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to investigate levels and phenotypes of myeloid cells in 
peripheral blood (n = 23) and tumor microenvironment of 
primary breast cancer patients (n = 7), compared with blood 
from healthy donors (n = 21) and paired non-tumor normal 
breast tissues from the same patients (n = 7). Using multi-
color flow cytometric assays, we found that breast cancer 
patients had significantly higher levels of tumor-infiltrating 
myeloid cells, which comprised of granulocytes (P = 0.022) 
and immature cells that lack the expression of markers for 
fully differentiated monocytes or granulocytes (P = 0.016). 
Importantly, this expansion was not reflected in the periph-
eral blood. The immunosuppressive potential of these cells 
was confirmed by expression of Arginase 1 (ARG1), which 
is pivotal for T-cell suppression. These findings are impor-
tant for developing therapeutic modalities to target mecha-
nisms employed by immunosuppressive cells that generate 
an immune-permissive environment for the progression of 
cancer.

Keywords  Myeloid cells · Myeloid-derived 
suppressor cells · Neutrophils · Breast cancer · Tumor 
microenvironment · Circulation

Abbreviations
APC	� Antigen-presenting cell(s)
ARG1	� Arginase 1
DC	� Dendritic cell(s)
e-MDSC	� Early-stage myeloid-derived suppressor 

cell(s)
ED	� Enzyme disaggregation
ER	� Estrogen receptor
FMO	� Fluorescence minus one
G-MDSC	� Granulocytic myeloid-derived suppressor 

cell(s)
HD	� Healthy donor(s)

Abstract  Pathological conditions including cancers lead 
to accumulation of a morphological mixture of highly 
immunosuppressive cells termed as myeloid-derived sup-
pressor cells (MDSC). The lack of conclusive markers to 
identify human MDSC, due to their heterogeneous nature 
and close phenotypical and functional proximity with other 
cell subsets, made it challenging to identify these cells. 
Nevertheless, expansion of MDSC has been reported in 
periphery and tumor microenvironment of various cancers. 
The majority of studies on breast cancers were performed 
on murine models and hence limited literature is available 
on the relation of MDSC accumulation with clinical set-
tings in breast cancer patients. The aim of this study was 
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HD(F)	� Healthy donor female(s)
HD(M)	� Healthy donor male(s)
IM-MDSC	� Immature myeloid-derived suppressor 

cell(s)
MDSC	� Myeloid-derived suppressor cell(s)
M-MDSC	� Monocytic myeloid-derived suppressor 

cell(s)
N/G-MDSC	� Neutrophil/granulocytic myeloid-derived 

suppressor cell(s)
NK	� Natural killer
NT	� Normal tissue
PBC	� Primary breast cancer
PBS	� Phosphate buffered saline
PMN-MDSC	� Polymorphonuclear myeloid-derived sup-

pressor cell(s)
PR	� Progesterone receptor
TAN	� Tumor-associated neutrophil(s)
TIL	� Tumor-infiltrating lymphocyte(s)
TME	� Tumor microenvironment
Treg	� Regulatory T cell(s)
TT	� Tumor tissue

Introduction

Breast cancer is the most commonly diagnosed cancer 
and the leading cause of cancer-related deaths in females 
worldwide [1]. The striking mortality rates are caused by 
metastasis to distant regions from the primary tumor, while 
recent advances in improving survival rates are attributed 
to early detection through screening and initiation of neo-
adjuvant therapy in patients [2]. The developments of novel 
approaches to identify prognostic markers for patients who 
are at high risk of developing breast cancer are, therefore, 
of cardinal significance.

