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Abstract
Background: In mammals it is well known that infections can lead to alterations in reproductive function. As
part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial
infection or after treatment with lipopolysaccharide (LPS) and acts on the reproductive system. In fish, LPS can
also induce an innate immune response but little is known about the activation of the immune system by LPS on
reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of
lipopolysaccharide (LPS) on the reproductive function of sexually mature female trout.

Methods: In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as
the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone) of ovarian follicles to
luteinizing hormone (LH), the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle
breakdown (GVBD) in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined
the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles.
The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression
pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis.

Results: LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production
of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro
was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of
cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian
follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction.
Therefore, LPS did not appear to impair ovarian steroid production, oocyte final maturation or follicular
contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced
apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in
apoptosis, as evidenced by microarray analysis.

Conclusion: These results indicate that female trout are particularly resistant to an acute administration of LPS
in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular
cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory
cytokines.
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Background
A substantial body of evidence indicates that reproductive
competence can be compromised by external insults in
the form of contaminants or pathogens [1-3]. In particu-
lar, pathogens stimulate the innate immune response
which entails the recognition of pathogen-associated
molecular patterns by immune cells of the myeloid line-
age and their subsequent activation [4]. This leads to an
inflammatory reaction typically characterized by the pro-
duction of immune factors such as pro-inflammatory
cytokines and chemokines [5]. In mammals, including
humans, activation of the innate immune system caused
by infection with Gram-negative bacteria has detrimental
consequences for the function of the ovary as well as for
fertility and embryonic survival [6-8]. The immune-medi-
ated effects of Gram-negative bacteria are caused by the
lipid A fraction of lipopolysaccharide (LPS), also known
as endotoxin, which is a constituent of the bacterial cell
wall that is constantly shed into the environment of the
bacteria. In mammals, the induction of an immune
response by the administration of LPS, commonly used to
mimic a bacterial infection, results in alterations in ovar-
ian function. LPS administration in vivo increases apopto-
sis in the ovary [6], reduces the ovarian steroidogenic
response to gonadotropin stimulation [6,9,10] and
impairs embryonic survival [7,11]. In contrast to mam-
mals, little is known about the physiological conse-
quences of an immune challenge by LPS in lower
vertebrates. In general, lower vertebrates are known to be
remarkably resistant to the toxic effects of LPS [12].
Recently, it has been postulated that their lower sensitivity
to LPS could be related to differences in the repertoire of
LPS-signaling receptors present [13]. Despite their lower
sensitivity to LPS, there is good evidence to support the
notion that fish respond to LPS by activating a typical
innate immune response. For example, LPS administra-
tion in fish increases phagocytic activity of leukocytes and
the activity and plasma concentration of lysozyme
[14,15].

In the mammalian ovary, most of the detrimental effects
of LPS are mediated by inflammatory cytokines, such as
tumor necrosis factor α (TNFα) and interleukins 1α and
1β, which directly stimulate apoptotic cell death and
inhibit steroid production [16-19]. These cytokines can be
produced systemically by the cellular constituents of the
innate immune system or locally by resident and/or infil-
trating macrophages in the ovary. Activated ovarian mac-
rophages also produce chemokines in response to TNFα,
such as monocyte chemoattractant protein-1 [20], provid-
ing a possible mechanism whereby LPS administration
increases the number of macrophages in the ovary [6]. In
addition to their role in defense against pathogens, ovar-
ian macrophages and their secretory products play an
important role in ovarian function [21]. Cytokines such as

TNFα are also essential regulators of ovarian growth and
differentiation, as evidenced, for example, by their stimu-
latory effects on cell proliferation [22,23]. The contrasting
and often contradictory reports on cytokine effects in the
mammalian ovary reflect the complexity of the biological
action of immune factors in contributing to ovarian
homeostasis, which is further confounded by the fact that
ovarian cells may represent an additional source of
immune factors, such as TNFα [24]. Similarly, in fish, LPS
acts directly on macrophages to stimulate the expression
of typical pro-inflammatory cytokines, such as TNFα and
IL-1β [25-27]. Furthermore, a recent high-throughput
analysis of expressed genes in LPS-stimulated rainbow
trout macrophages has identified a large number of other
factors characteristic of activated macrophages [28].
Therefore, fish immune cells respond to LPS by producing
a vast array of immune factors that are an essential part of
the defense mechanism against pathogens. However, to
date there is no information on the effects of LPS and the
ensuing activation of the innate immune system on repro-
duction in fish. Fish species such as trout, reproduce only
once annually and release thousands of oocytes at the
time of ovulation that have developed and matured syn-
chronously within the ovary. Thus, the entire cohort of
ovarian follicles can be put at risk by the activation of the
innate immune system as a result of a bacterial infection.
Given the well-described modulatory effects of LPS and
macrophage-derived factors on the function of the mam-
malian ovary (see above) and given the ability of fish to
develop an innate immune response when exposed to
LPS, the present study was undertaken to investigate the
effects of activating the innate immune system by LPS on
the function of the ovary in trout.

