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Within just over a decade, human reprogramming-based disease modeling has

developed from a rather outlandish idea into an essential part of disease

research. While iPSCs are a valuable tool for modeling developmental and

monogenetic disorders, their rejuvenated identity poses limitations for model-

ing age-associated diseases. Direct cell-type conversion of fibroblasts into

induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of

cellular aging. iNs are thus advantageous for modeling diseases that possess

strong age-related and epigenetic contributions and can complement iPSC-

based strategies for disease modeling. In this review, we provide an overview

of the state of the art of direct iN conversion and describe the key epigenetic,

transcriptomic, and metabolic changes that occur in converting fibroblasts.

Furthermore, we summarize new insights into this fascinating process, partic-

ularly focusing on the rapidly changing criteria used to define and character-

ize in vitro-born human neurons. Finally, we discuss the unique features that

distinguish iNs from other reprogramming-based neuronal cell models and

how iNs are relevant to disease modeling.
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Why we need human neurons in a dish

The immense processing power of the human brain is

enabled by unique features of the brain’s hardware:

around 86 billion neurons with each one of them pos-

sessing thousands of synaptic connections [1]. It is

believed that molecular and cell biological insults to

neurons lead to hardware issues and ultimately mani-

fest as neurological disorders. Animal studies, both

in vivo and in vitro, have provided eye-opening

insights into the inner workings of neurons and the

brain. Animal models of brain disorders have how-

ever been found to not necessarily reflect complex

human conditions and have unfortunately not been

very predictive for the evaluation of drug candidates

for several diseases. Alzheimer’s disease stands out as

a prime example to illustrate this puzzle. Animals,

typically mice, can be genetically engineered to reflect

central pathological hallmarks of the human disease,

but all drug candidates that were developed based on

successful animal studies have failed in clinical trials

[2,3]. Animal models for other neurodegenerative and

neuropsychiatric disorders all face their own individ-

ual but similar challenges. This dilemma has pro-

moted the view that human neurons possess their

unique biology that might be vital for studying
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aspects of many diseases, but the inaccessibility of

human brain tissue renders it near-impossible to func-

tionally and molecularly study neurons directly in the

human brain. Driven by the idea that human neurons

in vitro can help to capture and better understand dis-

ease-related factors that require a human neuronal

cell physiology, human genetics, epigenetic signatures,

and age, the generation of human neurons as disease

models has received broad attention as a potential

game-changer.

Notably, the direct conversion from one cell type

into another, often also called fate conversion, direct

reprogramming, or transdifferentiation, has been first

demonstrated already in the 1980s, where it was

shown that overexpression of the transcription factor

(TF) MyoD can convert fibroblasts into myoblast-

like cells [4]. Interestingly, only 30 years later and a

few years after the invention of induced pluripotent

stem cells (iPSCs) [5], the direct conversion of fibrob-

lasts into induced neurons (iNs) was discovered [6].

With the invention of iNs, direct conversion strate-

gies, also for other cell types, regained broader inter-

est. From this point onward, direct conversion

technologies have grown rapidly, and are today

mostly regarded as a subdiscipline of the stem cell

field, where they are seen as alternative approaches

to generate cell types of interest from human patients

and donors for disease modeling or regenerative pur-

poses [7,8]. This boom in applications can be mostly

attributed to the explosion of new technologies tai-

lored to iPSC-based systems, most of which are also

suitable for directly converted cells. These technolo-

gies encompass tools and strategies to harness human

donor/patient-specific cells for basic human biology

research [9–12], disease modeling [13–17], drug devel-

opment and safety [18–21], or cell replacement strate-

gies [22]. Although on first sight iNs might appear as

‘just another way’ to generate neurons in the dish,

there are important technical and conceptual differ-

ences between iPSC-derived neurons and iNs to be

noted. While some of these differential properties

cause limitations of the iN technology for certain

applications, some properties uniquely qualify iNs to

address yet unmet needs. Here, we will review con-

version strategies for human somatic cells into iNs,

describe mechanistic insights and roadblocks to direct

conversion, and discuss current standards and new

criteria on how to characterize human neurons. We

will further pay particular attention to the conceptual

differences between iN conversion and other repro-

gramming methods and will highlight unique proper-

ties that set iNs apart for specific basic and

translational applications.

Enabling iN conversion

Unlike neural differentiation protocols starting from

iPSCs, direct iN conversion does not follow the con-

certed chronological stages of development, as one cell

type is rather directly transformed into another one

[23]. Overexpression of transcription factors (TFs)

driving iN conversion (hereafter referred to as conver-

sion TFs) overrides the cell type-specific transcriptional

profile of the starting population and instantly acti-

vates a neuronal transcriptional program (with a few

exceptions), permitting cell-type changes in a very

short time [24]. The TFs bind to regulatory elements

in the starting cells’ genome and jump-start neuronal

gene expression. In contrast to stem and progenitor

cells, fully differentiated somatic cells possess a tightly

regulated epigenetic landscape, with regions specific

for other cell types inaccessible for most TFs. Conver-

sion TFs that are sufficient for neuron induction stand

out by their ability to bind to largely inaccessible ‘neu-

ronal regions’ of the genome in differentiated non-neu-

ronal cell types. This ability classifies these factors as

pioneer TFs (Fig. 1A); the list of known iN pioneer

TFs currently includes Ascl1, Ngn2, and NeuroD1

[25–28]. Although every starting cell type has a unique

epigenetic landscape, they all have in common that

their chromatin surrounding neuronal gene loci is

closed, and a general rule is that most iN strategies

involve at least one pioneer TF to access these closed

regions. Fact-checking supports the validity of this rule

as (a) the vast majority of efficient iN protocols

involve at least one pioneer factor (Table 1) [29,30],

(b) Ngn2 alone can convert up to 90% of human

fibroblasts into iNs, and (c) also Ascl1 alone can

induce neuron-like cells from fibroblasts [6,26,31]. Pio-

neer TFs induce the expression of endogenous sec-

ondary pro-neuronal TFs or of factors that repress the

starting cell type-specific transcriptome, which further

contributes to establishing neuronal identity [27].

