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Summary

While there is extensive evidence for genetic variation as a basis for treatment resistance, other 

sources of variation result from cellular plasticity. Using multiple myeloma as an example of 

an incurable lymphoid malignancy, we show how cancer cells modulate lineage restriction, 

adapt their enhancer usage and employ cell-intrinsic diversity for survival and treatment escape. 

By using single cell transcriptome and chromatin accessibility profiling, we show that distinct 

transcriptional states co-exist in individual cancer cells and that differential transcriptional regulon 

usage and enhancer rewiring underlie these alternate transcriptional states. We demonstrate that 

exposure to standard treatment further promotes transcriptional reprogramming and differential 
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enhancer recruitment, while simultaneously reducing developmental potential. Importantly, 

treatment generates a distinct complement of actionable immunotherapy targets, such as CXCR4, 

which can be exploited to overcome treatment resistance. Our studies therefore delineate how to 

transform the cellular plasticity that underlies drug resistance into immuno-oncologic therapeutic 

opportunities.

Introduction

Although most cancer patients respond to initial treatment, responses are often short-lived 

as drug resistance frequently develops. Non-genetic cellular plasticity and adaptive state 

changes have recently emerged as a basis for therapeutic resistance in cancer1–3, and 

a better understanding of how cell state transitions are regulated is critical to develop 

therapeutic approaches that can overcome drug resistance. These transitions are mediated 

by dynamic transcriptional changes and can involve epigenetic remodeling of the open 

chromatin landscape, or changes in the activity of transcriptional regulators4–7.

To investigate lineage infidelity and drug resistance at the single cell level, we studied 

multiple myeloma (MM), a malignancy of antibody-producing plasma cells in the bone 

marrow. The notion that plasma cells are terminally differentiated cells has long prevented 

intensive research into phenotypic plasticity and differentiation in multiple myeloma; 

however, it has recently been demonstrated that normal and malignant plasma cells differ 

in their differentiation state8,9. Furthermore, it has been suggested that more immature 

states may correlate with drug resistance8. Yet, it remains unclear how heterogeneous 

differentiation states are regulated at the transcriptional and epigenetic level, and whether 

they change with treatment.

Here we use single cell transcriptome and chromatin accessibility profiles to define the 

transcriptional and cis-regulatory alterations that underlie cell state transitions in malignant 

plasma cells. We infer gene regulatory network configurations during the establishment 

of distinct cell states, highlighting regulatory factors driving phenotypic changes. These 

phenotypic changes in turn provide the rationale for targeted therapeutic strategies to 

overcome drug resistance.

Results

Coexisting transcriptional programs in single myeloma cells.

To define transcriptional states in myeloma at single cell resolution, we performed full-

length single cell RNA sequencing of myeloma cells and CD45+ immune cells from the 

bone marrow or blood of 8 patients with relapsed/refractory multiple myeloma (RRMM) 

and two normal donors by SmartSeq210 (Fig. 1a, Extended Data Fig. 1). Patients were 

treated with elotuzumab, pomalidomide, bortezomib and dexamethasone on a clinical 

trial (Elo-PVD; NCT02718833; Supplementary Table 1), and we obtained bone marrow 

samples at screening and following treatment. A total of 6,955 cells were analyzed and 

underwent QC filtering (Extended Data Fig. 2, Supplementary Table 2). As an initial 

examination of transcriptional heterogeneity, we performed PAGODA2 clustering11 (Fig. 
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1b,c). Reference-based annotation of the single cell profiles using a dataset of 21 immune 

cell populations12 showed that clusters 20,1,5,7,14,12,3, and 13 corresponded to CD4+ and 

CD8+ T cells, NK cells, B cells, monocytes, and neutrophils, respectively, while clusters 

2,4,6,8,10,11,15,16,17, and 19 were annotated as plasma cells (Fig. 1d).

We next set out to distinguish malignant from non-malignant cells. We estimated copy 

number variations (CNVs), which occur in virtually all myeloma patients. CNVs were 

highly enriched in presumed malignant clusters, highly concordant with results from clinical 

cytogenetics (Extended Data Fig. 3a, Supplementary Table 3), and were distinct between 

individual clusters (Fig.1e, Extended Data Fig. 3b). As the immunoglobulin sequences are 

typically monoclonal or rarely oligoclonal in myeloma cells, we reconstructed the CDR3 

region for each cell. Indeed, presumed malignant cells from individual patients displayed a 

high degree of clonality, with the most common CDR3 sequence found in the majority of 

cells (Fig. 1e). As MM cells frequently harbor translocations involving the immunoglobulin 

heavy chain (IgH) locus, we next assessed expression of translocation target genes CCND1 
and MAF and detected overexpression in clusters 6,17 and 2, and cluster 8, respectively, 

concordant with FISH results (Fig. 1e, Extended Data Fig. 3a).

We then employed a random forest (RF) model to determine genes that best discriminate 

presumed malignant cells and normal plasma cells (Fig. 1e, Extended Data Fig. 3c–e). 

The RF model identified several genes which have previously been described as drivers 

in MM, such as CCND1 and the modulator of Wnt signaling FRZB13. Myeloma marker 

genes, which thus far have not been described in MM, include the cytoskeletal linker protein 

dystonin (DST). Using an aggregate approach combining myeloma-specific gene expression 

with copy number and clonotype analysis, we were able to robustly distinguish myeloma 

cells from normal plasma cells, even within patients, including cases for which PAGODA2 

clustering alone was ambiguous (Fig. 1f, Extended Data Fig. 3f,g).

Characterization of malignant clusters through marker gene analysis identified known 

myeloma driver genes, such as MAF consistent with a t(14;16) translocation in MM7 

(Extended Data Fig. 3h; Supplementary Table 4). Interestingly, some driver genes were 

highly expressed in more than one MM cluster, e.g. CCND1 in 3/8 patients (Fig. 1e). 

We therefore asked if the distinct clustering of myeloma cells from patients with the 

same established genomic classifier t(11;14), which results in overexpression of CCND1 
(Extended Data Fig. 3a,d,h) could be due to the presence of multiple gene expression 

signatures in the same cells. We indeed observed that individuals with CCND1 translocation 

expressed the corresponding CD1 signature, but further manifested expression of distinct 

other signatures, such as the NFKB signature (MM1) or the proliferation signature PR 
(MM8) (Fig. 1g). We detected co-expression of unrelated signatures in the same single cells 

in each individual, arguing that there are widespread transcriptional differences not captured 

by established gene expression classifiers14.

To investigate transcriptional heterogeneity in greater detail, we first assessed the effect of 

the cell cycle as a potential source of heterogeneity. We did not observe cell cycle driven 

effects on PAGODA2 clustering with the exception of cluster 10, which consisted of cycling 

cells derived from multiple patients (Fig. 2a,b). We next scored expression of 11 recurrent 
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heterogeneity programs identified across 198 cell lines reflecting 22 cancer types15 (Fig. 

2c). These programs representing diverse biological processes including the cell cycle, stress 

response, and protein maturation revealed widespread inter- and intra-patient heterogeneity.

To identify other cellular states displaying variability in myeloma cells, we employed 

nonnegative matrix factorization to identify expression programs in our dataset (Fig. 

2d). Using this approach, we detected 6 robust expression programs across patients. 

Apart from the cell cycle, these reflected cell signaling states, such as KRAS/MAPK 

signaling, IL2/STAT5 signaling, interferon response, and IL6/STAT3 signaling, a known 

survival pathway in multiple myeloma (Fig. 2d–f). The sixth program consisted of genes 

related to the endoplasmic reticulum, a cellular component involved in protein maturation 

and secretion, processes of paramount importance for myeloma cells. Scoring of these 

expression signatures revealed widespread transcriptional variability across the identified 

expression programs between and within patients (Fig. 2g).

Lineage infidelity and plasticity in myeloma cells.

We next sought to define the nature of the transcriptional profiles that are co-expressed 

in individual cancer cells. We observed expression of genes not normally detectable in 

plasma cells, such as CD20 (MS4A1), the B lymphoid tyrosine kinase BLK and the serine 

protease C (CTSC) (Extended Data Fig. 4a). To investigate whether myeloma cells acquire 

transcriptional states from less mature or entirely different hematopoietic lineages, we 

defined expression signatures derived from the BLUEPRINT dataset12. We found that the 

transcriptional states of myeloma cells indeed diverged from normal plasma cells towards 

more immature progenitor populations of the lymphoid or entirely different hematopoietic 

precursors (Fig. 3a,b). Notably, these transcriptional signatures were co-expressed in the 

same single cells. We validated our observations using signatures from the Human Cell 

Atlas16 (Extended Data Fig. 4b,c).

In order to capture the differentiation trajectories between different developmental stages, 

we performed cluster analysis based on expression of progenitor signatures (Supplementary 

Table 5) and performed RNA velocity analysis17. We identified a differentiation trajectory 

from less to more differentiated cells (Fig. 3c,d). The plasma cells from normal donors 

clustered towards the endpoint of the trajectory, consistent with their state of terminal 

differentiation (Extended Data Fig. 4d,e). Cycling cells were enriched towards the starting 

point of the trajectory (Extended Data Fig. 4f). Since transcriptional diversity is a hallmark 

of developmental potential which is progressively restricted as cells differentiate18, we 

assessed the number of genes expressed per cell and transcriptional entropy19,20 (Extended 

Data Fig. 4g–j) and detected increases in both measures in MM (p < 2.2e-16 by two-sided 

Wilcoxon-test.). Using CytoTRACE18, we predicted a higher developmental potential for 

myeloma cells than for normal plasma cells (Fig. 3e, Extended Data Fig. 4k). The cells with 

the highest CytoTRACE score, i.e. the most immature cells, mapped to the starting point of 

the trajectory by RNA velocity.