Human carcinomas induce an immune response in the 
tumor microenvironment (TME) [3]. However, emerging evi-
dence has established the role of different immunosuppres-
sive cells, such as myeloid-derived suppressor cells (MDSC) 
and regulatory T cells (Treg), in cancer bearing hosts. MDSC 
are a heterogeneous population of myeloid progenitor and 
activated myeloid cells, halted at varying stages of maturation 
and differentiation that exhibit a potent immunosuppressive 
activity against T-cell responses [4]. Myeloid cells gener-
ated in bone marrow differentiate into mature granulocytes, 
macrophages or dendritic cells. However, pathological condi-
tions such as cancers result in accumulation of a morphologi-
cal mixture of granulocytic and monocytic MDSC in TME 
and circulation through various factors produced by tumors 
or activated T cells [5]. The heterogeneous nature of MDSC 
together with functional and phenotypical overlap with other 
myeloid populations has, therefore, made it challenging to 
identify these cells. The majority of studies on MDSC in 

breast cancer have been carried out on murine models by 
developing spontaneous tumors due to predisposing muta-
tions leading to breast cancer development or through trans-
plantation of tumors in xenografts [6]. Limited data are avail-
able for the conclusive phenotypical profiling of myeloid 
cells in circulation and the TME of breast cancer patients and 
their correlation with clinical settings.

MDSC in humans are commonly defined as cells which 
express common myeloid markers CD33 and CD11b but 
lack the expression of HLA-DR, and are further divided 
into monocytic MDSC (M-MDSC) or granulocytic MDSC 
(G-MDSC) based on the expression of CD14 and CD15, 
respectively, while immature MDSC (IM-MDSC) or early-
stage MDSC (e-MDSC) lack CD14 and CD15 expression 
[7]. MDSC exert their suppressive role through increased 
production of suppressive factors such as Arginase 1 
(ARG1), nitric oxide and reactive oxygen and/or reactive 
nitrogen species along with modulating the production of 
various cytokines [8]. Several studies have shown the phe-
notypical and functional similarities between G-MDSC 
and neutrophils [9]. The term G-MDSC has recently been 
revised to polymorphonuclear MDSC (PMN-MDSC) 
to differentiate between steady-state neutrophils and 
G-MDSC, which have fewer granules and increased ARG1 
and CD11b expression [7]. Immunosuppression by tumor-
associated neutrophils (TAN) uses similar mechanisms as 
MDSC and elevated neutrophil to lymphocyte ratio (NLR) 
is considered as a poor prognostic factor in cancer patients 
[10].

In this study, we investigated the phenotypes and lev-
els of myeloid cells in circulation and tumors from pri-
mary breast cancer (PBC) patients, and compared their 
levels with peripheral blood from healthy donors and 
paired, adjacent non-tumor breast tissue, respectively. We 
found that the immune profile of the TME of breast cancer 
patients is not reflected in circulation; there was an expan-
sion of granulocytic and immature myeloid cells in the 
tumors but not in the periphery. Furthermore, there was no 
association between levels of circulating myeloid cells and 
patients’ TNM stage or histological grade. This disparity in 
peripheral blood and tumors provides a better understand-
ing of the role of myeloid cells in the TME of breast can-
cer patients, and therefore, offers new facets for the devel-
opment of therapeutic modalities to target the expanded 
immunosuppressive populations in the TME.

Materials and methods

Ethical approval and study subjects

The study was conducted with an ethical approval from Al 
Ain Medical District Research Ethics committee, Al Ain, 
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United Arab Emirates (Protocol No. 13/23-CRD 244/13). 
All participating individuals provided written informed 
consent before sample collection. Peripheral blood from 
healthy donors (HD, n = 21) and primary breast cancer 
patients (PBC, n = 23) were collected in heparinized tubes 
(200 IU). Tumor and paired, adjacent non-tumor breast tis-
sue specimens were collected from breast cancer patients 
(n = 7) following surgery. Patients did not receive any 
treatment prior to sample collection. Table  1 shows the 
clinical and pathological characteristics of all participating 
individuals.