Chromatin accessibility and transcriptome data have

suggested that Zfp238, Sox8, and Dlx3 are among the

most important endogenous secondary TF genes

downstream of Ascl1 [32]. Some data indicate that

Ngn2, when using an appropriate conversion medium,

not only binds most of the Ascl1 binding sites in

fibroblasts, but also possesses many additional binding

sites [30,33]. However, other data suggest that Ascl1

and Ngn2 possess divergent binding patterns that

result in distinct chromatin states and different neu-

ronal fates [34]. While further (meta-)analysis will

likely shed more light on these different views, it is not

surprising that the most efficient and reliable conver-

sion strategies involve the combined expression of
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Ascl1 and Ngn2 [9,10,31,35]. Recently, it has been

suggested that a huge variety of TF combinations can

be applied to generate subtype-specific iNs from

fibroblasts (Table 1), and TF screening studies for iN

conversion have led to the identification of additional

pro-neuronal factors, such as Brn3a/b/c, Brn4s, and

Ezh2 [36,37]. Interestingly, differences in TF choice

were noted between species, as, for example, Neu-

roD1 and Ngn2 were used predominantly in human

iN protocols and not in rodent protocols, but no

mouse-specific or human-specific TF combinations

have been established thus far [6,25]. Further, in some

iN studies, the age of the human donor has been neg-

atively correlated with the percentage of iNs obtained

[38], and fibroblasts from adult human donors are

resistant to Ascl1/Brn2-based conversion, while fetal

fibroblasts are highly amenable [38]. RE1-silencing

complex (REST), a major neuronal gene repressor in

non-neuronal cells, and the aging-associated TF

FOXO3 play important roles in controlling neuronal

gene expression and show differential activity between

fetal and adult/old fibroblasts, resulting in decreased

conversion efficacy in aged starting cells [38–40].

Again, the combination of the two pioneer factors

Ascl1 and Ngn2, for example, fused via a 2A peptide

sequence, has yielded iN efficiencies of typically over

50% across large sample sizes and does not appear to

be affected by donor age [9,10,35]. In this setting,

however, the presence of a cocktail of small-molecular

iN boosters might further mask an age-related inhibi-

tory effect [31,41].

While pioneer TFs are sufficient for iN conver-

sion, they are not essential and several laboratories

have successfully obtained iNs without exploiting the

classical pioneer TFs (Table 1). Those studies have

harnessed the fact that neuronal genes are actively

repressed in non-neuronal cells and manipulated this

mechanism. Activity of the ‘anti-neuro’ REST com-

plex is strongly supported by PTB proteins, and

PTBs are key targets of the pro-neuronal micro-

RNAs miR-9/9*-124. The PTB-REST-miR-9/9*-124

ensemble is so powerful that mere interference with

it, through shRNA-mediated knockdown of PTBs or

components of the REST complex or through over-

expression of miR-9/9*-124, can replace pioneer tran-

scription factors (Fig. 1A) [38,42–45]. Similar to

Ascl1 alone, also shRNA-only and miRNA-only iN

protocols are quite inefficient and rely on several

‘helper’ factors (Fig. 1B) [31,46,47]. For example,

overexpression of Myt1l alone is insufficient to

induce iNs from fibroblasts, but Myt1l remains

one of the most valued iN ‘helpers’ in various

protocols.

Genetic iN boosters

Among the growing number of successful iN-conver-

sion protocols, two main strategies have crystalized

that facilitate increased conversion efficiencies and

more authentic neuronal outcomes: (a) co-overexpres-

sion of pioneer TFs with boosting TFs, and (b) combi-

nation of pioneer TFs with media containing cocktails

of signaling-pathway modulators (Fig. 1C).

The first published direct conversion strategy was

based on an overexpression of the three TFs, namely

Ascl1, Brn2, and Myt1l (BAM factors), in mouse

fibroblasts [6], which was then extended to BAM with

NeuroD1 to convert human fibroblasts to iNs with a

similar efficacy [25]. Later studies elaborated on the

first paper [10], where it was shown that Ascl1 alone is

enough to mediate fibroblast-to-neuron conversion,

whereas Brn2 and Myt1l boost conversion efficacy and

neuron quality, but are unable to induce reprogram-

ming on their own [31,32,48,49]. Myt1l is a master

repressor of non-neuronal genes and a prime example

for a boosting TF (Fig. 1A,B) [50]. Albeit lacking pio-

neer activity, co-overexpression of Myt1l with pioneer

TFs dramatically increases iN yields and improves

functional properties of iNs in direct conversion proto-

cols, especially those that otherwise fail to yield satis-

factory neuronal numbers and properties [6,25,46].

Myt1l can be regarded as the nemesis of the REST

complex as it broadly represses non-neuronal fates,

such as the myogenic fate that has been identified as a

common false diversion of converting cells on their

way toward iNs [11,48,51]. Unlike Myt1l, the boosting

TF Brn2 acts as a classical activating secondary TF

that binds to genomic regions that open in response to

pioneer TFs [32]. While not sufficient to induce neu-

rons from fibroblasts, Brn2 alone can convert astro-

cytes into neuronal cells, indicating some pioneering

properties (Fig. 1A) [52]. In sharp contrast to pioneer

and secondary TFs, mutations in Myt1l and Brn2 are

associated with subtler neurological phenotypes linked

to intellectual disability and neuropsychiatric condi-

tions in humans [53–56], whereas the pioneers Ascl1

and Ngn2 are well-established master regulators of

nervous system development, the mutation of which

causes embryonic lethality.

Besides TFs, miRNAs have also been harnessed as

iN boosters, and REST inhibition or overexpression of

REST-associated miRNAs could highly enhance con-

version of adult and diseased fibroblasts in pioneer

TF-based settings [38,57]. Furthermore, in keeping

with an active cell cycle being a major roadblock to

iN-conversion initiation, G1 arrest, for instance,

achieved through high-density contact inhibition, is
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beneficial for conversion initiation. Consistently,

knocking down TP53 could enhance conversion effi-

cacy by decreasing the number of fibroblasts in S

phase at the start of neuronal induction [58]. In gen-

eral, identification and mechanistic characterization of

boosting transgenes may not only yield important

insights into the process of direct conversion, but also

might help to engineer tailored conversion TFs and

vectors in the near future [41,59]. However, co-overex-

pression of multiple TFs is a technical challenge and

always harbors the risk to induce bias. For example,

TF activity might override important disease-related

Fig. 1. (A) Factors for direct iN conversion, including transcription factors (TFs), can be classified into pioneer and secondary factors. The