To further define the two divergent differentiation endpoints, we determined the top 

ranked genes correlated with developmental potential (Supplementary Table 6), which 

included LAMP5, a recently identified marker of MM upregulated through epigenetic 
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activation13 (Fig. 3f). Gene sets associated with immaturity included metabolic processes, 

Myc activation, and a plasmablast-like signature (Fig. 3g). Interestingly, we observed that 

the starting and endpoints of the differentiation trajectory were associated with divergent 

signaling states, characterized by mutually exclusive activation of either the MAPK pathway 

or PI3K pathway (Fig. 3h,i). While MAPK activity was detected in a subset of cycling and 

immature cells, the more mature cells showed activation of PI3K, consistent with previous 

reports showing that PI3K activity induces PRDM1 and terminal differentiation of B cells21. 

These findings suggest that MM cells arrange along a spectrum of two divergent states, 

which are characterized by heterogeneity in differentiation state and signaling activity.

To distinguish whether the observed results reflect defective differentiation or a loss of 

lineage restriction, we assessed expression of plasma cell lineage transcriptional regulators, 

including XBP1, PRDM1 and IRF4. Expression of these regulators was preserved in MM 

(Extended Data Fig. 4l), arguing that MM cells retain plasma cell identity and manifest a 

loss of lineage restriction, rather than a block in differentiation.

Regulatory network usage and chromatin accessibility in MM.

As gene-regulatory networks (GRN) have been shown to play a key role in the regulation 

of cell fates, we set out to define the underlying GRN in MM. We therefore defined 

transcription factor (regulon) activity using SCENIC22. We identified transcriptional 

modules present in normal hematopoiesis in the BLUEPRINT dataset and determined the 

dominating module containing plasma cell transcriptional regulators (Fig. 4a, Extended Data 

Fig. 5a). In our normal donor plasma cells we detected activity predominantly in the plasma 

cell module (Fig. 4b). In contrast, gene regulatory network activity of myeloma cells was no 

longer confined to the plasma cell module, but was observed across other modules assigned 

to hematopoietic cells including HSC and macrophage modules (Fig. 4b, Extended Data Fig. 

5b–d).

To identify state-specific gene-regulatory networks in MM, we next constructed a network 

based on MM cell regulon activity as well as a network based on normal hematopoietic cells 

(Extended Data Fig. 5e), and created an overlay (Fig. 4c). Interestingly, while the majority 

of regulons have activity in normal hematopoietic and myeloma cells, we identified many 

regulons that were largely inactive or entirely absent in normal hematopoiesis (Fig. 4c,d, 

Extended Data Fig. 5e, Supplementary Tables 7,8). ELF3 and TEAD4 are two examples of 

regulons, which gain activity in MM cells (Extended Data Fig. 5f). ELF3 is a member of the 

epithelium-specific ETS (ESE) transcription factors expressed predominantly in epithelial 

tissues23, while TEAD4 acts as a downstream regulator of the Hippo pathway, and binds 

to the M-CAT motif found primarily in muscle-specific genes24. Among their target genes 

are genes not normally expressed in plasma cells including CD3E, CD5 and CD300A 
(Supplementary Table 9). These data illustrate an aberrant and promiscuous activation of 

transcriptional regulators in MM that are not active in normal hematopoietic cells, in line 

with a loss of lineage restriction.

Importantly, we also identified a shared set of regulons between malignant and normal 

plasma cells, including XBP1, IRF4 and PRDM1, indicating that myeloma cells retain 

lineage-specific regulons (Extended Data Fig. 5g). This is consistent with our previous 
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finding that MM cells retain plasma cell identity. Interestingly, even plasma cell lineage 

defining regulators, such as XBP1, gained network connections in myeloma cells, 

suggesting that while myeloma cells maintain activity of canonical plasma cell regulators, 

these acquire additional target genes outside of the plasma cell module (Fig. 4d).

We therefore determined the transcription factors with the highest rewiring score for which 

connections between transcriptional regulators and target genes are altered25 (Fig. 4e, 

Supplementary Table 10). We identified ELF3 and TEAD4 as the topmost rewired TFs, 

followed by XBP1 (Fig. 4e, Supplementary Table 10), indicating that rewired TFs include 

lineage-defining and non-lineage TFs. Other rewired TFs included E2F1, which has been 

described as a master regulator of proliferation26. E2F1 has been shown to be essential in 

myeloma cells and has been identified as a potential therapeutic target27, which suggests 

that other transcriptional nodes, in particular TFs with a high rewiring score, could represent 

attractive therapeutic targets.

We next identified the top rewired cell surface markers which may represent potential 

therapeutic targets. Deregulated surface molecules included the growth factor receptors 

PDGF receptor A and B (PDGFRA and PDGFRB), as well as B cell maturation antigen 

BCMA (TNFRSF17) (Fig. 4f). These data illustrate that substantial transcriptional rewiring 

occurs in myeloma cells although expression of plasma cell lineage-defining TFs is 

preserved, and misexpression of surface proteins appears to be an important consequence 

of this rewiring.

To assess whether the identified rewired TFs represent therapeutic vulnerabilities, we 

investigated CRISPR screening data from the Depmap portal (https://depmap.org/portal/). 

We found that some rewired TFs, such as XBP1 were essential in MM (Fig. 4g,h). Essential 

TFs were strongly enriched in B cell/plasma cell TFs (Supplementary Table 11), including 

XBP1, IRF4, and IKZF1 (Fig. 4i,j), reinforcing the notion that MM cells do not lose their 

plasma cell identity, and the essentiality of plasma cell defining TFs for cell survival. 

However, other rewired TFs that do not define the plasma or B-cell lineages, such as TAL1 

do not generate lineage dependencies in myeloma, likely due to plasticity and redundancy in 

the transcriptional network (Fig. 4g,k).

To assess whether increased transcriptional diversity could be attributed to greater chromatin 

accessibility, we performed single cell ATAC sequencing on myeloma cells from a subset of 

patients as well as normal donor plasma cells (Fig. 5a). A total of 1,483 cells were analyzed 

and underwent QC filtering (Methods, Extended Data Fig. 6a–d, Supplementary Table 

2). As an initial assessment of heterogeneity, we performed clustering and dimensionality 

reduction (Extended Data Fig. 6e–h). Annotation of the single cell ATAC profiles through 

integration with our single cell RNA data revealed that clusters 1–6 corresponded to plasma 

cells, while clusters 7,8, and 9 corresponded to monocytes, B cells and NK cells (Extended 

Data Fig. 6i–k). Visual inspection of tracks with aggregated ATAC profiles and gene scores 

for marker genes SDC1, LYZ, MS4A1 and FCGR3A confirmed these cell type annotations 

(Extended Data Fig. 6l–s). For further characterization of the single cell accessibility profiles 

of myeloma cells, we retained clusters annotated as plasma cells only. Similar to our 
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findings in transcriptional profiling, we observed patient-specific clustering, arguing that 

individual patients have distinct chromatin profiles (Fig. 5b,c).

We next performed peak calling (Extended Data Fig. 7a–c) and found that the majority 

of accessible regions in normal plasma cells were shared with MM cells, with only 7,944 

of 46,935 peaks unique to the normal plasma cells (Extended Data Fig. 7b). However, 

we identified a substantial number of peaks unique to MM (29,761; Extended Data Fig. 

7b), suggesting that MM cells retain accessible regions of normal plasma cells, but gain 

additional peaks. Consistent with this finding, we observed a higher number of differentially 

accessible peaks by DESeq2 gained in MM (3,421 peaks gained vs 887 lost in MM 

compared to normal donor plasma cells, FDR ≤ 0.1; Extended Data Fig. 7c,d).

To characterize genomic regions with peak enrichment, we annotated chromatin states 

using ChromHMM annotations in GM12878, a widely used model for normal B cells, as 

reference. We observed that a greater fraction of accessible regions fell into heterochromatin 

in MM (Extended Data Fig. 7e,f; p= 0.0029 by t-test). Furthermore, a greater fraction of 

peaks was localized in intronic and intergenic regions (Extended Data Fig. 7g), in line with 

a gain of enhancers. Accessible regions in myeloma cells were also located at a greater 

distance from the transcription start site (TSS) (Extended Data Fig. 7h; p< 2.2e-16 by 

Wilcoxon test), consistent with reports describing increased H3K27 acetylation levels in 

myeloma28.

We next used GREAT to assign genes to enhancers29 and noted that many genes in MM 

were associated with ten or more enhancers (Fig. 5d). When comparing accessibility 

of enhancers associated with the top multi-enhancer genes, we found that a subset was 

differentially accessible in MM (Extended Data Fig. 7i). Gene set enrichment analysis 

showed that the top multi-enhancer genes were involved in cellular processes such as 

differentiation, cell death and signaling, indicating that changes in chromatin accessibility 

modulate these critical processes. As these results depend on accurate enhancer-gene maps, 

we validated our findings using the Activity-by-Contact (ABC) model to link regulatory 

regions to target genes30 (Extended Data Fig. 7j–l).

To assess variability in the scATAC dataset, we next performed pseudotime ordering of the 

single cell ATAC profiles (Fig. 5e). We found that genes known to play a role in MM, such 

as CCND1, as well as ELF3 displayed higher accessibility towards the start of the trajectory 

(Fig. 5f). Analyzing motif accessibility across pseudotime (Fig. 5g), we further observed 

that NFKB family members REL, RELA and NFKB1 scored higher towards the end of 

the trajectory in the normal donor plasma cells. We therefore performed differential motif 

enrichment analysis using chromVAR31 and detected differential enrichment of a total of 

276 TFs (FDR ≤ 0.01, Extended Data Fig. 7m). We found that 120 of a total of 429 rewired 

TFs displayed differential motif accessibility (Extended Data Fig. 7n), including TEAD4, 

ELF3, and other TFs, such as IRF8, FOXO3 and MEF2A (Fig. 5h). This finding indicates 

that a gain in accessibility of transcription factor binding sites contributes to rewiring and 

transcriptional reprogramming.
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The single cell chromatin accessibility data further allowed us to predict cis-regulatory 

interactions by defining peak-to-gene linkage. The loci of transcription factors ELF3 and 

TEAD4 manifested further evidence for enhancer activation in MM (Fig. 5i,j) demonstrating 

that there are widespread alterations in cis-regulatory regions in MM.

