AC + CC con-
nections compared with only 25% from the depression group.

4. Discussion

Overall our results have demonstrated for the first time that
brain-wide functional networks between the two hemispheres are sig-
nificantly weakened in schizophrenia, but not in depression patients,
whereas there is no similar generalized weakening of functional
connections within hemispheres. Reduced first and second order of
symmetry was found in inter-hemispheric networks as well as in func-
tional connectivity across all possible functional inter-hemispheric con-
nections. Changes in the symmetry of inter-hemispheric connections
via the AC and CC occurred, although while both correlated negatively

image of Fig.�3


Fig. 4. Comparison of brain-wide intra- and inter-hemispheric functional connectivity
changes. (A) z-Values of all possible functional inter-hemispheric and intra-hemispheric
links for every subject showing that only brain-wide inter-hemispheric links are signifi-
cantly altered in schizophrenia patients (p b 0.001). (B) Histograms showing distribu-
tions of z-values for inter-hemispheric and intra-hemispheric links.
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with negative symptom severity, only the AC-based connections corre-
lated negatively with positive symptom severity. Overall SVM analysis
revealed that symmetry changes involving both AC and CC connections
had 73% discrimination accuracy in identifying individual schizophrenia
patients and healthy controls and 81% in identifying them and de-
pressed patients. The sensitivity of discriminating schizophrenia pa-
tients per se was 79% when grouped with the healthy controls and
95–100% when grouped with depression patients.

While some previous studies have reported that structural connec-
tions between the two hemispheres are only reduced in female schizo-
phrenia patients (Highley et al., 1999a,b), we did not find any
significant difference in overall changes in first or second order symme-
try between male and female schizophrenia patients. This may reflect a
considerable age difference between the patients in our study and those
in post-mortemones, the later being around 60–70 years old. However,
our findings are also based on functional connectivity measures and
Table 2
Results of SVM classifier.

vs. healthy controls Accuracy
(p value)

Specificity Sensitivity

1. Classification results for schizophrenia patients vs. healthy controls
Combined dataset (1 + 2) AC 65.33% (b0.001) 55.74% 73.03%

CC 68.61% (b0.001) 60.66% 75%
AC + CC 73.36% (b0.001) 66.39% 78.95%

Dataset 1 AC 64.89% (b0.001) 72.58% 57.97%
CC 74.81% (b0.001) 70.97% 78.26%

AC + CC 83.21% (b0.001) 85.51% 80.65%
Dataset 2 AC 58.04% (b0.001) 43.33% 68.67%

CC 62.94% (0.005) 53.33% 69.88%
AC + CC 66.43% (b0.001) 58.33% 72.29%

2. Classification results for depression patients vs. schizophrenia patients
Dataset 1 + 2 AC 79.58% (b0.001) 0 100%

CC 80.63% (b0.001) 25.64% 94.74%
AC + CC 80.63% (b0.001) 25.64% 94.74%
while these can be contributed to by altered structural connectivity
we did not confirm this in the current study. Indeed, they could also
be contributed to by gray matter changes or even changes in synaptic
transmission. Clearly it will be important to establish in the future if
the global inter-hemispheric symmetry changes in functional connec-
tivity we have found in schizophrenia are a cause, or consequence of,
structural changes in connecting fibers.

The precise functions of communication between the two brain
hemispheres are still a matter of debate. Human studies have shown
that where communication between the two brain hemispheres is re-
duced, or prevented due to surgery or callosal agenesis, many cognitive,
emotional andmotor functions can still be performed independently by
each hemisphere (Paul et al., 2007). However, although some special-
ized functions such as language and face recognition have clear evi-
dence for asymmetric processing there is also evidence that inter-
hemispheric co-operation and integration are important for aspects of
higher cognitive function and emotional control. Thus any disorder
which produces inter-hemispheric disconnection is likely to be associ-
ated with significant impairments in these domains (Schulte and
Müller-Oehring, 2010; van der Knaap and van der Ham, 2011). There
is also still a debate as to whether inter-hemispheric transfer of infor-
mation primarily involves excitatory or inhibitory interactions (Bloom
and Hynd, 2005; Schulte and Müller-Oehring, 2010), although in either
case weakened connections between the hemispheres would lead to
impaired communication. A global reduction in symmetry of inter-
hemispheric connections could result in increased functional lateraliza-
tion and/or reduced inter-hemispheric co-operation. Both of these have
been reported to occur in schizophrenia (Mohr et al., 2008; Oertel-
Knöchel and Linden, 2011).