TFs Ascl1 and Ngn2 are the two most widely used pioneer factors that can facilitate iN conversion on their own. Secondary factors do not

induce conversion on their own and are instead used to achieve increased efficiencies and neuronal qualities. Myt1l is a prime example for

a secondary TF, while miR-9/124 and shRNAs against REST or PTB have neuron-inducing capabilities and can be regarded as ‘in-between’

pioneer and secondary factors. As pioneer factors typically do not (strongly) dictate subtype identity, subtype-specific secondary factors can

be added to induce a desired neuronal subtype. Some factors primarily regarded as subtype-specifiers, such as Nurr1, Sox11, and Brn3/4,

also display considerable iN boosting efficiencies. (B) First, a pioneer factor induces a broad neuronal transcriptional program, a process that

benefits from secondary factors that can help induce a neuronal program either by transactivation activity (e.g., Brn2) or by repressing the

non-neuronal program (e.g., Myt1l and REST inhibition). Once a broad epigenetic neuronal context is established, subtype-specific secondary

factors (e.g., Lmx1a and FEV) can direct iN toward specific epigenetically stable subtype identities. (C) Nongenetic boosters of iN

conversion are used to increase efficiencies and to obtain iNs with better neuronal qualities faster. Typically, chemical boosters are small

molecules that block or activate signaling pathways involved in direct conversion or that are known to benefit neuronal differentiation,

maturation, or survival. (D) Pioneer TFs can bind and open up closed chromatin regions that are essential to initiate and jump-start iN

conversion. However, even pioneer TFs require specific epigenetic marks in order to bind closed chromatin (e.g., trivalent state for Ascl1),

and iN boosters (e.g., forskolin) have been found to be directly involved in chromatin remodeling to permit more efficient iN conversion. (E)

A radical metabolic switch from glycolysis (the primary source of energy for stem cells and fibroblasts) toward mitochondria-based oxidative

phosphorylation (OXPHOS) is a major obstacle for neuronal conversion and iN survival. Enzymatic activity of LDHA (pyruvate to lactate) and

reactive oxygen species (a side product of OXPHOS) prohibits iN conversion, whereas promotion of OXPHOS and antioxidant activity

enhances iN conversion. (F) Neuronal identity can be assessed using neuronal marker expression or electrophysiological properties, but can

be further characterized more profoundly with next-generation transcriptomic, epigenetic, or metabolic analyses.
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Table 1. Direct neuronal conversion strategies.

Cell source Species Conversion strategy Specification Citation

Fibroblasts Mouse Ascl1, Brn2, Myt1l (BAM) First direct conversion from

fibroblasts

[6]

Ascl1 +/� Brn2, Myt1l [24,32,38,48,49,51]

BAM Mesoporous silica nanoparticles,

dopaminergic

[174]

BAM CRISPR-based [59]

BAM Electroporation, 3D [175]

Small molecules [15,176]

Ngn2 [33]

Ascl1, Foxg1, Sox2, Dlx5, Lhx6 GABAergic [83]

Fibroblasts Human BAM + NEUROD1 First direct conversion from human

fibroblasts

[25]

BAM First direct conversion from adult

human fibroblasts

[177]

ASCL1, NGN2 [9,10,31,34,41]

ASCL1, NGN2, NKX2.2, FEV, GATA2, LMX1B Serotonergic [35]

ASCL1, FOXA2, LMX1B, FEV Serotonergic [75]

ASCL1, NURR1, LMX1A Dopaminergic [178,179]

ASCL1, PHOX2B, PHOX2A, AP-2A, GATA3,

HAND2, NURR1

Noradrenergic [180]

ASCL1, KD of P53, HEY2, and PRPX2 [181]

NGN2/1, BRN3 Sensory neurons [76]

Small molecules [15,182]

BRN2, MYT1L, FEZF2 Cortical neurons [81]

miR-9/9*-124, BCL11B/CTIP2, DLX1, DLX2, MYT1L Striatal neurons [7,57]

miR-9/9*-124 +/� BAM [44,46,47,183]

miR-9/9*-124, ISL1, LHX3 Motor neurons [79]

PTB-KD [42]

Glia Mouse NeuroD1 [27]

NeuroD2 In vivo [184]

Dlx2 GABAergic neurons [185]

Ngn2 In vivo [185]

Ascl1, Lmx1a, miR-218 In vivo, parvalbumin interneurons [82]

Astrocytes Mouse Ascl1 In vitro/in vivo [64,186]

Ascl1, Lmx1b, Nurr1 Dopaminergic [179]

Ascl1, Phox2a, Phox2b, AP-2a, Gata3, Hand2, Nurr1 Noradrenergic [181]

Ascl1, Sox2, Neurod1 [187]

Ngn2 In vivo [113,185]

Ascl1, Ngn2 Varying iN subtypes [73]

NeuroD1 [80,184]

Small molecules [188]

Human NEUROD1, ASCL1, LMX1A, miR-128 Dopaminergic neurons [80]

ASCL1 PTB-mediated [189]

Small molecules Fetal astrocytes [118,190]

Small molecules Adult astrocytes [191]

Retina Human NEUROD1, PAX6, BRN2, MYT1L [192]

Pericytes Human ASCL1, SOX2 [69]

ASCL1, MYT1L, BRN2, TLX3, miR-124 Cholinergic [193]

T cells Human BAM + NGN2 [91]

Cord blood

cells

Human FOXM1, SOX2, MYC, SALL4, STAT6 [194]

Hepatocytes Mouse BAM [195]

Suz12, Ezh2, Meis1, Sry, Smarca4, Esr1, Pparg,

Stat3

[194]

Bold font indicates pioneer transcription factors (also see Fig. 1A).
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signatures in iN models for neurological disorders [60].

Conceivably, it is a general desire in the field to reduce

the number of conversion TFs toward a minimal com-

bination with the maximal effect. Driven by this idea,

the alternative use of pathway modulators that repress

the identity of the starting population and/or promote

neuronal identity represents another strategy to boost

iN efficiency and authenticity.

Nongenetic iN boosters

Both purified and recombinant proteins and chemical

compounds have been identified to enhance iN genera-

tion and have further been helpful to better under-

stand the mechanisms of direct iN conversion

(Fig. 1C). Soluble factors are often described to mech-

anistically ‘hit the same spot’ as conversion TFs, and

thus can replace certain activities of the transgenes.