Taken together, these data suggest that de-repression of heterochromatin in MM allows 

for binding of transcription factors and expression of genes not normally expressed in this 

lineage, ultimately leading to promiscuous acquisition of alternate cell states (Fig. 5k).

Treatment reduces developmental potential.

To assess how treatment modulates the differentiation state of single myeloma cells, 

we investigated myeloma cells from patients treated with Elo-PVD at Cycle 5 Day 1 

(C5D1), i.e. persisting after 4 months of treatment. Alternative splicing resulting in multiple 

transcript variants is known to regulate key developmental decisions, including maintenance 

of pluripotency and differentiation32. Differential isoform expression analysis showed 

differential expression of 312 transcripts with treatment (Extended Data Fig. 8a). Gene set 

enrichment analysis revealed that transcripts involved in processes like RNA binding, cell 

activation and regulation of gene expression were differentially spliced between timepoints 

(Extended Data Fig. 8b).

To further investigate differential splicing probabilities in single cells, we performed 

Louvain clustering based on the splicing probability psi and identified 6 clusters, two of 

which were enriched in treated cells suggesting treatment as cause of cluster formation 

(Extended Data Fig. 8c–e). Indeed, we observed that transcripts with a high splicing 

probability showed exon inclusion less frequently upon treatment, i.e. had higher probability 

of exon skipping (Fig. 6a). PDCD4 and TSC1, a negative regulator of mTORC1 signaling 

were among the transcripts with reduced splicing probabilities at C5D1, while CALU, which 

is involved in protein folding33 showed higher splicing probabilities (Extended Data Fig. 8f).

We also generated miso plots to visualize potential exon skipping events or alternate splice 

site usage in individual transcripts following treatment (Extended Data Fig. 8g–i). We 

hypothesized that SLAMF7, the target of elotuzumab treatment, might be alternatively 

spliced upon treatment. We identified various splice isoforms resulting in skipping of exon 

3 which encodes the antibody binding site34 (Extended Data Fig. 8j). However, we did 

not observe differential splicing upon treatment in this transcript (Extended Data Fig. 8f), 

arguing that alternative splicing of SLAMF7 does not significantly contribute to treatment 

evasion in this cohort.

We next investigated whether developmental potential changed with treatment. Notably, 

we observed a decrease in the number of genes expressed (5,700 at screening vs 4,473 at 

C5D1, p<2.2e-16 by t-test) (Extended Data Fig. 9a). CytoTRACE values were decreased 

following treatment (p<2.2e-16 by t-test; Fig. 6b), suggesting that developmental potential 

and transcriptional diversity were reduced by treatment, consistent with persisting cells 

assuming a more quiescent state. We further observed a minor reduction of cycling cells 

upon treatment (Extended Data Fig. 9b).
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We therefore hypothesized that treatment might modulate TF activity. Notably, we observed 

that overall regulon activity was increased upon treatment, with 160/365 decreased and 

205/365 regulons upregulated (Fig. 6c). Regulons that increased in activity included the 

B cell TF FOXO3 and the regulators of plasma cell fate IRF4 and PRDM1, while 

downregulated regulons included the rewired non-lineage TFs ELF3 and TEAD4 (Fig. 6d). 

Among the lineage TFs, we observed an increase in regulon activity in 17/38 (including IRF 

family members IRF4, IRF2 and IRF8) (Extended Data Fig. 9c,d).

To investigate whether cells with increased regulon activity were selected for by treatment or 

whether treatment directly induced these transcriptional changes, we modelled short-term 

drug treatment in vitro. Treatment resulted in a reduction in developmental potential, 

indicating that this change is a direct effect of treatment rather than an effect of 

selection (p<2.2e-16 by t-test; Fig. 6e). Short-term treatment further resulted in changes 

in regulon activity consistent with those observed in MM patients (245/434 up- and 189/434 

downregulated), including upregulation of IRF factors and B cell lineage transcription 

factors, such as FOXO3 (Fig. 6f,g).

We hypothesized that changes in regulon activity could be attributed to differential 

chromatin accessibility and performed ATAC sequencing of MMCL MOLP2 after 72h 

treatment with PVD (Fig. 6h,i). Differential accessibility analysis by DESeq2 revealed 5,268 

peaks gained and 3,154 peaks lost with treatment (Fig. 6j), indicating that treatment induced 

significant changes in chromatin accessibility. GO-term analysis of the differential peaks 

revealed enrichment of several terms related to differentiation (lymphocyte differentiation, 

cell fate commitment) in peaks gained upon treatment, while peaks lost upon treatment 

were enriched in lymphocyte proliferation (Extended Data Fig. 9e,f). As we detected fewer 

genes expressed in the treated cells without a concomitant decrease in accessible regions, 

we hypothesized that more enhancers were connected to individual genes. Using GREAT 

to assign genes to enhancers, we noted that following treatment the average number of 

enhancers per gene was increased (11 in PVD vs 10 in DMSO group, p=0.00012 by t-test), 

with a greater number of genes connected to ten or more enhancers (Fig. 6k). Gene set 

enrichment analysis of the top genes gaining enhancers revealed that these were involved 

in the regulation of cellular processes, such as response to cytokines and cell motility 

(Extended Data Fig. 9g), suggesting that enhancer rewiring supports the expression of a 

subset of genes needed for persistence under drug pressure. We validated these results using 

the ABC model for gene-region annotation (Extended Data Fig. 9h,i).

Motif enrichment analysis in accessible regions showed enrichment of several IRF factors 

upon treatment, consistent with increases in regulon activities (Fig. 6l). Rewired TFs 

with differentially accessible motifs also included the IRF factors IRF2, IRF9 and IRF1 

(Extended Data Fig. 9j). Collectively, these results suggest that treatment directly modulates 

the transcriptional landscape.

Immunotherapeutic targets in reprogrammed cancer cells.

Having identified deregulated expression of surface markers in MM, we hypothesized 

that these might represent attractive therapeutic targets, since surface markers are easily 

accessible and can be targeted by immunotherapy. Therefore, we assessed the expression of 
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the surface markers CD33, CD4, CD5, and CD20 (Fig. 7a) in MM cells at screening, as 

examples of CD markers not normally expressed in this lineage and detected up-regulation 

in individual patients.

To further assess whether altered differentiation states are reflected in distinct surface marker 

profiles, we performed deconvolution of cell types based on mRNA expression of surface 

markers. While normal plasma cells manifest a surface marker profile closest to plasma cells 

and other B cell subtypes, in MM we identified signatures of different lineages, such as 

endothelial progenitors and common myeloid progenitors (Fig. 7b). This finding suggests 

that the lineage infidelity that we identified in MM cells is associated with widespread 

changes in expression of surface markers.

Notably, we observed a further shift in surface marker expression with treatment, arguing 

that treatment itself may induce expression of different surface molecules (Fig. 7b). 

Interestingly, we identified the surface marker CXCR4 among the top up-regulated genes 

following treatment (Extended Data Fig. 10a). CXCR4 has been implicated in MM for 

playing a role in disease progression and inducing an EMT-like phenotype35. CXCR4 

thus represents an attractive therapeutic target, particularly as CXCR4 antagonists are 

already tested in clinical trials for relapsed myeloma36 and are in use for other clinical 

applications37. We validated surface expression of CXCR4 following treatment by flow 

cytometry (Fig. 7c,d).

To assess its regulation upon treatment, we investigated chromatin accessibility in the 

scATAC data and detected numerous intergenic enhancers linked to CXCR4 (Fig. 7e). We 

observed significantly greater accessibility in an enhancer peak associated with CXCR4 

following treatment, suggesting differential epigenetic activation of CXCR4. As it has been 

established that IRF4 regulates CXCR4 expression in pre-B cells38, we compared IRF4 

ChIP-Seq peaks with our ATAC-Seq profiles. We observed IRF4 binding at the promoter 

and enhancer regions of CXCR4, arguing that IRF4 regulates CXCR4 expression in MM. 

We therefore investigated chromatin accessibility in MMCL MOLP2 after treatment with 

PVD and found the IRF4 motif to be enriched in ATAC peaks following treatment (Fig. 7f, 

Extended Data Fig. 10b). Consistent with this observation, we detected a significant increase 

in IRF4 regulon activity following treatment (p=1.3e-05 by t-test; Fig. 7g). These data argue 

that IRF4 regulates CXCR4 and is activated following treatment, thus resulting in increased 

CXCR4 expression.

To determine if CXCR4 expression can be induced directly by treatment, we treated 

MMCLs in vitro with pomalidomide (P), bortezomib (V) and dexamethasone (D). We 

observed up-regulation of CXCR4 in multiple MMCLs (Fig. 7h,i), but only minimal cell 

death (Extended Data Fig. 10c–e) upon treatment. Quantitative analysis of CXCR4 surface 

protein expression revealed dexamethasone as the drug having the greatest effect on this 

phenotype (Fig. 7i, Extended Data Fig. 10f,g). Drug removal resulted in down-regulation 

back to starting levels (Fig. 7j), suggesting that this phenotype is indeed induced by 

drug treatment and is reversible. To investigate whether we could exploit this finding 

for therapeutic targeting, we treated MMCLs with the CXCR4 inhibitors BKT140 and 

Plerixafor (Fig. 7k,l, Extended Data Fig. 10h,i). We observed greater cell death when 
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adding BKT140 and Plerixafor following pre-treatment with PVD, arguing that we can 

induce phenotypic changes that provide the rationale for targeted therapeutic strategies. 