Enzyme disaggregation of tumor and normal tissues 
for cell isolation

Enzyme disaggregation (ED) of fresh tumor and normal 
tissues from breast cancer patients, collected in cold RPMI-
1640 media was performed on a rollover mixer at 37 °C for 
60  min. Briefly, tissues were first washed with phosphate 
buffered saline (PBS) and then mechanically cut into small 
fragments (2–4 mm) using a surgical scalpel. Tissues were 
then suspended into RPMI-1640 media with 1% Penicillin/
Streptomycin and an enzyme cocktail, consisting of 1 mg/
ml Collagenase (Sigma–Aldrich, Dorset, UK), 100  µg/ml  

Hyaluronidase type V (Sigma–Aldrich) and 30  IU/ml of 
Deoxyribonuclease I (Sigma–Aldrich). Cell suspension 
was then passed through a 100 µm BD Falcon cell strainer 
(BD Biosciences, Oxford, UK) to remove debris and aggre-
gates. Cells were then resuspended in RPMI-1640 media 
enriched with 10% FCS and 1% Penicillin/Streptomycin 
(complete medium) after washing with RPMI-1640 media.

Surface and intracellular staining of whole blood 
for flow cytometric analyses

Following collection, all blood samples were stained on 
the same day. 200  µl blood from each sample was used 
for whole blood staining for MDSC markers; 100 µl used 
as nonstained control and 100 µl stained for each sample. 
Mouse anti-human CD33-APC (Clone WM53), mouse 
anti-human CD11b-APC-Cy7 (Clone ICRF44), mouse 
anti-human HLA-DR-PE (Clone G46-6), mouse anti-
human CD14-PerCP-Cy5.5 (Clone M5E2) and mouse anti-
human CD15-PE-Cy7 (Clone HI98) antibodies were added 
to the stained samples. All antibodies used were purchased 
from BD Biosciences. Tubes were incubated at 4 °C for 
25 min. RBC lysis buffer (BD FACS Lysing solution) was 
then added to each tube and incubated in the dark for 5 min. 
After washing samples twice with PBS, cells were fixed 
and permeabilized using fixation/permeabilization buffer 
(eBioscience, San Diego, USA), vortexed thoroughly and 
incubated at 4 °C for 45  min. Samples were then washed 
twice with permeabilization wash buffer (eBioscience) and 
stained with sheep anti-human/mouse Arginase 1-FITC 
antibody (ARG1; R&D Systems, Minneapolis, USA) for 
intracellular staining and incubated at 4 °C for 25 min, fol-
lowed by two washes with wash buffer (eBioscience). The 
cell pellet was resuspended in 300  µl of flow cytometry 
staining buffer (eBioscience) and analyzed on BD FACS-
Canto II flow cytometer (BD Biosciences, San Jose, USA). 
Fluorescence minus one (FMO) controls were used to iden-
tify positive populations for ARG1 (Fig.  1) and all other 
markers (data now shown). However, day to day variations 
in measurements cannot be fully excluded.

Staining of tissue‑infiltrating immune cells for flow 
cytometric analyses

Staining of immune cells extracted by ED was performed 
by blocking the Fc receptor using FcR Blocker (Miltenyi 
Biotec, Bergisch Gladbach, Germany). 7AAD viability 
dye (eBioscience) was then added, followed by stain-
ing with mouse anti-human CD11b-APC-Cy7 (BD Bio-
sciences), mouse anti-human CD33-FITC (BioLegend, 
San Diego, USA), mouse anti-human HLA-DR-PE (BD 
Biosciences), CD14-PE-Cy7 (eBioscience) and mouse 
anti-human CD15-APC (BioLegend). After incubation at 

Table 1   Characteristic features of study populations

HD healthy donor, PBC primary breast cancer
a  Data shown represent median (range)
b   Samples taken from patients for investigating tissue-infiltrating 
myeloid cells

HD PBC

Number 21 23
Age (median) 29 (19–51)a 48 (27–65)a

Gender (Male: female) 9:12 0:23
TNM stage
 I 9 (3)b

 II 11 (3)b

 III 3 (1)b

Tumor size (cm) 2.2 (0.8–4.5)a

Histological grade
 Well/moderate 11
 Poor/undifferentiated 12

Lymph node invasion 9
Estrogen receptor (ER) positive/negative 16/7
Progesterone receptor (PR) positive/

negative
13/10

Triple Negative 2
Ki-67 expression
 ≤30% 10
 >30% 8
 No information 5
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4 °C for 25  min, samples were washed twice with PBS 
and the pellets were resuspended in 300  µl flow cytom-
etry staining buffer (eBioscience) and analyzed using BD 
FACSCanto II flow cytometer. Some tumor-infiltrating 
immune cells were also stained for ARG1 expression, 
as described above, with the addition of Fixable Viabil-
ity Dye eFluor® 780 (FVD780; eBioscience) to gate live 
cells. Flow cytometric data were analyzed using BD 
FACSuite software (BD Biosciences).