First, and largely adopted from neural differentiation

protocols, inhibition of TGF/ALK/SMAD signaling

through the application of recombinant Noggin and

small-molecule ALK inhibitors, GSK3b inhibition,

and cAMP/forskolin have been quickly identified to

greatly enhance conversion yields and aid to obtain

more authentic neurons (Fig. 1C) [26,31,61,62]. Inter-

estingly, while TGF/ALK/SMAD and GSK3b inhibi-

tion is thought to destabilize non-neuronal identities

and promote neuronal fate-stabilizing signaling [61],

forskolin was shown to directly prime chromatin

accessibility for more efficient Ngn2-only conversion, a

pioneer-enhancing activity previously ascribed exclu-

sively to TFs (Fig. 1D) [33]. Subsequently, it has been

shown that additional pathway modulations, including

SIRT1 activation and HDAC inhibition, can be

applied to increase the efficacy and maturity of the

neuronal population obtained [62]. Next, the cell cycle

arrest-promoting activity of Ascl1 and Ngn2 can be

enhanced by knocking down TP53, serum withdrawal,

CDK2 and mTOR inhibition, and chemical JAK/

STAT inhibition, which further helps iN conversion by

inhibiting both epithelial-to-mesenchymal transition

and apoptosis [41,58,63]. Enabling cytoskeletal dynam-

ics through inhibition of integrin signaling facilitates

the cell-type switch [41]. Inhibition of HIF-1a
improves iN conversion as it promotes the metabolic

switch from glycolysis to mitochondria-based oxidative

phosphorylation, which is essential for neuronal iden-

tity [41,64,65]. While nongenetic boosters are expected

to be less invasive than transgenes, they often also pos-

sess very powerful neuroprotective functions and thus

might, similar to TFs, mask important disease- and

epigenetic age-related signatures in iN-based disease

models [41].

Subtype-specific iN conversion

In the developing brain, as well as in iPSC differentia-

tion, differentiating neural cells pass through a series

of well-defined developmental neural precursor stages,

some of which are amenable to regionalizing pattern-

ing signals to specify specific neuronal subtypes [66].

In direct iN conversion, these specialized precursor

stages are instead skipped [48,67]. Thus, neuronal sub-

type specification cannot be easily achieved through

the addition of patterning factors such as Wnt or Shh

in the media, because the responsive cell type is not

present at any time point during conversion. The most

prominent conversion strategies using BAM, Ascl1/

Ngn2, and miR-9/9*-124 typically give rise to a major

population of excitatory glutamatergic neurons, and

the Ngn2-only protocols lead to excitatory cholinergic

neurons (Fig. 1B) [25,26,31]. While these observations

somewhat imply a glutamatergic-by-default mecha-

nism, or alternatively have led to the assumption that

Ascl1 and Ngn2 are pro-glutamatergic and pro-cholin-

ergic, respectively, reality appears less straightforward.

For example, iNs generated from iPSCs through

Ngn2-only protocols are predominantly glutamatergic

[16,68]. Ascl1/Sox2-based iNs generated from pericytes

in vivo resemble mixed GABAergic/glutamatergic cul-

tures [69], and Ascl1 has been shown to induce oligo-

dendroglial cells from adult neural stem cells in the

dentate gyrus of mice [70]. Also, both TFs are

involved in midbrain and hindbrain neuronal differen-

tiation and have varying capacities depending on the

regional context [71,72]. Consistently, Ascl1/Ngn2-

based conversion of human fibroblasts into iNs leads

to a major fraction of glutamatergic iNs, a smaller

fraction of GABAergic iNs, and rare dopaminergic

and serotonergic cells [10,31,35]. Based on these obser-

vations, one might describe Ngn2 and Ascl1 as gener-

ally ‘pan-neuronal’, with little subtype-specifying

activity (Fig. 1A). The epigenetic identity of the start-

ing cell population and remnant signaling cues present

during the fibroblast-to-iN transition state finally

determine subtype identity [23,34]. In highly heteroge-

neous cell populations, such as astrocytes in the rodent

brain or primary human fibroblasts, the subtype of the

starting cell type was shown to determine subtype out-

comes of the iNs [73]. Both Ngn2 and Ascl1 seem to

leave significant ‘wiggle room’ for subtype specifica-

tion, which suggests addition of subtype-specifying

TFs to the mix for direct iN conversion into the neu-

ronal cell type of interest (Fig. 1A,B). Depending on

the combination of the pan-neuronal pioneer TFs with

subtype-specific TFs, specific neuronal subtypes with

distinct neurotransmitter and channel properties arise,
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providing a unique platform for studying specific cells

[7,36,74]. This concept has attracted attention beyond

the crowd of reprogramming enthusiasts, as it allows

generating specific neuronal subtypes that are specifi-

cally vulnerable, or resilient, to certain diseases. With

the recent advances in subtype-specific direct conver-

sion, various disease-specific neuronal subtypes have

become available, such as medium spiny neurons for

modeling Huntington’s disease (HD) [7], serotonergic

neurons for modeling depressive and anxiety disorders

[35,75], sensory neurons for studying pain-related dis-

eases [76], motor neurons resembling an amyotrophic

lateral sclerosis (ALS)-related phenotype [77–79],

dopaminergic neurons to model Parkinson’s disease

[58,62,80], or cortical [81] and various types of

interneurons that appear attractive to model, for

example, Tourette’s syndrome or paroxysmal dystonia

[82,83]. While these advances clearly offer novel tools

to better understand neurological diseases, there is

very strong evidence that classical neuronal diseases do

not only affect neurons, but involve many cell types

represented in the human brain [84]. To meet this need

to model the human neuron–glia cross talk in vitro

with patient-specific cells, astrocytes and oligodendro-

cytes are currently generated via direct conversion

from human iPSCs, but direct conversion protocols

from fibroblasts into induced astrocytes and oligoden-

drocytes have yet only been established for rodent cells

[85–89]. As an alternative route, direct conversion into

induced neural stem cells, which then are amenable to

directed ‘development-mimicking’ differentiation, rep-

resents another way to generate glial cell types from

human fibroblasts [reviewed in Erharter et al.]. Fur-

ther, peripheral Schwann cells are of great interest for

the study and treatment of spinal cord injuries and

have been generated from adult human fibroblasts,

representing exciting new possibilities for peripheral

nerve regeneration [90]. In conclusion, the number of

protocols for neuronal subtype-specific direct conver-

sion literally exploded in the last couple of years, and

we now have the means to generate a vast variety of

neuronal subtypes in vitro. The next important steps in

the near future would be the development of protocols

for the generation of induced glial cell types also from

human somatic cells and extension of existing proto-

cols to other, more accessible starting populations,

such as human peripheral blood cells [91].

The road toward neurons: a steep and
sloppy path?