Collectively, these results demonstrate that drug treatment can indeed modulate surface 

marker expression and can induce expression of potential therapeutic targets.

Discussion

In conclusion, delineating heterogeneity by defining cellular states through single cell 

transcriptional and epigenetic profiling allowed us to gain important insights into the gene 

regulatory network underlying MM biology and to identify potential therapeutic targets.

We detected widespread transcriptional reprogramming in myeloma cells, with expression 

of genes not normally detected in this cell type. Our analyses demonstrate greater 

developmental potential and expression of markers associated with immaturity. This is of 

particular interest as plasma cells, the cell of origin for MM39, are terminally differentiated 

and this process is generally considered irreversible. Our data suggest that while MM cells 

do not lose their plasma cell identity, they (re-) acquire expression of gene signatures from 

earlier developmental stages or entirely different lineages. We show that differential regulon 

usage and transcriptional rewiring underlie these alternate differentiation states and identify 

differential transcription factor binding motif accessibility as a possible mechanism.

We detected widespread changes in chromatin accessibility, with de-repression of 

heterochromatin regions and increased accessibility in enhancer regions. These findings 

are consistent with previous reports demonstrating that enhancer activation is a key 

feature of myeloma28,40. We also find that a subset of genes enriched for regulation of 

differentiation and cell death is associated with many more enhancer regions in MM, 

reminiscent of previous suggestions that establishment of superenhancers is a key feature 

of MM biology27,28.

We argue that permissive chromatin states in myeloma lower epigenetic barriers, 

allowing for promiscuous sampling of alternate cell states41. This plasticity allows MM 

cells to aberrantly activate alternate gene regulatory programs, resulting in widespread 

transcriptional reprogramming, and dedifferentiation in this malignancy derived from 

terminally differentiated plasma cells. Importantly, we show that this plasticity can also lead 

to therapeutic opportunities, since it results in expression of surface markers not normally 

expressed in this lineage. Using CXCR4 as a proof of principle, we further show that surface 

marker expression can be modulated by treatment and exploited for immunotherapeutic 

targeting, and we identify increased IRF4 activity as a possible mechanism driving CXCR4 

upregulation. Interestingly, we observe de-differentiation independent of genotype, arguing 

that there are convergent cell states dictated by de-repression of chromatin that supersede 

genetic background and heterogeneity. Targeting MM cell states, rather than distinct 

genotypes, may thus represent a way to overcome the extensive genetic heterogeneity 

of the disease. We propose that identifying gene-regulatory networks and the associated 

complement of surface proteins in cancer can reveal actionable targets for immunotherapies.
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Materials and methods

Patient samples

Banked blood or bone marrow samples from patients with relapsed/ refractory multiple 

myeloma (Supplementary Table 1), who had signed consent and were enrolled on a phase II 

clinical trial investigating with elotuzumab, pomalidomide, bortezomib and dexamethasone 

on a clinical trial (Elo-PVD; NCT02718833) were used in this study. The research was 

determined not human subject research by DF/HCC IRB (19–511). Samples from 8 patients 

(5M, 3F) were analyzed, median age at registration was 68.5 years (range 45–80). Myeloma 

cells were enriched using the EasySep Human CD138 positive selection kit (STEMCELL 

Technologies). Bone marrow from normal donors was obtained from AllCells.

Single cell sorting

Bone marrow cells were stained with antibodies against either CD38 FITC (multi-epitope, 

Cytognos, 1:200), CD138 PE (44F9, Miltenyi, 1:100), SLAMF7 APC (162.1, Biolegend, 

1:100), BCMA PE-Cy7 (19F2, Biolegend, 1:100), or with antibodies against CD45 FITC 

(HI30, eBioscience, 1:100), CD3 PerCP-Cy5.5 (OKT3, eBioscience, 1:100), CD14 APC-

Cy7 (MoP9, BD Biosciences, 1:100), CD19 PE (HIB19, BioLegend, 1:100). Cells were 

stained with DAPI (1 μg/mL, Sigma-Aldrich) to exclude dead cells. Single cells were sorted 

into 96-well plates using a Sony SH800 sorter (Extended Data Fig. 1). Immediately after 

sorting, plates were spun down, and stored at –80 °C until further processing.

Single cell RNA-Seq library preparation

Full-length single cell RNA-Seq libraries were prepared using the SmartSeq2 

protocol10. Briefly, single cells were sorted into 96-well plates with each 

well containing 10 μl of TCL buffer (Qiagen) and 1% 2-mercaptoethanol. 

RNA purification was performed using RNAClean XP beads (Beckman Coulter) 

prior to cDNA synthesis. RNA was reverse-transcribed using Maxima RNAse 

H-minus (ThermoFisher) in the presence of biotinylated oligo-dT30VN (/5BiosG/

AAGCAGTGGTATCAACGCAGAGTACT(30)VN), biotinylated template-switching 

oligonucleotides (/5BiosG/AAGCAGTGGTATCAACGCAGAGTACATrGrG+G), and 

betaine. Amplification of cDNA was performed using KAPA HIFI Hotstart 

ReadyMix (Kappa Biosystems) and biotinylated ISPCR primers (/5BiosG/

AAGCAGTGGTATCAACGCAGAGT) with the following amplification protocol: 98°C for 

3 min, 24 cycles of [98°C for 15 sec, 67°C for 20 sec, 72°C for 6 min], 72°C for 5 min. 

A total of 0.15 ng of the amplified cDNA was subjected to tagmentation using the Nextera 

XT kit (Illumina) and amplified with Nextera indexes. Pooled libraries were paired-end 

sequenced using a 75 cycle kit on a NextSeq 500 (Illumina) with an average sequencing 

depth of 1 million reads per cell.

Single cell ATAC-Seq library preparation

2,000–5,000 plasma cells were bulk sorted as described above and single cell ATAC-Seq 

libraries were prepared as described by Chen et al.66. Libraries were paired-end sequenced 
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using a 75 cycle kit on a NextSeq 500 (Illumina) sequencer with an average sequencing 

depth of 0.5–1 million reads per cell.

Multiple myeloma cell lines

Human multiple myeloma cell lines (MMCL) were obtained from ATCC (MM1.S, 

CRL-2974) or DSMZ (MOLP-2, ACC 607; OPM-2 ACC 50). The cell lines MOLP2, 

OPM2, MM1.S were cultured in RPMI-1640 (Gibco) media with 10% of heat-inactivated 

fetal bovine serum (MM1.S and OPM2) or 20% (MOLP2), 100 μM penicillin/streptomycin 

(Invitrogen), 2 mM L-glutamine (Sigma), 1 mM sodium pyruvate (Sigma), 1x NEAA 

(Sigma), 20 mM HEPES (Sigma) and 0.5 mM 2-mercaptoethanol. Cell line identity was 

confirmed by short tandem repeat profiling and cultures were tested for mycoplasma every 3 

months.

In vitro inhibitor treatment

MM cell lines were treated for 72h with pomalidomide (Selleck), bortezomib (Selleck), and 

dexamethasone (MilliporeSigma) individually or in combination (half IC10 concentration 

for bortezomib and half IC10 for MM1S for dexamethasone and pomalidomide, half 

IC50 for OPM2 and MOLP2) at the indicated concentrations. To investigate the effects 

of drug removal on CXCR4 expression, cells were treated for 72h, washed, and incubated 

in RPMI-1640 media without drug for a further 72h. Cells were stained with PE/Cy7 

anti-human CXCR4 (12G5, BioLegend, 1:100) and FITC Annexin V (BioLegend) and were 

analyzed using a BD Accuri C6 Flow Cytometer. The mean fluorescence index of each 

sample was calculated using FlowJo software v10.

For bulk ATAC sequencing, MMCLs were treated with inhibitors for 72h and cells were 

ficolled. 50,000 cells were pelleted and ATAC sequencing was performed using the Omni-

ATAC protocol as described by Corces et al.42.

To assess sensitivity to CXCR4 inhibitors following pre-treatment with PVD, CXCR4 

inhibitors plerixafor (Selleck) and BKT140 (Bachem) were added at IC50 concentrations 

after 72h. Cell viability was measured after a further 72h using the CellTiterGlo 

Luminescent Viability Assay (Promega).

STATISTICAL ANALYSIS

Processing of single cell RNA-Seq data

Sequencing reads were trimmed using trimmomatic and aligned to the human genome 

(version hg19) using STAR aligner with following parameters ‘-- twopassMode Basic 

--alignIntronMax 100000 --alignMatesGapMax 100000 --alignSJDBoverhangMin 10 --

alignSJstitchMismatchNmax 5 −1 5 5’43,44. HTSeq and RSEM were used to obtain raw 

counts and normalized TPM values from the aligned bam files45,46.

Quality control and filtering of single cell RNA data

To remove low quality cells from our dataset, we used the following parameters - 

distribution of library size (i), number of detected genes (ii), percentage of counts mapping 

Frede et al. Page 13

Nat Cell Biol. Author manuscript; available in PMC 2022 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to mitochondrial genes (iii), and percentage of counts mapping to house-keeping genes 

(HKGs) (iv) per cell (Extended Data Fig. 2a). An outlier cutoff of 3 median absolute 

deviations (MADs) was chosen and cells with MADs > 3 were flagged as poor quality. 

We further used the ‘mvoutlier’ package to identify poor quality cells without predefined 

cut-offs. Cells identified as outliers by both methods were removed from the dataset 

(Extended Data Fig. 2b). We investigated the contribution of various technical factors, 

including individual, genes detected, sequencing run and library size, to the total variation 

observed in the dataset, and noted that the contribution of these variables was low (Extended 

Data Fig. 2e).

Clustering of single cell RNA-Seq profiles

Clustering of high-quality cells was performed using the multilevel graph-based clustering 

algorithm within PAGODA211. Reference-based cell type annotation of the single cell 

profiles was performed using the R package ‘SingleR’47 and a published dataset of 21 

immune cell populations from the BLUEPRINT consortium12 as reference. Marker genes 

for each of the MM clusters (Extended Data Fig. 3h) were determined using the findMarker 
function in the scran package48.