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
5.0 software (GraphPad Software, San Diego, USA). Sha-
piro–Wilk normality test followed by paired/Wilcoxon 
matched-pairs signed rank test or unpaired/Mann–Whitney 
tests were used to examine the differences within groups 
or between groups, respectively. A P value of ≤0.05 was 
considered statistically significant. The data are presented 
as means ± SEM with the levels of cells measured as 
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Fig. 1   Gating strategy of myeloid cells. Representative flow cytomet-
ric plots showing the gating strategy used to identify myeloid cells in 
peripheral blood of HD and PBC patients. Fresh whole blood from 
a PBC patient was stained for MDSC markers. CD33+ cells were 
gated first from live cells, followed by gating CD11b+ cells within 
the CD33+ parent population and then HLA-DR−/low cells from 

CD33+CD11b+ parent population. Monocytic myeloid cells were 
identified as CD14+ cells, while granulocytic myeloid cells were 
identified based on the expression of CD15. ARG1 expression in each 
subset was recorded by gating the corresponding parent populations, 
respectively. FMO controls for ARG1 staining for M-MDSC and 
N/G-MDSC are shown
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relative percentages or calculated percentages from par-
ent population(s). The relative percentage of each popula-
tion subset was multiplied by the relative percentage of its 
respective parent population and the resulting value was 
presented as calculated percentage. Flow cytometric plots 
show representative examples of the relative percentage of 
each population subset from its parent population, while 
calculated percentages of each population were used to 
compare the levels of myeloid cells between study cohorts 
as shown in the scatter plots.

Results

Myeloid cells are not expanded in peripheral blood 
of PBC patients, compared to healthy donors

In this study, we investigated levels and phenotype of cir-
culating- and tumor-infiltrating myeloid cells. Representa-
tive flow cytometric plots for the gating strategy is shown 
in Fig.  1. Previous studies described human MDSC as 
cells lacking the expression of markers for mature lym-
phocytes, monocytes, NK cells and granulocytes [11]. 
MDSC can be identified as CD33+CD11b+HLA-DR−/low 
cells and further categorized into monocytic, granulocytic 
or immature cells based on the expression or lack of 
expression of CD14 and CD15. There was no significant 
increase in the levels of circulating CD33+ cells between 
breast cancer patients and HD (HD; 78.0 ± 2.9 vs PBC; 
77.0 ± 2.9, Fig.  2a). Further analysis did not show 
any expansion in the levels of CD33+CD11b+ cells 
(HD; 74.6 ± 2.6 vs PBC; 74.3 ± 3.0; Fig.  2b) and 
CD33+CD11b+HLA-DR−/low cells in PBC patients com-
pared with HD (HD; 70.9 ± 2.4 vs PBC; 71.4 ± 3.4; Fig. 2c). 
Furthermore, PBC patients did not show any expan-
sion in the levels of CD33+CD11b+HLA-DR−/lowCD14+ 
M-MDSC (HD; 3.2 ± 0.5 vs PBC; 2.4 ± 0.4, Fig.  2d). 
Similarly, there was no difference in the levels of circulat-
ing CD15+ cells within the CD33+CD11b+HLA-DR−/low 
populations (HD; 67.1 ± 2.1 vs PBC; 68.5 ± 3.0, Fig.  2e). 
Indeed, CD33+CD11b+HLA-DR−/lowCD15+ population 
includes both neutrophils and G-MDSC due to the pheno-
typical and functional overlap between the two populations 
[12]. Thus, we referred to these cells as N/G-MDSC. Addi-
tionally, there was no significant expansion in levels of cir-
culating IM-MDSC which lacked expression of both CD14 
and CD15 (HD; 0.8 ± 0.1 vs PBC; 0.9 ± 0.2; Fig. 2f).