The famous epigenetic landscape model established by

Waddington is an outstanding model to describe cell

fate switches during normal development and iPSC

differentiation [30,92,93]. Using this model, direct con-

version has been depicted as a direct path from one

valley to the other, straight over the highest mountains

[93]. However, given the apparent easiness of direct

conversion and the fact that transition states appear

unidirectional and with little developmental potency, a

‘tunnel’ metaphor might appear more useful. Also, the

inherent emphasis on hierarchy in the Waddington

model appears less suitable to describe direct conver-

sion and further seems to fall short of describing the

roles of stable (quiescent) intermediate and progenitor

cell stages during development and plasticity of cell

fate in response to external stimuli. As a result,

adjusted metaphors such as a highly dynamic epige-

netic landscape [94], the Cook island model [95], or

the epigenetic disk model [96] have been introduced,

all of which attempt to weaken the one-way hierarchal

character of the Waddington landscape. All these

models have in common that cellular states correspond

to valleys or holes, indicating that the epigenome

favors certain stable states that correspond to cell

types that exist in vivo at any given time, but rejects

cellular chimeras, which would be cells that transiently

share neuronal and starting cell properties, and which

are rarely described [48,67].

To explore the differences between the transcriptome

path and outcome of stem cell differentiation and

direct iN conversion, an elegant study employed sin-

gle-cell transcriptome analysis of neurons generated

through neural stem cell differentiation and direct con-

version of neural stem cells into iNs [67]. Interestingly,

iNs diverge from the differentiation path early on and

do not follow the precise intermediate states of devel-

opment, but generate a unique intermediate state that

is unrelated to the donor and the target cells. How-

ever, after this ‘shortcut’, iNs appear to arrive at the

same state as neurons obtained by differentiation, but

without losing epigenetic information about age and

disease.

Developmental and differentiation protocols are

expected to roughly follow similar epigenetic

sequences. Starting from somewhere between the

zygote and blastocyst stages in development or from

embryonic stem cells or iPSCs in differentiation proto-

cols, modifications to the epigenetic landscape follow a

hierarchical and highly orchestrated sequence of events

that ultimately lead to a differentiated cell [97,98]. To

initiate iN conversion however, the already defined

and comparably inaccessible chromatin of the starting

cell has to be targeted by an overexpressed pioneer TF

capable of binding and activating closed chromatin

regions [24,28]. Once chromatin remodeling is induced
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and the neuronal transcriptional program is started,

non-neuronal programs have to be suppressed. In con-

trast to the very time-consuming and precisely timed

process of differentiation, direct conversion induces a

neuronal program around three to five days after

transgene expression, which can lead to functional

synapses already at around three weeks postinduction

[6,48]. Converting cells from one germ layer to

another, for instance, from mesoderm (fibroblasts) to

ectoderm (neurons), requires substantial chromatin

remodeling to make target-cell-type-specific genes

accessible to TFs. Such changes of cellular identity

and the absence of a defined progenitor cell-type stage

indicate that iNs do not follow the typical develop-

mental path from stem cell to postmitotic neuron, but

rather represent a jump start of a then self-propelled

neuronal program [33,41,48,91,99]. In recent years,

several studies performing transcriptomic and epige-

nomic analysis on converting neurons gave rise to new

insights and concepts that characterize fibroblast-to-

neuron conversion. It has been found that pioneer TFs

can be classified as either off-target or on-target TFs.

Off-target TFs, such as the Yamanaka factors during

iPSC reprogramming, initially bind to target sites in

the starting cell type, but, during the process of repro-

gramming, change their binding sites and end up bind-

ing different sites in the reprogrammed cell [100,101].

By contrast, iN-conversion TFs are typically on-target

TFs, like Ascl1, Ngn2, and NeuroD1, as they bind

specific chromatin regions to induce transdifferentia-

tion and stay at those sites also in the converted iNs,

unless turned off in doxycycline-inducible systems

[24,27,33,35]. As iN conversion is more efficient than

iPSC reprogramming by orders of magnitudes, the dif-

ference between off-target iPSC reprogramming and

on-target iN conversion has been suggested to underlie

the huge difference in reprogramming efficiency. Still,

due to epigenetic differences, not every on-target pio-

neer TF is equally potent in every starting cell type,

as, for example, Ascl1 is able to induce conversion of

fibroblasts, but not keratinocytes, into iNs [24,30].

This has been somewhat surprising, since the overall

less efficient iPSC reprogramming TFs are known to

equally reprogram a broad variety of somatic cells into

pluripotency [102]. This is explained by the fact that

on-target pioneer factors require a more specific epige-

netic signature in order to bind to closed chromatin

and preexisting histone modifications like a trivalent

chromatin state of H3K4me1/H3K27ac/H3K9me3 in

fibroblasts, which are one reason why Ascl1 can

induce direct iN conversion only in fibroblasts

(Fig. 1D) [24].

In fibroblast-to-iN conversion, Ascl1 exerts its

function already a few hours after induction, acting

as a transcriptional activator inducing neuronal- and

muscle-related gene expression [32]. Until day 5,

Ascl1 alone is responsible for 80% of chromatin

changes occurring during the whole reprogramming

process, leading to an upregulation of genes involved

in neuronal processes, neuronal network formation,

and early genes of neuronal maturation [32]. Down-

stream of Ascl1, TFs like Zfp238 additionally influ-

ence the expression of genes involved in chromatin

remodeling, including methylases [24,103]. Some iN

protocols that are not quite efficient can result in

cells that lack epigenetic marks of mature neurons

[48,51]. Modifying the epigenetic landscape, for

instance, with the help of small molecules like for-

skolin, or overexpressing additional factors like Brn2

and Myt1l, aids to efficiently generate mature neu-

rons [33,48,51]. The importance of methylation

remodeling in neuronal maturation is further sup-

ported by the inability to generate mature neurons

upon knockout of genes involved in histone methyla-

tion, which control accessibility to genes involved in

synapse formation and neuronal function [103].

Another milestone achievement in epigenetics has

been mouse microglia-to-iN conversion [27]. Here,

the pioneer TF NeuroD1 binds unmethylated CpG-

rich regions and rearranges the bivalent H3K4me3/

H3K27me3 state toward a monovalent H3K4me3

state during conversion. Interestingly, the secondary

TFs Prdm8, Bhlhe22, and Brn2, which are direct tar-

get genes of NeuroD1 in microglia, can also facili-

tate microglia-to-iN conversion by either inducing

neuronal gene expression (Brn2) or repressing micro-

glial genes (Bhlhe22, Prdm8) [27]. Further, cell type-

specific epigenetic characteristics that pose a hurdle

for direct conversion from keratinocytes also hinder

conversion of human cardiomyocytes, which have

been shown to only marginally convert into neurons

with BAM/NeuroD1 [104]. Similarly, the develop-

ment of robust protocols for iN generation from

stored human blood samples has been as much

anticipated as it has been challenging. In a proof of

principle, adult human peripheral blood mononuclear

cells have been successfully converted into functional

iNs using electroporation of BAM/NeuroD1 [91],

which is a less efficient, but also a less immunogenic

TF delivery method than viruses. Further, albeit the

use of well-selected small-molecular boosters and

coculture with primary mouse glial cells, blood-to-iN

conversion in comparison still faces low efficiencies

[91].
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You are what you eat: Metabolic
hallmarks of iN conversion