Classification of malignant cells

Copy number variations were inferred from the single cell RNA-Seq (scRNA-Seq) 

expression profiles using ‘InferCNV’49,50 and ‘CONICSmat’51. Plasma cells from normal 

donors served as controls.

The CDR3 region was reconstructed for each individual cell using ‘MiXCR’ package52. The 

raw reads were aligned to the B cell VDJ receptor datasets. This was followed by steps 

of partial assembly, with the poor-quality unmapped reads used to extend the alignment. 

Identical sequences were then grouped into clones after correcting for PCR duplicates and 

sequencing errors. The amino acid sequence from the CDR3 region of the light chain was 

used to track the clonality of the plasma cells.

A random-forest classifier was built in R defining patient-specific clusters showing 

enrichment for copy-number aberrations as malignant. We randomly split the dataset 

into non-overlapping training and test sets, using 30% of cells for testing. The optimum 

parameters – mtry (62) and ntrees (500) for randomforest were determined using tuneRF 
function. The relative importance of individual genes in classification was evaluated using 

varImpPlot function.

A composite malignancy score was calculated by scoring relative expression of positive RF 

marker genes and adding a value of +1 if i) CNVs called by clinical cytogenetics were 

detected and ii) the dominant CDR3 sequence was detected.

Molecular classification of myeloma cells on a single cell level

For molecular classification of myeloma cells, we used established gene expression 

classifiers from a bulk transcriptome study14. Scores for each subgroup were calculated 
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by taking the average relative expression of the positive marker genes and subtracting the 

average relative expression of the negative markers.

Defining heterogeneity programs

Myeloma cells at screening were analyzed using NMF (version 0.23.0)53. The gene 

expression count matrix was transferred to log2 counts-per-million (logCPM) by 

edgeR_3.32.0 package54,55. As previously described56, all negative values were replaced 

with zero. The top 50 genes based upon the highest NMF scores were selected as signature 

genes for each program (Fig. 2e). The connectivity and stability of the obtained programs, 

assessed by calculation of consensus matrix, was visualized in a heatmap (Fig. 2d). To 

classify the identified programs, we used the functional enrichment analysis of signature 

genes with Molecular Signatures Database (MsigDB) hallmarks and ontology57–59(H, 

C5:BP) gene sets considering FDR-adjusted P<0.05 as significant. We scored the identified 

signature genes in myeloma cells at screening using scanpy60 (Fig. 2g).

Comparison to published RNA-Seq datasets

Gene expression data from bulk sorted populations of immune cells from the BLUEPRINT 

dataset12 were used to assess dedifferentiation and expression of genes from other cell types. 

The signatures were scored using scanpy60. Expression of markers from different lineages 

was validated using single cell RNA-Seq derived signatures from the Human Cell Atlas16.

Defining markers of immaturity and differentiation

Markers for different progenitor signatures were derived from signatures defined in the xCell 

study (Supplementary Table 5)61. Clustering was performed on the relative expression of 

genes in progenitor signatures (CLP, CMP, MPP, MEP) along with B cell and plasma cell 

genes in myeloma and normal donor plasma cells.

RNA velocity projections were plotted onto 2-dimensional clustering to reveal immature 

root and endpoint states21. We assessed expression of marker genes for G1, S and G2M 

phase to predict the cell-cycle phase using ‘Seurat’62.The R package ‘CytoTRACE’ (v0.1.0) 

was used to determine developmental potential18. The top100 genes correlated or anti-

correlated with CytoTRACE values (Supplementary Table 6) were chosen as markers for 

immaturity and differentiation, respectively. Gene set enrichment analysis was performed 

using MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Signaling activity was 

predicted based on perturbation experiments using ‘PROGENy’ 63.

Entropy was calculated using the R package ‘LandSCENT’20 with a previously defined 

protein-protein interaction (PPI) network provided with the ‘LandSCENT’ package 

available on github under the filename “net13Jun12.m.RData”. For validation, we used 

an updated version of the PPI network also provided on github under the filename 

“net17Jan2016.m.RData”, which contains a greater number of protein-protein interactions 

(11751 vs 8434 columns, Extended Data Fig. 4j).
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Construction of regulon network

The bulk RNA-Seq data from the BLUEPRINT consortium12 was used to construct 

a reference network. Only the high confidence regulon targets with Genie3Weight >= 

0.01 were filtered from the file - `2.5_regulonTargetsInfo.Rds’ (Supplementary Table 9) 

generated by SCENIC22. The modules in the constructed network were detected using 

the ModulLand64 plugin in cytoscape65. Similarly, the network was constructed for the 

disease state by using the scRNA-Seq data generated from our study from malignant and 

normal plasma cells. We compared the regulon network layout of the plasma cells in the 

BLUEPRINT with that of the normal-donor plasma and myeloma cells at screening.

While for the BLUEPRINT plasma-cell type we averaged the AUC values over replicates 

for each regulon, for the scRNA-Seq data generated from our study we averaged the AUC 

values for each regulon for MM or ND plasma cells. Finally, for each cell type/group we 

centered the averaged AUC values by the mean over regulons and scaled by the standard 

deviation (Supplementary Table 7,8). Whenever a regulon transcription factor produced 

another (extended) regulon with a different number of target genes, we retained only the one 

having high-confidence target genes, identified by having the same or close number of target 

genes as shown in the high-confidence regulon targets data. To project the scaled regulon 

activity onto the BLUEPRINT and ELO networks, we integrated the scaled regulon activity 

data to their corresponding regulon target data.

Both the normal hematopoietic and disease networks were compared in order to analyze 

the rewiring of regulon networks using the DyNet algorithm25 (Supplementary Table 

10). Lineage transcription factors were identified as transcription factors present in the B 

cell or plasma cell modules with selected transcription factors added from the literature 

(Supplementary Table 11).

Expression of surface markers

Gene expression data from bulk sorted populations of immune cells from the BLUEPRINT 

dataset12 were used to score enrichment of surface markers from other cell types in MM 

cells. Only CD markers were selected, and their enrichment was scored using the R package 

‘TissueEnrich’.

Dependency scores

Dependency data are based on CERES scores from the Depmap dataset (DepMap 

Public 19Q1) and lineage-specific dependencies were determined using the R package 

HDCRC201966. A gaussian mixture model was calculated with 2 components and a cutoff 

of FDR<0.05 and estimate>1 was chosen for identifying lineage-specific essential genes.

Detection of alternative splicing

We quantified exon inclusion/exclusion ratio (percent of spliced in, psi) using BRIE2 

(Bayesian regression for isoform estimate, v2, Python package developed under the Python2 

environment)67. 7,516 predefined annotations for exon skipping splicing of human data were 

downloaded from https://sourceforge.net/projects/brie-rna/files/annotation. The produced psi 
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values were used for projection of selected events and downstream analysis by creating a 

psi-based UMAP.

Poor-quality genes were filtered out using the defined arguments in brie-quant mode 

(minCount, minUniqCount, minCell and minMIF) choosing a minimum of 50 counts, a 

minimum of 10 unique counts across all cells, a minimum of 30 cells with unique counts and 

a minimum of 0.001 minor isoform frequency in unique counts, respectively.

Single cell samples in each experimental condition were selected randomly to generate 

Sashimi plots using MISO (Mixture of Isoforms; version 0.5.4) 68,69. Skipped exon events 

(GFF annotation files) were downloaded from https://miso.readthedocs.io/en/fastmiso/

index.html#event-annotation.

Processing and analysis of scATAC-Seq data

Single cell chromatin accessibility profiles were processed with ArchR70. Quality control 

filtering was performed and only high-quality cells with a TSS enrichment score greater than 

4 and greater than 1000 unique nuclear fragments were retained. Doublet filtering resulted in 

a further removal of 11 cells (1% of cells). QC measures and sample statistics are shown in 

Extended Data Fig. 6a–d, Supplementary Table 2.

We next performed dimensionality reduction using Iterative Latent Semantic Indexing (LSI) 

and clustering using a graph-based approach implemented in Seurat with the FindClusters 
function. We performed batch effect correction using Harmony prior to clustering again 

(Extended Data Fig. 6g,h). To define cluster identities, we performed integration with our 

scRNA-Seq dataset using the FindTransferAnchors function implemented in Seurat.

For pseudotime ordering of single cell ATAC profiles, we defined the patient with the 

highest CytoTRACE score (MM6) as the starting point and the normal donor plasma cells 

as the end point of the trajectory (Fig. 5e). To predict cis-regulatory interactions we defined 

peak-to-gene linkage in ArchR. A correlation cutoff of 0.45 and a resolution of 1 were 

selected.

Differential motif accessibility was investigated using the R package ‘chromVAR’31. We 

identified a set of background peaks that were matched in GC-content and accessibility and 

calculated bias-corrected deviations and z-scores. Motifs were imported from the JASPAR 

2018 database and differential motif accessibility was determined specifying MM and ND 

plasma cells as groups for comparison based on z-scores.

For peak annotation in aggregated scATAC data, samples from individual patients where 

greater than 50 cells were retained were collapsed, downsampled to obtain comparable 

numbers of reads and analyzed using the nfcore/atacseq pipeline v1.0.0 with the ‘--

narrowPeak’ parameter71 (Extended Data Fig. 7a–c). To annotate chromatin states, 

we obtained ChromHMM annotations for GM12878 cells from ENCODE. GM12878 

ChromHMM states were intersected with the ATAC-Seq peaks using bedtools intersect.

For gene-enhancer relationships, we used annotations from GREAT with default settings9 

where GREAT assigns each gene a regulatory domain consisting of a basal domain that 
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extends 5 kb upstream and 1 kb downstream from its transcription start site, and an 

extension upstream and downstream up to the basal regulatory domain of the nearest 

gene within 1 Mb. GREAT further refines the assignment using curated experimentally 

determined regulatory domains.