Cells expressing MHC class II molecule HLA-DR have 
antigen presenting properties. We compared the levels of 
CD33+CD11b+HLA-DR+ myeloid cells between cancer 
patients and HD. Although there was a reduction in lev-
els of circulating antigen-presenting cells (APC) in cancer 

patients (HD; 3.6 ± 0.5 vs PBC; 2.9 ± 0.5; Fig. 2g), the data 
did not reach statistical significance.

We also compared the levels of circulating myeloid 
cells between breast cancer patients (n = 23) and female 
healthy donors (HD(F); n = 12). As shown in Supple-
mentary Fig.  1, HD(F) had similar levels of circulat-
ing CD33+ (HD(F); 79.6 ± 3.7 vs PBC;77.0 ± 2.9), 
CD33+CD11b+ (HD(F); 76.9 ± 3.5 vs PBC;74.3 ± 3.0) 
and CD33+CD11b+HLA-DR−/low cells (HD(F); 73.3 ± 3.4 
vs PBC;71.4 ± 3.1), compared to PBC patients (Supple-
mentary Figs.  1A–C). Likewise, there was no expansion 
in circulating M-MDSC and N/G-MDSC in PBC patients 
compared to HD(F) (Supplementary Fig. 1D&E) or in cir-
culating IM-MDSC (HD(F); 0.9 ± 0.2 vs PBC;0.9 ± 0.2) 
and APC (HD(F);3.5 ± 0.6 vs PBC; 2.9 ± 0.5, Supplemen-
tary Figs. 1F&G).

Additionally, we compared the levels of circulating mye-
loid cells between male and female control donors to rule 
out any gender dependent effect; there were no significant 
differences between circulating M-MDSC, G-MDSC, IM-
MDSC or APC between the two cohorts (Supplementary 
Fig.  2). Furthermore, it should be noted that the median 
age of our HD cohort was lower than that for PBC patients 
(HD; 29 years vs PBC; 48 years, Table 1).

ARG1 expression in MDSC subsets

MDSC express high levels of ARG1, which assists in their 
inhibition of T-cell proliferation and cytotoxicity, expan-
sion of Treg and inhibition of NK cells [13]. We confirmed 
the immunosuppressive potential of myeloid cells by exam-
ining the expression of ARG1. There was no significant dif-
ference in the overall levels of ARG1 expressing circulating 
M-MDSC (HD; 0.6 ± 0.2 vs PBC; 0.7 ± 0.2; Fig.  2h) and 
N/G-MDSC (HD; 45.3 ± 3.7 vs PBC; 54.3 ± 4.0; Fig.  2i) 
in breast cancer patients and HD. Furthermore, in line 
with previous reports [14], our study showed that granulo-
cytic myeloid cells expressed higher levels of ARG1 than 
monocytic cells in both study groups. Moreover, we found 
similar results when we compared the levels of circulating 
myeloid cell subsets with ARG1 expression in HD(F) with 
PBC patients as shown in Supplementary Fig.  1H&I and 
also when we compared HD(M) with HD(F) (Supplemen-
tary Fig. 2H&I).

Breast cancer patients with high‑stage tumors and/
or poorly differentiated tumor cells have similar levels 
of circulating myeloid cells as those with low‑stage 
tumors and/or well‑differentiated tumors

We investigated the potential correlation between lev-
els of circulating myeloid cells with tumor stage and 
histological grade. Cancer patients were divided into 
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groups based on tumor stage and histological grade, 
and we compared the levels of circulating myeloid cells 
between these groups. For TNM stage, we compared 
patients with stage I tumors (n = 9) with those presented 
with higher tumor stage and regional lymph node inva-
sive stage II and III tumors (n = 14). When we compared 
the levels of circulating myeloid cells between HD and 
PBC patients with different tumor stages, there were no 
significant differences between them (data not shown). 
There were also no differences in the levels of M-MDSC, 
N/G-MDSC, IM-MDSC and APC between patients with 
stage I tumors compared with stage II and III patients as 
shown in Fig. 3a, b. Patients were also divided into two 
groups based on histological grade: those with well to 