Originally regarded more as a mere characteristic of

neurons, a growing body of evidence now suggests a

central role for metabolic regulation in differentiation

and direct iN conversion [95,105]. Following the initia-

tion of neuronal transcriptional programs, converting

cells are forced to adapt neuronal metabolism

(Fig. 1E) [9,106,107]. Compared to fibroblasts or

astrocytes, neurons rely heavily on oxidative phospho-

rylation to meet their high demand of energy [108–

110]. The metabolic switch from aerobic glycolysis to

neuron-specific oxidative phosphorylation is crucial for

the generation of neurons. Inhibiting oxidative phos-

phorylation or overexpressing glycolysis genes such

LDHA or HK2 results in diminished neuronal differ-

entiation [65]. While during neural stem cell differenti-

ation cells can slowly adapt to the metabolic switch,

direct conversion forces fibroblasts to rapidly switch to

oxidative phosphorylation, resulting in increased

oxidative stress [64]. This observation has led to the

view that the metabolic switch represents a major

roadblock in direct conversion as it triggers cell death

in more than 80% of transgene-induced cells [64]. This

vast amount of stress-induced cell death during con-

version could be prevented by either overexpressing

anti-apoptotic protein Bcl-2 or adding molecules impli-

cated in the anti-oxidative stress response, which fur-

ther resulted in a more effective and faster conversion

from astrocytes [64]. In consistence with the view that

the metabolic shift from fibroblasts to neurons repre-

sents a major roadblock for successful conversion,

chemical derepression of oxidative phosphorylation

using the Hif-1a translation inhibitor KC7F2 during

conversion leads to increased mitochondrial membrane

potentials and more robust and efficient iN conversion

from adult and old human donor fibroblasts [41].

Updating our criteria to define
neurons

‘Well well well, so you want to be a real neuron. . .’.

Since the first neurons were generated from human

embryonic stem cells, an evergreen question has been

if obtained cells should be called neurons, or if they

should rather be described as neuronal-like cells.

While some argue that human stem cell-derived neu-

rons should be called a neuron once they meet a set

of electrophysiological characteristics, others suggest

to rather call them neuronal-like cells to avoid confu-

sion with primary neurons [111]. While the question

of naming seems to be merely of interest to

nomenclature aficionados, it is out of the question

that it is vital to possess a wide range of relevant cri-

teria, as well as a well-stocked toolbox to measure a

cell’s neuronal identity. While reprogrammed neurons

might always be distinguishable from in vivo-born

cells, recent work has demonstrated that the environ-

ment of cells appears to be more important for cellu-

lar identity than the origin of cells, indicating that

cell identity is plastic and highly environment-depen-

dent [112,113]. Further, unlike for most other human

cell types, primary human neuronal cultures of

defined brain regions are not available for direct com-

parison, which further complicates the definition of

gold standard criteria. By any means, the value of cell

models should be measured by how well they perform

their respective tasks, and these tasks might range

from teaching us more about a complex disease, or

how well they integrate into a neuronal circuit follow-

ing transplantation [6,33–38,114,115].

With the establishment of (epi)genomic sequencing

and epigenetic array technologies, single-cell technolo-

gies, and new insights into the complexity of neurolog-

ical diseases, the historic neuron-electrophysiology-

centric view on neuronal identity, function, and disease

is fading [35,51,69,116]. Thus, also a broadened set of

criteria on how to characterize a neuron using such

new omics technologies in addition to the classical cell

biological and electrophysiological measures is uprising

(Fig. 1F). Still, the most common way to assess neu-

ronal cultures is to perform immunocytochemical anal-

ysis with markers like b-tubulin, MAP2, DCX,

synapsin I, or tau and to assess neuronal morphology

according to soma size and number and length of den-

drites, as it is standard practice in the stem cell field

[15,41,81,97,117]. Additionally, electrophysiological

analysis has proven valuable to define functional neu-

rons, as neurons have very specific electrophysiological

features like hyperpolarized membrane potential and

spontaneous and triggered action potentials [32,46,49].

For many studies that are not neuronal function-cen-

tered, Ca2+ imaging and multielectrode arrays can be

used as surrogates for electrophysiology and can fur-

ther deliver insights into neuronal network activity

in vitro [20,21,119,120]. In this regard, iNs have been

shown to express neuronal markers, show mature neu-

ronal morphology, and possess both spontaneous and

induced postsynaptic currents [15,57,81,118,119]. Dif-

ferentiating neurons in the developing brain and in

iPSC differentiation pass through stages that specifi-

cally allow them to participate in functional circuits

[121], while iNs skip these stages. This raises the ques-

tion as to whether directly converted neurons have the

neuron-specific ability to create and integrate into a
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neuronal network. It has been shown that iNs, despite

following a different developmental path than neurons

in the brain, can survive and differentiate after trans-

plantation into the mouse brain or cultivation on

organotypic brain slices [57,81]. Outstandingly, iNs are

capable of long-distance axonal outgrowth, following

axonal growth cues specific for the neuronal subtype

and connecting with target brain regions, providing

evidence of a stable conversion of cells into functional,

fully differentiated neurons [57].

While classical cell biological and electrophysiologi-

cal criteria are a gold standard for characterizing such

cells in culture, and transplantation experiments have

a strong relevance and broad implications, they do

not tell us much about more general measures that

define cell identity. Neurons do not only have unique

electrical properties, but also have unique epigenetic,

proteomic, metabolic, and other characteristics that

might be equally important for the roles they play in

the brain. While marker expression and electrophysio-

logical characteristics often correlate with cell identity,

they are considered to be downstream of epigenetic

and proteomic changes and likely follow earlier

pathogenic events in neurological diseases. Immunocy-

tochemical data are further quite variable between

experiments, antibody batches, and laboratories, thus

not well-quantifiable, low-dimensional, and thus less

ideal to be directly compared by statistically powerful

(meta-)analytical means. Conversely, gene expression

changes related to synapse formation, voltage-gated

potassium channels, or mitochondrial oxidative phos-

phorylation critically define mature neuronal identity

[122], and transcriptomes of single human iPSC-

derived neurons can clearly predict neuronal function-

ality [123]. As epigenomic, transcriptomic, proteomic,

and metabolic profiles of human brain samples are

emerging, we can now use these data and map iN

and iPSC-derived data to them. A prime source for

these data is transcriptome databases of the adult and

developing human brain [124–126], which have been

exploited by stem cell scientists to learn more about

the underlying identity of cultured neurons. For

example, Stein et al. [127] developed a machine learn-

ing approach that can help to identify the develop-

mental maturity and regional identity of in vitro

models, which has detected marked differences

between laboratories and differentiation protocols.