For the schizophrenia patients in the group 1 dataset we previously
reported that the key pathway showing altered functional connectivity
comprised midline cortical and mirror neuron regions involved in as-
pects of self processing (Guo et al., 2012). One of the main symptoms
of schizophrenia involves a disturbed sense of self, particularly in
terms of misattributions of agency (Sass and Parnas, 2003) and it
has been proposed that inter-hemispheric connectivity may also con-
tribute to self-processing (Uddin, 2011). Thus both specific local intra-
hemispheric changes together with a global weakening of functional
inter-hemispheric links may contribute to deficits in self-related pro-
cessing in schizophrenia. However, schizophrenia also involves cogni-
tive, emotional and visuomotor dysfunction (Dazzan and Murray,
2001; Foussias and Remington, 2010; Joyce and Huddy, 2004; Taylor
et al., 2011; Fusar-Poli et al., 2012) which are known to be affected by
reduced connectivity between the two brain hemispheres following
CC damage (Bloom and Hynd, 2005; Lungu and Stip, 2012; Schulte
and Müller-Oehring, 2010).

Importantly first order, and to a lesser extent second order symme-
try changes in the schizophrenia patients were correlated with symp-
tom severity. Both positive symptom severity and negative symptom
severity were negatively correlated with the degree of symmetry in
connections via the AC and for negative symptoms via the CC. This
wasmuchmore evident in patients in database 2 who had significantly
greater symptom severity than those in database 1. Overall, correlations
were strongest between AC-based functional connections supporting
our findings in our previous study of patients in database 1 showing
that the strength of inter-hemispheric links between two AC connected
structures, the amygdala, and superior orbitofrontal cortex, correlated
negatively with severity of some PANSS positive or negative symptoms
(Guo et al., 2012). Symptom severity has also been shown to correlate
with reduced CC size in both anterior and posterior parts, in schizophre-
nia (Walterfang et al., 2008; Whitford et al., 2010). Our preliminary
analysis dividing the CC into anterior and medial/posterior sub-
divisions revealed reduced symmetry in functional connections via
both although they were more significant in the medial/posterior part.
Negative correlations with negative symptom severity were also stron-
ger for functional connections via the medial/posterior CC. Significant
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brain wide changes in inter-hemispheric connections occurred in pa-
tients irrespective of illness duration, although here a more consistent
patternwas seen in CC thanAC-based functional connections, especially
those involving medial/posterior CC. Overall though it must be empha-
sized that our sub-division of AC and CC connected regions using AAL
defined structures is a relatively crude approach and a more
fine-detailed analysismight showmore localized and complex patterns
of change.

We confirmed that in a sub-group of first-episode, treatment-naïve
patients reduced symmetry in brain-wide inter-hemispheric functional
connectivity also occurred. Furthermore in 49 patients from the second
schizophrenia group where we had information on daily medication
doses we found no significant correlation between first or second
order symmetry and the magnitude of the dose (using chlorpromazine
equivalents). Thus it is unlikely that our results were caused by anti-
psychotic medication effects and that functional brain-wide inter-
hemispheric disconnection occurs at the earliest stages of the disorder.
This is in agreementwith studies reporting reduced fractional anisotropy
in the CC in first-episode psychosis (Price et al., 2007). There is also evi-
dence for reduced CC volume in non-psychotic high-risk offspring of
schizophrenia patients (Francis et al., 2011) suggesting that reduced
functional inter-hemispheric connectivity may identify individuals at
risk, although this requires confirmation.

Given the large number of studies reporting significant altered
functional connectivity between specific pairs of brain regions within
hemispheres associated with schizophrenia and depression it might
seem surprising that we did not find significant overall changes in
intra-hemispheric functional connectivity. However, this presumably
reflects the fact that while the proportion of significant changes in
inter vs intra-hemisphere functional connections may be relatively
similar, that showing a pattern of reduced functional connectivity in
these disorders may be relatively higher for inter-hemispheric con-
nections. Indeed, our previous studies on the schizophrenia patients
from dataset 1 (Guo et al., 2012) and depression patients from dataset
3 (Tao et al., 2011) showed that both decreased and increased func-
tional connectivity occurred within the two hemispheres, whereas
all the changes involving connections between counterparts in the
two hemispheres were of reduced connectivity. Thus as a global bio-
marker only the inter-hemispheric functional connectivity changes
are significant because they show a similar pattern of reduced
strength in schizophrenia.