moderately defined tumor cells with histological grades 
I and II (n = 11), and patients who presented with poorly 
defined or undifferentiated tumors with histological grade 
III (n = 12). There were no significant differences in 
the levels of myeloid cells (Fig.  3c) or HLA-DR+ APC 
(Fig.  3d) between patients with different histological 
grades. Additionally, there was no significant difference 
in levels of circulating myeloid cells between breast can-
cer patients with low Ki-67 expression (≤ 30%, n = 10) 
and patients with high Ki-67 expression (>30%, n = 8) (P 
values >0.05, data not shown). Similarly, there were no 
significant differences in levels of myeloid cells between 
patients positive for estrogen receptor (ER+; n = 16) 
or progesterone receptor (PR+; n = 13) compared to 
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ER− (n = 7) and PR− (n = 10) patients (P values >0.05, 
data not shown).

Myeloid cells are expanded in breast tumor tissue 
compared to paired, adjacent non‑tumor breast tissue

One of the main objectives of our study was to investigate 
phenotype and levels of myeloid cells in the TME of breast 
cancer patients, compared with paired, adjacent non-tumor 
normal breast tissue. Representative flow cytometric plots 
showing differences in levels of myeloid cells between nor-
mal tissue (NT) and tumor tissue (TT) of a PBC patient 
are shown in Fig.  4a. Interestingly, in contrast to periph-
eral blood, we found significant differences in the levels 
of myeloid cells in the TME milieu compared with normal 
breast tissue of seven breast cancer patients (Fig. 4b). The 
levels of CD33+ cells (NT; 3.0 ± 1.0 vs TT; 25.7 ± 4.0), 
CD33+CD11b+ cells (NT; 0.6 ± 0.2 vs TT; 9.4 ± 3.7) and 
CD33+CD11b+HLA-DR−/low cells (NT; 0.5 ± 0.2 vs TT; 
8.0 ± 3.5) were significantly higher in TT compared to NT.

Expanded myeloid cells in the TME of breast cancer 
patients are mainly N/G‑MDSC and IM‑MDSC

To find out if the expanded myeloid subpopulations in 
the TME of PBC patients are monocytic, granulocytic or 
immature, we analyzed CD14 and CD15 expression within 
the CD33+CD11b+HLA-DR−/low populations (Fig.  4a, 
c). The levels of CD15+ cells were significantly higher in 
the TME compared with paired, adjacent non-tumor nor-
mal breast tissue (NT; 0.01 ± 0.0 vs TT 0.1 ± 0.1). Fur-
thermore, we found a significant increase in the levels of 
CD33+CD11b+HLA-DR−/lowCD14−CD15− cells identi-
fied as IM-MDSC in tumor tissue (NT; 0.5 ± 0.2 vs TT; 
7.8 ± 3.5). In contrast, there was no significant increase in 
CD14+ M-MDSC in tumor compared to normal tissue (NT; 
0.01 ± 0.01 vs TT; 0.05 ± 0.02). Interestingly, we also found 
significantly higher levels of CD33+CD11b+HLA-DR+ 
cells identified as APC of myeloid origin in the TME (NT; 
0.03 ± 0.01 vs TT; 1.4 ± 0.4; Fig.  4d). Importantly, ARG1 
was highly expressed in cells isolated from TT (Fig.  4e). 
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However, we could not generate sufficient data for statisti-
cal analyses due to limited cell numbers.

Discussion

Studying the immune profile of the TME in solid cancers 
is an active area of research. Tumor-infiltrating lympho-
cytes (TIL), tumor-associated macrophages (TAM), Treg 
and MDSC are widely recognized as prognostic or predic-
tive markers for cancer progression. Early studies on lym-
phocytic infiltration in the TME of breast cancer patients 
showed a close correlation with disease prognosis [15] 
and were found to have beneficial effects on survival [16]. 