We further implemented the Activity-by-Contact model to predict enhancer-gene 

interactions30. To this end, publicly available H3K27 acetylation ChIP-Seq data were 

downloaded from the European Nucleotide Archive (Accession Number PRJEB2560528 

for patient samples, PRJNA60868272 for normal plasma cells) and peaks were called using 

the nfcore/chipseq pipeline v1.0.0 (https://github.com/nf-core/chipseq) with default settings. 

CUT&TAG data for H3K27ac were generated for MOLP2 as previously described73. 

Expression data was provided as average logcounts from single-cell RNA-Seq. The ABC 

score was calculated using average HiC data provided by the package and default options. 

Elements with an ABC score of below 0.02 were discarded.

The R package ‘Cicero’ was used to define co-accessibility of genomic regions based on 

the scATAC data74. A co-accessibility cutoff of 0.25 was chosen and only connections with 

the respective TSS were selected using the ‘viewpoint’ feature. The R package ‘GVIZ’ was 

used for visualization. For comparison, double elite GeneHancer tracks were imported from 

UCSC and enhancers linked to CXCR4 by GREAT are shown. For visualization of the 

CXCR4 locus, publicly available IRF4 Chip-Seq data were downloaded from the European 

Nucleotide Archive (Accession Number PRJEB25605) for comparison and bigwig files 

were generated using the nfcore/chipseq pipeline v1.0.071.

Bed files for specific subsets of peaks were given as input to deeptools (v3.0.2) with 

normalized bigwig files. A matrix was constructed using the ‘computeMatrix’ function with 

the following parameters: ‘--referencePoint center -a 2000 -b 2000 --missingDataAsZero 

--skipZeros’. Regions +/− 2 kb around the peak center were selected for visualization and 

heatmaps were sorted by the ND sample.

Motif enrichment was assessed using the Differential ATAC-Seq toolkit (DAStk) using the 

HOCOMOCO v11 motif library. Differential MD scores were determined with a p-value 

cutoff of 0.001. Motif enrichment over background in samples treated with PVD or DMSO 

was investigated with HOMER using the findMotifsGenome.pl command.

Statistics & Reproducibility

Results were plotted and quantified using R-based packages or GraphPad Prism 8. 

Significance was calculated using the indicated statistical tests. No statistical method was 

used to predetermine sample size. No data were excluded from the analyses. For scRNA 

and scATAC experiments, low-quality cells were filtered and excluded from downstream 

analyses, as described. No attempts of replication failed. The experiments were not 

randomized. The investigators were not formally blinded to allocation during experiments 

and outcome assessment.
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Code availability

The following tools are available on github: trimmomatic, STAR aligner, HTSeq, RSEM 

and the nfcore/atacseq pipeline v1.0.0, and for downstream analysis R (v3.6.1 or 4.0), 

python (v2.7.2 or 3.6.0) and the following packages: mvoutlier (v2.1.1), PAGODA2 (v0.1.1), 

SingleR (v1.0.1), scran (1.12.1), InferCNV (1.4.0), CONICSmat (v0.0.0.1), MiXCR, 

randomFOREST (v4.6–14), SCANPY (v1.4.6), CYTOTRACE (v0.1.0), PROGENy (1.6.0), 

LandSCENT (0.99.3), SCENIC (1.1.2–2), Seurat (v3.2.1), velocyto, scvelo (v0.2.0), 

TissueEnrich (v1.4.1), Cicero (v1.2.0), chromVAR (v1.6.0), GVIZ (v1.28.3), deeptools 

(v3.0.2), ArchR (v0.9.5), edgeR (v3.32.0 ), NMF (v0.23.0), BRIE2 (v2) and MISO (v0.5.4); 

also FlowJo (v10), cytoscape (v3.8.0), GREAT (http://great.stanford.edu/public/html/), 

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp)..

Data availability

The data collected in this paper include next-generation sequencing data: The NGS data 

consist of 1) single cell RNA sequencing datasets from primary myeloma and CD45+ 

immune cells and normal donor bone marrow plasma cells and CD45+ immune cells, 

and 2) single cell RNA sequencing datasets from multiple myeloma cell line MOLP2 

treated with PVD or DMSO; 3) single-cell ATAC sequencing datasets were generated 

from primary myeloma and normal donor plasma cells; 4) bulk ATAC-sequencing datasets 

from myeloma cell line MOLP2 treated with PVD or DMSO and 5) CUT&Tag data for 

H3K27ac from myeloma cell line MOLP2 treated with PVD or DMSO. FASTQ files were 

generated following Illumina sequencing and further analyzed as described below and in the 

Methods section. The scRNA and ATAC-sequencing dataset and CUT&Tag data generated 

in this study have been deposited in GEO under the accession number GSE162337. 

The cytoscape files for the final gene regulatory networks are available for download 

at the Boad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/

study/SCP1511/dynamic-transcriptional-reprogramming-leads-to-novel-immunotherapeutic-

vulnerabilities-in-myeloma).

Previously published IRF4 Chip-Seq data that were re-analyzed here are available under 

accession code PRJEB25605 from the European Nucleotide Archive. Previously published 

H3K27ac ChIP-Seq data that were re-analyzed here are available from the European 

Nucleotide Archive under accession codes PRJEB2560542 (for patient samples), and 

PRJNA608682103 (for normal plasma cells). Additionally, we used the following publicly 

available datasets: the dependency scores available through the depmap download portal 

(https://depmap.org/portal/download/); the BLUEPRINT dataset12, JASPAR motif database. 

Source data are provided with this study. All other data supporting the findings of this study 

are available from the corresponding authors on reasonable request.
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Extended Data

Extended Data Fig. 1. Sorting strategy.
a) Sorting strategy for myeloma cells and normal donor plasma cells with representative 

flow cytometry plots. CD38+CD138+ cells were sorted after EasySep enrichment of 

CD138+ cells from bone marrow or peripheral blood. b) Sorting strategy for immune cell 

subsets. CD3+, CD19+, CD14+ and CD45+Lin- cells were sorted following exclusion of 

dead cells and doublets. c) Sorting strategy for NK cells. CD56+CD16+ cells (Q1–3) were 

sorted after exclusion of dead cells, doublets, CD3+ cells and CD138+ cells.
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Extended Data Fig. 2. Quality assessment and filtering of single cell RNA data.
a) Distribution of library size (i), number of detected genes (ii), percentage of counts 

mapping to mitochondrial genes (iii), and percentage of counts mapping to house-keeping 

genes (HKGs) (iv) per cell. b) Scatter plot depicting principal component analysis using 

the top two dimensions. The PCA was performed on the four features depicted in a) for 

all cells in the unfiltered dataset. The outliers, highlighted in orange, were identified using 

the mvoutlier package. c) The distribution of features shown in a) after filtering out cells 

identified as outliers. d) Scatter plot depicting expression frequency vs mean read counts per 

gene in the filtered dataset. e) Density plot showing the contribution of various technical 

factors (timepoint, run date, individual, total features, total counts, percentage of counts 

mapping to mitochondrial genes, and percentage of counts mapping to house-keeping genes 

(HKGs)) to the total variation observed in the dataset.
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Extended Data Fig. 3. Characterization of scRNA-Seq dataset of primary myeloma cells.
a) Patient characteristics: Genetic aberrations detected by FISH. b) Copy number profiles of 

myeloma patients were inferred from scRNA expression data using InferCNV. Normal donor 

plasma cells served as a control. See the enlarged version in Supplementary Information. 

c-e) Random forest model identifying genes that best discriminate myeloma from normal 

plasma cells. c) Plot depicting the error vs number of trees used by random forest model on 

malignant (green), non-malignant (red) and combined (black) cells. d) Relative importance 

of each gene in the model (mean decrease in Gini coefficient). e) Confusion matrix 

showing classification and error rates during training of the model, for prediction on the 

training set (predict_train) and the test set (predict_test). f) Detailed heatmap showing 

classification of malignant and normal plasma cells based on CNVs, CDR3 sequence, 

expression of translocation targets, and genes identified by random forest (RF) model that 

Frede et al. Page 22

Nat Cell Biol. Author manuscript; available in PMC 2022 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



best discriminate between normal and malignant cells, and composite malignancy score for 

patient MM5. g) tSNE plots showing PAGODA2 clustering highlighting cells from patient 

MM5 with malignancy scores ≥ 1 or < 1. h) Heatmap with relative expression of marker 

genes for individual patients in single myeloma and normal plasma cells.