Nayler et al. [128] have compared the transcriptomes

of iPSC-derived cerebellar neurons to the Allen Brain

Atlas to demonstrate that their cells are transcription-

ally similar to discrete regions of the human cerebel-

lum at the second trimester of development. Camp

et al. [129] compared single-cell transcriptome data

derived from iPSC cerebral organoids to in vivo data

and found that the cells recapitulate gene expression

trajectories that correspond specifically to human fetal

neocortical development. This concept was later

extended toward new insights into cellular diversity,

once also in vivo single-cell data of the developing

human brain became available [130–133]. In the iN

field, Vadodaria et al. [35] used a transcriptome com-

parison to confirm serotonergic iN identity, as they

found a high similarity of serotonergic iNs to the

transcriptomes of the human raphe nucleus. While

these types of analysis should not be considered to

fully replace marker expression and functional analy-

ses, they are highly complementary and clearly add

additional value.

Further, biological or epigenetic age can be well

measured using the DNA methylation profile exploit-

ing a growing number of epigenetic clock algorithms

[134–136]. The original epigenetic clock used the

methylation values of 353 specific CpG loci to calcu-

late the age of a human sample, and Huh et al. have

employed this tool to demonstrate for the first time

that iNs from adult donors are indeed (epigeneti-

cally) adult cells, while iPSCs and their derivatives

are typically rejuvenated into prenatal epigenetic ages

[134,137,138]. Further along epigenomic criteria, and

in contrast to CpG methylations, non-CpG methyla-

tion (mCH) marks are a typical characteristic of neu-

rons [139,140]. In mature neurons, mCH marks are

accumulated at particularly high levels, which was

not observed in any other tissue before [139]. mCH

marks play an essential role in cell type-specific fine-

tuning of transcription, being responsible for

dynamic expression patterns during early differentia-

tion, and later represent stable repressors in mature

neurons [51]. These methylation marks are strong

indicators of mature neurons and may further con-

tribute to the vast diversity of neuronal subtypes in

the human brain [140,141]. Luo et al. recently

showed that in contrast to iPSC-derived neurons,

BAM-based iNs are the first cellular neuronal model

system displaying this epigenetic hallmark of mature

adult neurons [51,142,143]. Overall, as neurons are

generally defined by their marker expression and

electrophysiological properties, the ascent of next-

generation sequencing methods has allowed to care-

fully characterize iNs according to their gene expres-

sion profile and epigenetic landscape, representing

more detailed and reliable validations. We expect

such criteria to become more and more popular,

extending our knowledge of cell identity, and that

they will eventually largely replace classical means of

neuronal characterization.
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The direct path to the end: Specifics
of iN and their consequences for
disease modeling

It is primarily due to the inaccessibility of live human

brain tissue that most studies on complex age-related

neurodegenerative disorders have primarily relied on

transgenic animal models that, while yielding impor-

tant insights, have also revealed limitations regarding

transferability to human physiology. In vitro genera-

tion of patient-specific neurons from iPSCs for model-

ing diseases of the brain has evolved into an integral

part of neuroscience [144–146], and employing human

iPSC technology to investigate aspects of age-related

neurodegenerative diseases in a patient-specific genetic

context at a cellular level has yielded important human

neuron-specific insights [147–150]. However, iPSC-

based studies could not shed much new light on the

causes of sporadic age-related diseases, because iPSC

reprogramming is known to reset the epigenetic state

of the cell and erases most of the epigenetic memory,

including those that stem from potentially important

environmental influences (Fig. 2) [10,151–156]. The

rejuvenation effect of iPSC reprogramming is a major

drawback when attempting to model late-onset dis-

eases [17,157,158], and artificial induction of the factor

age by overexpressing progerin [151], shortening of

telomeres [159], or exposing cells to age-related stres-

sors [12,160] is an upcoming and widely used strategy

to elicit a relevant phenotype in iPSC models for neu-

rodegenerative diseases [12,148,161–163]. Direct iN

conversion of human fibroblasts from elderly human

patients and healthy donors into iNs circumvents this

issue and has attracted broad attention. Old human

donor-derived iNs show stark transcriptomic signa-

tures of aging, as well as nuclear pore and transport-

associated aging [10,164], metabolic and mitochondrial

aging [9,137], epigenetic aging [137], and other aspects

of cellular aging (Fig. 2) [12,17,157]. Human iNs thus

stand out as a highly attractive patient-specific model

system for age-related neurological diseases and thus

significantly extend the possibilities offered by iPSCs.

For example, while iPSC-derived neurons from geneti-

cally defined amyotrophic lateral sclerosis (ALS) or

Huntington’s disease (HD) patients are a promising

model for investigating these devastating diseases

[165–167], both HD and ALS show an adult-onset

pathology that is also influenced by aging. Because

iPSC-derived neurons have a fetal developmental iden-

tity and because age-related cellular defects are erased,

the study of a disease-related pathology in these cells

is challenging and external stressors are typically used

to provoke phenotypes [167–169]. iNs, however,

bypass these stages of fetal development, preserve dis-

ease-relevant defects associated with cellular aging,

and recapitulate disease-related phenotypes including

morphological, survival, and functional defects (Fig. 2)

[77]. The key advantage of such cellular models over

postmortem brain tissue is that they permit to experi-

mentally test cause–consequence relationships via func-

tional studies, and to evaluate molecular intervention

with potential drug-like molecules.