Several studies have since established certain subsets of 
TIL, mainly CD8+ T cells as a good prognostic factor in 
various human cancers [3, 17]. In contrast, tumor infil-
tration and expansion in periphery of immunosuppres-
sive cells has been shown to correlate with poor progno-
sis and tumor progression in various human malignancies 
[18]. MDSC and Treg are recognized as key players in 
the negative regulation of immune responses. Expansion 
of MDSC has been reported in different human cancers 
including head and neck, colon, renal, prostate and melano-
mas [8]. Almand et al. reported an expansion of immature 
myeloid cells in peripheral blood from patients with head 
and neck and colon cancers that decreased after removal 
of tumors from these patients [19]. However, limited data 
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are available on MDSC levels in circulation and matched 
tumor tissues from cancer patients and their relation with 
clinical settings. The heterogeneous nature of MDSC due 
to the varying stages of differentiation at which they were 
halted, makes it challenging to identify these cells. Further-
more, this gives rise to a morphological mixture of cells, 
which share many phenotypical and functional character-
istics of other cellular populations of myeloid origin. In 
the present study, we investigated phenotype and levels of 
tumor-infiltrating and circulating myeloid cells in untreated 
patients with primary breast cancer.

Several studies have emphasized on the significance of 
sample handling and processing when monitoring MDSC 
levels in circulation and are in agreement over the adverse 
effects of cryopreservation and the delayed time points at 
which MDSC analysis was carried out following blood 
collection [20–22]. Mandruzzato et  al. suggested to per-
form analysis on fresh blood to prevent possible loss of 
some MDSC subsets mainly G-MDSC. Fresh blood analy-
sis also minimizes attenuation of cell surface markers due 
to Ficoll grade separation [23]. Therefore, we used fresh 
whole blood for all our analysis on levels of myeloid cells 
in circulation.

Previous work on MDSC in breast cancer has mainly 
been performed on murine models. MDSC in mice express 
CD11b and Gr-1 with monocytic or granulocytic subsets 
identified by expression of Ly6C and Ly6G, respectively 
[5]. Accumulating evidence in murine models has shown 
the significance of MDSC in development and progression 
of breast cancer [24]. However, these models do not fully 
reflect the expression levels, cellular functionality of pro-
teins or genes found in human breast tissue [6].

We have recently shown that N/G-MDSC are expanded 
in the peripheral blood and the TME of patients with 
colorectal cancer [25]. However, we did not find similar 
expansion of myeloid cells in circulation of breast can-
cer patients. Previous studies on MDSC in breast cancer 
patients have reported an expansion in patients mainly with 
advanced metastatic disease [26–28]. However, the lack of 
consistency of markers and criterion to identify MDSC in 
these studies and more importantly the clinical presenta-
tion of study populations might account for discrepancies 
in results. Diaz-Montero et  al. [26] and Solito et  al. [27] 
identified MDSC as Lin−/lowHLA-DR−CD33+CD11b+ cells 
in patients with advanced breast cancers, while Yu et  al. 
identified MDSC as CD45+CD13+CD14−CD15− cells 
with suppressive activity, assessed through IDO expres-
sion and reported expansion that correlated with lymph 
node metastasis in breast cancer patients [28]. Interest-
ingly, they reported that IDO expression was significantly 
upregulated in tumor-infiltrating MDSC than in periphery, 
thereby suggesting immunosuppressive role of MDSC in 
tissue and not in circulation [28]. Additionally, Bergenfelz 

et al. reported an expansion of CD14+HLA-DR−/low mono-
cytic MDSC in circulation in patients with metastatic 
breast cancer and this expansion correlated with disease 
severity [29]. Another study showed an expansion of 
CD33+HLA-DR−/lowCD15+CD11b+ MDSC in peripheral 
blood of breast cancer patients with high psychological 
stress compared to those with lower stress levels, thereby 
suggesting an association between stress and immune func-
tion in breast cancer patients [30].