Altered inter-hemispheric connectivity may be a hallmark of a
number of psychiatric disorders and has been reported in autism
(Lo et al., 2011), depression (Xu et al., 2012) and anxiety (Compton
et al., 2008). It has also been found in disorders of consciousness
(Ovadia-Caro et al., 2011). However, in our current study we found
evidence for only modest brain-wide changes in depressed patients.
Despite evidence for weakened inter-hemispheric connectivity in de-
pression as well, our SVM analysis revealed 81% discrimination accu-
racy for the groups of schizophrenia and depressed patients using the
inter-hemispheric symmetry measures and for AC-based connections
all of the schizophrenia patients could be individually identified and
95% of them for CC-based ones. Indeed, this accuracy was actually
slightly higher than where schizophrenia patients and healthy control
subjects were discriminated, although it might possibly reflect the
lower number of depression patients in the study. Thus overall,
brain-wide reductions in inter-hemispheric functional connectivity
may prove a potentially useful schizophrenia biomarker which can
help to distinguish it both from healthy control subjects and from
other psychiatric disorders such as depression.

The advantage of using global features as biomarkers is that they are
more stable than local ones since they are an average of many different
local features. Given the variability of local feature changes reported to
date in schizophrenia (Garrity et al., 2007; Greicius, 2008; Guo et al.,
2012; Huang et al., 2010; Liang et al., 2006; Lui et al., 2009; Lynall
et al., 2010), a global feature might be more effective in identifying
consistent changes which are relatively independent of the many po-
tential confounding variables between patient and control groups and
factors such as illness duration and medication. Indeed, the fact that
we observed broadly similar changes in two independent groups of
schizophrenia patients despite some significant demographic differ-
ences lends support to this. However, such global feature changes
may be less effective in discriminating between sub-types of a disorder,
where more discrete local feature changes might prove more useful.
One solution may therefore be to use combinations of both.

A potential limitation of the current study is that the two groups of
schizophrenia patient and their respective controls were scanned
using machines with different field strengths (1.5 vs 3 T) and that
there were also some demographic differences in terms of age and
education duration. A previous study has reported that it is possible
to combined 1.5 and 3 T data, with the lower field strength being
found only to reduce detection power but not specificity (Han and
Talavage, 2011). Importantly we found no overall significant differ-
ences between either the healthy controls or the patient groups in
terms of brain-wide symmetry measures which is why we considered
it appropriate to combine them and achieve more statistical power.
There were also no significant differences in BOLD signal to noise ra-
tios either between subject groups scanned on the sameMRI machine
or scanned using different ones. We also found that including age and
education duration as nuisance variables did not alter the overall sig-
nificance of our first and second order symmetry results. While we
did find that patients in database 1 had significantly reduced
first-order symmetry changes for functional connections via both
the AC and CC compared with patients in database 2, the patients in
database 1 also had significantly lower symptom severity and the
first order symmetry of both AC and CC-based connections is nega-
tively correlated with symptom severity. Thus it would be expected
that overall symmetry changes should be lower in database 1 patients
due to their lower symptom severity. However, we cannot completely
rule out some contribution from the significant demographic differ-
ences between the two patient groups or the use of two different
MRI machines with different field strengths. On the other hand the
fact that neither of these factors had a major influence on our findings
serves to further underline the stability of using global measures such
as brain-wide symmetry as biomarkers.

Overall our results show that reduced inter-hemispheric symmetry
changes in schizophrenia are most associated with the disorder. These
symmetry changes occur across illness durations and are negatively
correlated with positive and negative symptom severity. Overall, sym-
metry changes had good prediction accuracy for discriminating schizo-
phrenia patients from either healthy controls or depression patients
within our datasets. Thus global inter-hemispheric changes in schizo-
phrenia may be an important potential biomarker.
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