Importantly, the rejuvenating effect of iPSC repro-

gramming should mostly be regarded as an additional

advantage, because comparing phenotypically young

and phenotypically old neurons from the same donor

(isogenic rejuvenated control) can help to reduce

donor-specific bias and allows assessing the contribu-

tion of age to the disease phenotype. Although it is a

new concept, harnessing the power of combining iPSC

differentiation and direct iN conversion has already

been published. Tang et al. [157] have generated

induced motor neurons, as well as iPSC-derived motor

neurons from three young (0–3 years) and three old

(53–71 years) healthy donors, as well as from four

familial ALS patients carrying SOD1 or FUS muta-

tions. As expected, the rejuvenated iPSC-derived

motor neurons did not show age-related differences,

while iN-converted, age-equivalent induced motor neu-

rons showed nuclear envelope defects, increased signs

of DNA damage/repair (cH2AX), and age-dependent

deterioration of the cellular aging markers Lap2a,
H3K9me3, and HP1c, which are likely downstream of

a defective nuclear envelope [151]. While this study did

not assess any age-related differences between patient-

and control-derived induced motor neurons, an

impressive study by Victor et al. [7] demonstrated the

importance of modeling old age as a disease-relevant

factor in a model consisting of both iPSC-derived and

fibroblast-derived medium spiny iNs. Mutated hunt-

ingtin protein spontaneously aggregated in HD iNs,

but not in control iNs, HD fibroblasts, or HD iPSC-

derived neurons. In consistence with the observation

that HD iPSC-derived neurons need external stressors

to display this disease phenotype, the authors showed

that an age-related collapse in proteostasis triggered

huntingtin aggregation in an age- and repeat-length-

dependent manner [7]. In the context of a multiple hit

theory of age-related diseases, where at least one essen-

tial ‘hit’ is old age and other ‘hits’ are of either geno-

mic or environmental nature, these data suggest two

major contributors for HD, namely age and repeat

length, that together determine onset and severity of

the pathology. However, in addition to age, it appears

likely that also other epigenetic signatures of the donor

that relate to environmental signals are also preserved
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in iNs. For the resulting iN model, such environment-

induced signatures might be irrelevant or even artifact-

causing (e.g., if they relate to sun exposure of the

skin), but they probably also involve important dis-

ease-related signatures that might be encoded within

fibroblasts, but stay without stark transcriptional con-

sequences until they are brought into a neuronal con-

text via iN (Fig. 2).

While most studies imply that iN conversion is par-

ticularly useful for modeling age-associated diseases,

direct reprogramming approach is not always the

method of choice for disease modeling, especially not

when it comes to developmental diseases such as aut-

ism spectrum disorder. Schafer et al. have used iPSC

differentiation and iN conversion starting from iPSCs

in parallel, and only iPSC differentiation revealed a

disease-related phenotype, while iN conversion did

not. Specifically, the study explored developmental

transcriptomic and epigenomic trajectories in autism

spectrum disorder using classical neural differentiation

and cerebral organoids. As opposed to the most widely

believed assumption that the first disease phenotypes

emerge in immature neurons, they found heterochronic

trajectories in patient cells that were already epigeneti-

cally primed for acceleration at the neural stem cell

stage [16]. To pinpoint the origin of this phenotype to

neural stem cells, the authors also made use of direct

Ngn2-based iN conversion starting from iPSCs to skip

(jump over) the neural stem cell stage and conse-

quently found no autism spectrum disorder-related

neuronal phenotypes in iNs.

There are probably more meaningful conceptual dif-

ferences between iN-based and iPSC-derived models

that only wait to be explored and that have the poten-

tial to significantly improve in vitro disease modeling

in the future. For example, iPSC derivatives have been

Fig. 2. Human patient-specific models are representative of the individual’s genetic and epigenetic signatures. These individual signatures

may vary between cell types, but are present in fibroblasts, iPSCs, iPSC-derived neurons, and iNs likewise. Neuron-specific signatures are

present only in iPSC-derived neurons and iNs, but not in fibroblasts or iPSCs. Contrary to iPSC reprogramming, direct iN conversion

preserves signatures of donor age and likely also captures environment-induced signatures, which might or might not be relevant for the

disease model. In the context of a multiple hit theory for age-related diseases, it appears conceivable that features of such diseases might

only emerge in iN models and not in iPSC-based models, because they require all the individual signatures, neuron-specific signatures, and

age-related signatures to unfold in the cells. Artificial induction of age in iPSC-based models might help to elicit such features also in a

rejuvenated context.
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shown to resemble fetal stages of brain development,

and it remains an open question to what extent iNs

from fetal, neonatal, and adult donor fibroblasts

would resemble neurons of the according developmen-

tal stages. These questions must be addressed with

state-of-the-art tools for defining and comparing cell

identities. A fetal identity of neurons after iPSC differ-

entiation, however, does not implicate a functionally

immature cellular phenotype, as both directly con-

verted neurons and iPSC-derived neurons can show

mature neuronal markers and features [10,81,157,170].

Additionally, iNs exhibit various technical advan-

tages as well as critical disadvantages compared to

iPSC reprogramming, which have been discussed more

in detail elsewhere [17]. One of the major limiting fac-

tors of direct conversion models is that the starting

material is finite, and no expandable stem cell stages

are involved in the process. As a result, iN cell num-

bers are low and the ability to scale up the system

(e.g., through immortalization of fibroblasts) harbors

risks of introducing artifacts that might invalidate their

use as a model for aging. Thus, material-intensive

technologies or big screens are challenging with iNs

[171]. One practical and obvious advantage of iNs is

that the procedure is faster, easier, and cheaper than

iPSC reprogramming and differentiation, and many iN

papers have stood out by comparatively large numbers

of human donors [7,9,10,137]. Biological variability

between human samples and cell lines of different

genetic backgrounds has been identified as a major

challenge in human iPSC-based disease modeling [60].

While more variability between humans than inbred

mice had definitely to be expected, variability has

apparently caught the disease modeling field by sur-

prise and has caused doubt about the technology.

Here, iNs provide the opportunity to advance the

reproducibility and relevance of human disease model-

ing studies, as higher patient and control numbers can

be used, thereby making the application of powerful

statistical/bioinformatical tools for data analysis useful

[172]. iNs further do not only represent interindividual

variability, but also the fibroblast culture of each

patient exhibits a certain degree of heterogeneity (mo-

saicism) compared to the clonal identity of iPSCs. This

difference might be regarded as a disadvantage, for

instance, for the generation of isogenic control lines,

or as an advantage when cell mosaicism may play a

role, such as in aging or psychiatric conditions [173].

Conclusion

Direct iN conversion offers a valuable addition to

iPSCs to study the fundamentals of cell identity,

investigate human neuronal function, and model neu-

rological diseases, and as a new strategy for in vivo

cell replacement therapies. Unlike iPSC-based differ-

entiation to neurons, iNs circumvent the known

paths of neurodevelopment, and we have started to

better understand the mechanics of this process in

the recent years. The unique characteristics of iNs

already let them stand out as a valuable tool for

many applications. Among the best-known phenom-

ena is the age-preserving characteristic of iNs, which

makes them a useful complement to iPSC models of

brain aging and age-related diseases. Today is only

the dawn of this technology, and the development of

more direct conversion protocols and applications

can be expected in the near future. Application of

iN technology profits from the rapid developments in

the iPSC field, and iNs already leave their mark in

the current process of redefining how we think about

cell fate, neuronal identity, and possibilities to decon-

struct and reconstruct the inner workings of the

human brain.
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