Extended Data Fig. 4. Transcriptional diversity is increased in MM.
a) tSNE plots showing expression of selected genes not normally expressed in plasma cells 

(log2-transformed counts). Depicted are CD20 (MS4A1), the B Lymphoid Tyrosine Kinase 
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BLK, usually expressed in earlier stages of B cell development and the myeloid restricted 

serine protease C (CTSC). b) Heatmap with lineage scores from single cell RNA-Seq 

derived datasets from the Human Cell Atlas in single myeloma cells from patients, single 

plasma cells from normal donors or single B cells. HSC, hematopoietic stem cell; CLP, 

common lymphoid progenitor; CMP, common myeloid progenitor; MKP, MK progenitor; 

ERP, ER progenitor; CD34 Gran, CD34+ Granulocyte progenitor, MixLin, mixed lineage 

progenitor; PreB, Pre-B cell; ProB, Pro-B cell; PC, plasma cell. c) Heatmap showing relative 

expression of individual genes from different lineages from the Human Cell Atlas dataset in 

single myeloma cells, single normal donor plasma cells or single B cells. d) UMAP colored 

by patient. The enlarged heatmaps in b-c are provided in Supplementary Information. e) 

RNA velocity estimates of single myeloma cells and normal donor plasma cells projected 

onto two-dimensional UMAP. Normal donor plasma cells are indicated in red. f) Cells 

colored based on cell cycle phase. g) Number of genes detected per cell in single myeloma 

vs normal donor plasma cells. Boxplots show the median and interquartile range, whiskers 

extend to 1.5x the interquartile range. n= 1,162 cells. p < 2.2e-16 by two-sided Wilcoxon-

test. h,i) Entropy is increased in myeloma vs normal donor plasma cells. Boxplots show the 

median and interquartile range, whiskers extend to 1.5x the interquartile range. n= 1,162 

cells. p < 2.2e-16 by two-sided Wilcoxon-test. j) Validation of entropy using an alternative 

protein-protein interaction network. Boxplots show the median and interquartile range, 

whiskers extend to 1.5x the interquartile range. n= 1,162 cells. p < 2.2e-16 by two-sided 

Wilcoxon-test. k) Predicted ordering by CytoTRACE, which orders MM cells based on 

their developmental potential from most mature (lowest values) to most immature (highest 

values). Boxplots show the median and interquartile range, whiskers extend from min to 

max. l) tSNE plots showing expression of plasma cell lineage transcription factors XBP1, 
IRF4, PRDM1, FOS, POU2AF1 and ZBTB20 (log2-transformed counts) in single myeloma 

cells, normal donor plasma cells and B cells.
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Extended Data Fig. 5. Gene regulatory network activity in different cell types.
a-d) Gene regulatory network activity for different cell types was determined from the 

BLUEPRINT dataset. a) Gene expression in normal plasma cells. b) Gene expression 

in hematopoietic stem cells (HSCs). c) Gene expression in CLP (common lymphoid 

progenitor) population. d) Gene expression in macrophages. e) Network layouts for normal 

hematopoiesis based on the BLUEPRINT dataset (top) and based on our single-cell RNA 

data (bottom) illustrating extensive rewiring, gain of new connections and changes in 

relative activity. Edges are colored based on regulon activity where high activity is indicated 
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in red, low activity in blue. Target genes are depicted in white, transcription factors which 

are not among regulons are shown in green. f) Changes in regulon activity in myeloma 

compared to normal donor plasma cells are projected onto the network. Transcription factors 

with the largest difference in regulon activity in myeloma compared to normal donor plasma 

cells are highlighted in insets. g) tSNE plots showing regulon activity (area under the curve, 

AUC) of plasma cell lineage transcription factors XBP1, IRF4, PRDM1, and FOS in single 

myeloma and normal plasma cells.
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Extended Data Fig. 6. Quality assessment and filtering of single cell ATAC data.
a) Filtering of single cell ATAC profiles based on TSS enrichment and number of unique 

nuclear fragments. b) Fragment length distribution of filtered scATAC profiles showing 

characteristic distribution with nucleosome-free region and mononucleosome peaks. c) 

TSS enrichment after filtering per sample. d) Number of unique fragments per sample. 

e,f) tSNE plot colored by clusters (e) or individual (f). g,h) tSNE plots following batch 

effect removal by Harmony colored by clusters (g) or individual (h). i-k) Defining cluster 

identities following integration with scRNA-seq data. i) tSNE plot colored by predicted cell 

type identities. j) tSNE plot showing cell type identities by cluster. k) Heatmap showing 

confusion matrix for predicted cell type identities by cluster. l-o) Tracks with aggregated 

ATAC profiles for each cluster for marker genes SDC1, LYZ, MS4A1 and FCGR3A, 

respectively. p-s) tSNE plots colored by gene scores for marker genes SDC1, LYZ, MS4A1 
and FCGR3A, respectively.
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Extended Data Fig. 7. Annotation of peaks from aggregated scATAC data.
a) Processing of scATAC profiles. b) Intersection of peaks in aggregate scATAC samples 

showing the overlap of peaks between MM and normal donor (ND) samples. c) Number 

of peaks significantly different by DESeq2 enriched in ND or MM (FDR ≤ 0.1, absolute 

log2FC ≥ 1). d) Heatmap showing differentially accessible peaks from c) in ND and MM, 

sorted by the ND sample. e) ChromHMM state annotation in aggregate scATAC samples. 

Depicted is the fraction of peaks in each of the indicated states. f) Number of peaks 

in ChromHMM state 13 corresponding to heterochromatin. **p = 0.0029 by two-sided 
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t-test. g) Fraction of peaks in indicated genomic regions. h) Boxplot comparing distance 

to TSS in ND vs MM. ****p < 2.2e-16 by two-sided Wilcoxon test. Boxplots show 

the median and interquartile range, whiskers extend to 1.5x the interquartile range. n= 

46,935 peaks and 68,752 peaks, respectively. i) Heatmap showing accessibility of enhancers 

(n=15,748) associated with the top multi-enhancer genes, sorted by the ND sample. j) 

Barplot showing genes with ≥ 2 enhancer interactions by ABC model. k) Heatmap showing 

multi-enhancer genes by ABC model (n=16,635), sorted by the ND sample. l) Barplot 

showing gene set enrichment analysis for multi-enhancer genes in MM by ABC model. 

m) Barplot showing differential motif enrichment analysis of the single cell ATAC-Seq 

dataset comparing myeloma cells with normal donor plasma cells. Shown are the top 40 

differentially enriched transcription factor motifs ordered by FDR. n) Venn diagram showing 

overlap of differentially enriched motifs and rewired transcription factors determined by 

DyNet algorithm.
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Extended Data Fig. 8. Alternative splicing following treatment in MM.
a) Quantification of exon inclusion/exclusion ratio (percent of spliced in, psi). Volcano 

plot showing differential splicing at C5D1 vs screening timepoints with FDR < 0.05. b) 

Barplot showing gene set enrichment analysis of differentially spliced transcripts. c) UMAP 

colored by Louvain clusters based on calculated psi (percent of spliced in) values. d) 

psi-based UMAP colored by individual. e) psi-based UMAP colored by timepoint. f) Violin 

plots showing the single cell distribution of logit (percent spliced in) values at screening 

and C5D1 for selected differentially spliced transcripts. Boxplots show the median and 
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interquartile range, whiskers extend to 1.5x the interquartile range. n= 1,374 cells. **** 

p ≤ 0.0001 and * p ≤ 0.05 by two-sided Wilcoxon test. g-j) Miso plots visualizing splice 

junctions and potential exon skipping events in differentially spliced transcripts for TSC1 
(g), CD200 (h) and CALU (i) as well as SLAMF7 (j). Splice probabilities are shown on the 

right.

Extended Data Fig. 9. Transcriptional diversity following treatment.
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a) Number of genes expressed in primary MM cells before and after treatment (p<2.2e-16 

by two-sided t-test). Boxplots show the median and interquartile range, whiskers extend to 

1.5x the interquartile range. n= 1,374 cells. b) Bar graph showing relative proportion of 

cells in each cell cycle phase at screening and C5D1. c) Shown are the lineage TF regulons 

downregulated and upregulated upon treatment. d) Change in regulon activity of lineage 

TFs upon treatment. e,f) GO-term enrichment of ATAC-Seq peaks gained (e) and lost (f) 

in MOLP2 cells following 72h treatment with PVD. g) Gene set enrichment analysis of 

the top 500 genes gaining enhancers following treatment with PVD. h) Genes with ≥ 5 

enhancer interactions by ABC model. i) Gene set enrichment analysis of genes gaining 

enhancer interactions following treatment with PVD by ABC model. j) Top rewired TFs 

with differentially accessible motifs upon treatment.
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Extended Data Fig. 10. Surface marker expression in MM.
a) Genes upregulated upon treatment. Shown is a barplot with log2 fold change values 

compared to screening timepoint. b) Motif enrichment in differential ATAC-Seq peaks 

in MMCL MOLP2 after PVD treatment (right), comparing to untreated (left). p values 

are calculated using binomial test. c-e) Live cell counts following 72h of treatment with 

pomalidomide (Pom), bortezomib (Bor), dexamethasone (Dex) and combination of all three 

drugs (PVD) in MM cell lines MOLP2 (c), MM1.S (d) and OPM2 (e) as a percentage 

of total cell numbers. f,g) Quantification of CXCR4 surface levels by flow cytometry 

following treatment with pomalidomide (Pom), bortezomib (Bor), dexamethasone (Dex) and 

combination of all three drugs (PVD) in myeloma cell lines MOLP2 (f) and MM1.S (g). 

c-g) Significance was assessed using a two-sided t-test with Welch’s correction, with * 

p ≤ 0.05 and **** p ≤ 0.0001. Data are presented as mean +/− SD, n=3 replicates. h,i) 

Cell viability following treatment with CXCR4 inhibitors BKT140 (h) and Plerixafor (i) 

following pre-treatment with PVD in MMCL MOLP2. Data are presented as mean +/− SD, 

n=3 replicates. n.s. p>0.05, * p ≤ 0.05, *** p ≤ 0.001 and **** p ≤ 0.0001 by two-sided 

t-test.
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Fig. 1: Co-expression of multiple transcriptional signatures in MM cells.
a) Schematic illustrating experimental setup. b) T-stochastic network embedding (tSNE) of 

the processed single cell RNA-Seq dataset color-coded by clusters identified by PAGODA2. 

c) tSNE plot color-coded by individual. d) Cell type annotation based on 21 immune 

cell populations from the BLUEPRINT dataset. e) Classification of malignant and normal 

plasma cells based on CNVs, CDR3 sequence, expression of translocation targets, and genes 

identified by random forest (RF) model that best discriminate between normal and malignant 

cells. f) Composite malignancy score to distinguish myeloma cells from normal plasma 
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cells. Cells from normal donors are aggregated to facilitate comparison. Boxplots show 

median and interquartile range, whiskers extend to 1.5x interquartile range (n= 1,162 cells. 

ns p>0.05 and **** p ≤ 0.0001 by Wilcoxon test compared to ND). g) Co-expression of 

multiple established myeloma gene expression classifiers in single myeloma cells.
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Fig. 2: Transcriptional heterogeneity in single myeloma cells.
a) tSNE plot colored by cell cycle phase predicted by SEURAT. b) Stacked bar plot 

showing the relative proportion of cells in each cell cycle phase per cluster. c) Heatmap 

showing expression scores for recurrent heterogeneity programs in MM patients (scores 

identified across 198 cell lines reflecting 22 cancer types15). d) Consensus matrix depicting 

pairwise similarities between NMF programs ordered by hierarchical clustering. Six clusters 

corresponding to the six identified programs and assignment of patients are indicated 

on top. Functional annotation and selected marker genes are shown below. e) Heatmap 
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showing the top 50 genes based upon the highest NMF scores selected as signature genes 

for each program with selected genes labeled. f) Functional enrichment (−log10 FDR) of 

heterogeneity programs with six annotated gene sets. g) Heatmap showing expression scores 

for the six heterogeneity programs identified in d). The enlarged heatmaps in c and g are 

provided in Supplementary Information.
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Fig. 3: Lineage infidelity - transcriptional states diverge towards immature states.
a) Heatmap showing lineage scores for selected cell types from the BLUEPRINT dataset 

in single myeloma cells from patients, plasma cells from normal donors or B cells. 

CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent 

progenitor; MEP, megakaryocyte-erythroid progenitor; PC, plasma cell. b) Heatmap of 

single myeloma cells from patients or normal donor plasma cells showing expression of 

genes corresponding to selected cell types from the BLUEPRINT dataset. The enlarged 

heatmaps in a-b are provided in Supplementary Information. c,d) RNA velocity estimates, 

root and end states projected onto UMAP. Root and endpoints are circled. e) CytoTRACE 

values showing distribution of differentiation states from most immature (highest values) 

to most mature (lowest values). f) Expression of marker gene LAMP5 correlated with 

immaturity (log2-transformed counts). g) Gene set enrichment analysis of genes correlated 
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with high CytoTRACE (associated with immaturity). h,i) Signaling activity scores across 

single cells for MAPK (h) and PI3K (i) signaling pathways, projected on UMAP.
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Fig. 4: Differential regulon activity and transcriptional rewiring in MM underlie alternate 
differentiation states.
a) Gene regulatory network (GRN) constructed based on transcriptional modules present in 

normal hematopoiesis. Highlighted are plasma cell module and its dominating transcription 

factors. b) Gene expression in normal donor plasma cells (top) and myeloma cells (bottom) 

projected onto normal hematopoiesis network. The plasma cell module is highlighted. c) 

GRN constructed exclusively from myeloma cells (red) overlayed with GRN from normal 

hematopoietic cells (green). d) Regulons, i.e. transcription factors with their target genes, 

as part of network layouts in normal hematopoiesis (Blueprint, top) and myeloma (bottom). 
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Regulons were chosen based on rewiring score (e). e, f) Transcription factors (e) or CD 

markers (f) ordered by rewiring score determined by the DyNet algorithm. g-k) Dependency 

data were downloaded from the Cancer Dependency Map (https://depmap.org/portal/). g) 

Lineage dependency score in MM cell lines for top rewired TFs in plasma cells. Data are 

presented as mean values +/− standard error. n=20 cell lines. h) Scaled dependency scores 

for 675 cell lines from 21 different lineages ordered by dependency for XBP1. Myeloma 

cell lines (plasma cell lineage) are highlighted in pink. i) Venn diagram showing overlap 

between lineage dependency genes and rewired TFs. Shown are TFs in overlap. j) TFs in 

overlap between lineage dependencies and rewired TFs ordered by lineage dependency score 

in MM cell lines. Data are presented as mean values +/− standard error. n=20 cell lines. i,j) 

Lineage TFs are highlighted in pink. k) Scaled dependency scores for 675 cell lines from 21 

different lineages ordered by dependency for TAL1. Myeloma cells (plasma cell lineage) are 

highlighted in pink.
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Fig. 5: Transcriptional reprogramming in MM and associated changes in chromatin accessibility 
and enhancer rewiring.
a) Schematic illustrating experimental setup. b) tSNE plot showing clustering of single 

myeloma cells colored by clusters based on single cell ATAC (scATAC). c) tSNE plot 

showing clustering of single myeloma cells colored by patient based on single cell ATAC 

(scATAC). d) Number of associated enhancers per gene for genes associated with ≥ 

10 enhancers in normal donor plasma cells or patient-derived myeloma cells based on 

association by GREAT. Boxplots show the median and interquartile range, whiskers extend 

to 1.5x the interquartile range. n=1,020 and 1,159 genes, respectively. p=5.5e-08 by two-

Frede et al. Page 46

Nat Cell Biol. Author manuscript; available in PMC 2022 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sided Wilcoxon test. e) Pseudotime trajectory. f) Heatmap showing correlation of gene 

scores with pseudotime. Pseudotime increases from left to right. g) Heatmap showing 

correlation of motif accessibility with pseudotime. Pseudotime increases from left to right. 

h) tSNE plots of single cell ATAC-Seq colored based on bias-corrected z-scores of selected 

rewired transcription factors that bind differentially accessible motifs. Shown are TEAD4, 

FOXO3, MEF2A and IRF8. i, j) Peak-to-gene-linkage determined based on integrated single 

cell ATAC for TEAD4 locus (i) and ELF3 locus (j). k) Model of developmental potential and 

transcriptional diversity in MM.
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Fig. 6: Treatment reduces developmental potential while increasing regulon activity.
a-d) Comparison of primary MM cells on treatment (C5D1) compared to screening 

timepoint. a) Exon inclusion/exclusion ratio (percent of spliced in, psi) quantified at 

screening vs. C5D1 for transcripts with low, medium or high splicing probability. Boxplots 

show the median and interquartile range, whiskers extend to 1.5x the interquartile range. 

n=1,374 cells. **** p ≤ 0.0001 by two-sided Wilcoxon test. b) CytoTRACE values in 

MM cells before and after treatment (p<2.2e-16 by two-sided t-test). Boxplots show the 

median and interquartile range, whiskers extend to 1.5x the interquartile range. n= 1,374 

Frede et al. Page 48

Nat Cell Biol. Author manuscript; available in PMC 2022 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells. c) Number of regulons downregulated (160/365) and upregulated (n= 205/365) upon 

treatment. d) Change in regulon activity upon treatment. Selected lineage and non-lineage 

transcription factors are highlighted. e-g) MMCL MOLP2 was treated with pomalidomide, 

bortezomib and dexamethasone (PVD) for 72h prior to single cell RNA sequencing. e) 

CytoTRACE values for cells treated with PVD or DMSO (p<2.2e-16 by two-sided t-test). 

Boxplots show the median and interquartile range, whiskers extend to 1.5x the interquartile 

range. n= 192 cells. f) Regulons downregulated and upregulated in cells treated with PVD 

compared to DMSO. g) Change in regulon activity in cells treated with PVD compared to 

DMSO. Selected lineage TF regulons are highlighted. h) ATAC sequencing was performed 

on MOLP2 cells after 72h of treatment with PVD or DMSO. i) Venn diagram illustrating 

overlap of peaks in cells treated with DMSO or PVD. j) Number of peaks gained and lost 

after treatment determined by DESeq2. k) Number of genes associated with ≥ 10 enhancers 

in cells treated with DMSO or PVD by GREAT. l) Motif enrichment in MOLP2 cells after 

72h of treatment with PVD vs DMSO. Enriched TF motifs are highlighted in red.
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Fig. 7: Inducible and stable expression of putative immunotherapy targets on myeloma cells.
a) Expression of selected surface markers not found in normal plasma cells in single 

myeloma (MM) cells or normal donor plasma cells (ND). b) Deconvolution of surface 

marker expression in normal donor plasma cells, B cells and myeloma cells from patient 

MM1 at screening and at cycle 5 day 1 (C5D1) based on enrichment of surface marker 

signatures derived from BLUEPRINT dataset. c,d) CXCR4 mRNA (c) and surface protein 

(d) expression in single myeloma cells from patient MM1 before treatment and at C5D1. 

e) Co-accessibility determined based on single cell ATAC data showing the CXCR4 locus. 
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Aggregated scATAC tracks show chromatin accessibility upstream of CXCR4 at screening 

and C5D1 with differential peaks highlighted in grey. IRF4 motifs in peaks and IRF4 

ChIP peaks from KMS12BM are displayed below. f) Motif enrichment of IRF4 and IRF 

composite elements in ATAC-peaks in MMCL MOLP2 after 72h of treatment. p values 

calculated using binomial test. g) IRF4 regulon activity in primary MM cells (p=1.3e-05 

by two-sided t-test). Boxplots represent the median and interquartile range, whiskers extend 

to 1.5x the interquartile range. n= 1,374 cells. h) Treatment of MOLP2 myeloma cells 

with dexamethasone (Dex) or combination of dexamethasone, pomalidomide, bortezomib 

(PVD) resulting in upregulation of CXCR4 at the cell surface. i) Quantitative analysis of 

CXCR4 surface protein expression changes on OPM2 myeloma cells with drug exposure 

by flow-cytometry (MFI = mean fluorescence intensity). Data are presented as mean +/− 

SD, n=3 independent experiments. Significance was assessed using an unpaired two-sided 

t-test with Welch’s correction; ** p ≤ 0.01. j) Drug removal resulting in downregulation 

of CXCR4 surface expression in MOLP2 cells. k,l) Cell viability following treatment with 

CXCR4 inhibitors BKT140 (k) and Plerixafor (l) following pre-treatment with PVD in 

MMCL OPM2. Data are presented as mean +/− SD, n=3 independent experiments. ** p ≤ 

0.01 and *** p ≤ 0.001 by unpaired two-sided t-test.
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