The main finding in this study is that myeloid cells in 
the peripheral blood of this breast cancer cohort do not dif-
fer when compared to healthy individuals, but when assess-
ing the levels in tumor vs surrounding healthy tissue, the 
levels were significantly higher in the TME. We found a 
significant expansion of CD33+CD11b+HLA-DR−/low mye-
loid cells in the TME of breast cancer patients. These cells 
were mainly granulocytic, which include neutrophils and 
G-MDSC, along with IM-MDSC. Expansion of neutro-
phils results in suppression of cytolytic activity of immune 
cells and high NLR is associated with poor prognosis and 
reduced overall survival in various human malignancies 
[31]. We also report an expansion of APC of myeloid ori-
gin in the TME of PBC patients, based on expression of 
HLA-DR, which is expressed only on professional APC. 
APC of myeloid lineage include DC and monocytes. Infil-
tration of DC has been reported in various solid tumors 
and has shown to be associated with both good and worse 
prognosis [32, 33]. The association of tumor-infiltrating 
DC with worse prognosis in some cancers can be attrib-
uted to reduced antigen presentation of DC [34]. Studies 
have shown tumor-induced functional deficiency of DC 
in breast cancer patients and reduced antigen-presenting 
functions in expanded Lin−HLA-DR+ cells in peripheral 
blood of cancer patients [35]. Sathhaporn et  al. showed 
defective DC function in peripheral blood from breast can-
cer patients with decreased IL-12 production, which could 
assist in tumor progression [36], and Kitchler-Lakomy 
et al. showed reduced functional activity of DC in periph-
eral blood of breast cancer patients, which also exhibited 
immature morphology [37]. Therefore, the expanded HLA-
DR+ cells in TME in this study require further functional 
investigation. Furthermore, association between MDSC 
levels and administration of therapeutic modalities have 
also been reported. Diaz-Montero et al. reported a signifi-
cant increase of G-MDSC in breast cancer patients who 
received adjuvant chemotherapy [26]. MDSC have been 
proposed as predictive markers for patients’ survival in var-
ious diseases. Bailur et al. demonstrated a negative role of 
MDSC and Treg in the prognosis of breast cancer patients 
by investigating the association between MDSC and CD8+ 
cells in older untreated breast cancer patients [38].

Breast cancer staging is widely accepted as a use-
ful tool to estimate disease prognosis. Around 5–12% of 
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breast cancer patients presenting with stage I or II tumors 
die within 10 years of diagnosis compared to over 60% 
of stage III and over 90% of stage IV patients [39]. Diaz-
Montero et al. reported a significant increase of MDSC in 
peripheral blood from patients with stage IV breast can-
cers which correlated with metastatic tumor burden [26]. 
Solito et al. showed that the levels of immunosuppressive 
MDSC in stage IV advanced breast cancer patients corre-
lated with circulating tumor cells and patients with higher 
levels had reduced overall survival compared to patients 
with lower levels [27]. However, we did not find any cor-
relation between circulating myeloid cells and patient 
staging, arguably due to the fact that patients in our study 
cohort, in contrast to these studies, presented with initial 
stages of cancer; none of the patients in our study group 
presented with distant metastasis. Histologic grading in 
breast cancers evaluates tubule formation, nuclear pleo-
morphism and mitotic count [40]. Therefore, tumor histo-
logical grades are considered as stage-independent prog-
nostic coefficients that reflect the metastatic potential of 
the tumor. We divided our cohort into two groups based 
on histological grades and compared circulating myeloid 
cell levels between them but did not find any difference 
between the groups.

Several proinflammatory molecules secreted by tumor 
cells are responsible for the recruitment of MDSC in the 
TME where they inhibit immune responses through vari-
ous mechanisms, such as depletion of nutrients required 
for lymphocytes, inducing oxidative stress and activating 
Treg [28]. ARG1 is involved in metabolism of l-Arginine, 
required for T cell activation and reduces the expression of 
T cell receptor CD3ζ chain and impairs T-cell response [41, 
42]. In line with previous studies [43], we investigated the 
immunosuppressive potential of myeloid cells by confirm-
ing the expression of ARG1 by circulating myeloid cells.

In conclusion, we showed that myeloid cells are 
expanded in the TME of breast cancer patients, and these 
cells comprise of immature and granulocytic myeloid cells. 
Interestingly, we did not find any expansion of myeloid 
cells in peripheral blood from breast cancer patients. These 
findings are of great significance in the development of 
therapeutic agents to target the mechanisms employed by 
immunosuppressive cells in providing an immune-permis-
sive environment for the progression of cancer.
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