Methods
Animals
Brook trout (Salvelinus fontinalis) were purchased from a
private hatchery (Grand Haven, MI) and maintained in
tanks supplied with flow-through water at 12.5°C under
natural photoperiod at the University of Notre Dame
(Notre Dame, IN). Fish (300–400 g) were staged accord-
ing to the position of the germinal vesicle (GV) in 8–10
oocytes that were cleared using a solution previously
described [29]. Fish at the preovulatory stage (GV located
approximately two-thirds the distance from the center to
the periphery of the oocyte) were briefly anesthesized in
3-aminobenzoic acid ethyl ester (0.1 g/l of water; Sigma,
St. Louis, MO) and injected intraperitoneally with either
saline or E. coli lipopolysaccharide (LPS) (3 mg/kg
weight) once a day over four consecutive days. In each
experiment, five fish were injected with saline and five fish
were injected with LPS. Twenty four hours after the last
injection, fish were anesthesized as described above,
blood samples were taken by caudal vein puncture and
fish were sacrificed by spinal transection prior to the col-
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lection of the ovaries. The dissected ovaries were immedi-
ately used for the various in vitro assays and also processed
for the TUNEL assay and routine histology.

Gene expression analyses were performed on female rain-
bow trout (Oncorhynchus mykiss) using a microarray plat-
form previously validated for rainbow trout [30,31]. Adult
fish at a preovulatory stage (250–300 g) were purchased
from a commercial fish hatchery (Piscifactoria de Sant Pri-
vat, Girona, Spain) and were maintained in tanks sup-
plied with flow-through water under natural conditions of
light and temperature at the Universitat Autònoma de Bar-
celona (Spain). Fish were given a single intraperitoneal
injection of either saline (n = 10) or LPS (n = 10; 6 mg/kg
wet weight) as described above and 24 and 72 hours after
the injection, fish were sacrificed (five fish from each
group at each of the two time points), their ovaries
removed, snap frozen in liquid nitrogen and kept at -80°C
until they were processed for RNA purification (see
below). For this particular study, the rainbow trout was
selected as the experimental species primarily due to the
availability of a cDNA microarray platform designed and
validated for this species. Furthermore, the LPS treatment
regime was chosen because it was previously shown to be
effective in inducing the expression of immune genes
[32].

Hormones and reagents
Coho salmon LH (sLH) was a kind gift from Dr. Penny
Swanson (National Marine Fisheries Service, Seattle, WA)
[33] and was dissolved directly in incubation medium. E.
coli LPS was purchased from Sigma and dissolved directly
in saline or incubation medium.

Ovarian tissue incubations
Immediately after dissection, preovulatory brook trout
ovaries were placed in ice-cold Cortland's medium and
individual ovarian follicles were separated from each
ovary on ice, as previously described [34]. For in vitro ster-
oid production experiments, intact preovulatory brook
trout follicles (migrating GV) were incubated (10 follicles/
well/3 ml) in ice-cold Cortland's medium containing
0.2% BSA (fraction V; Sigma), in the absence or presence
of different test compounds for 18 h at 12°C in an air
atmosphere with gentle shaking (100 rpm). At the termi-
nation of the incubation, the medium and ovarian tissue
were removed and stored at -20°C and -80°C, respec-
tively, until assayed. For the in vitro oocyte maturation
assay (germinal vesicle breakdown (GVBD)), brook trout
ovarian follicles with peripheral germinal vesicles (GVs)
were selected. Briefly, ovarian follicles were incubated in
Cortland's medium (10 follicles/well/3 ml) in the pres-
ence of 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P,
100 ng/ml) for 48 h at 12°C in 6-well plates with shaking.
At the termination of the incubations, the follicles were

cleared [29] and scored for the presence or absence
(GVBD) of the GV as previously described [35]. For the
follicle contraction experiments, punctured brook trout
preovulatory follicles (migrating GV) were incubated in
Cortland's medium (10 follicles/well/3 ml) in the pres-
ence of the test compounds for 8 hours at 12°C. Follicle
contraction was determined by measuring the weight of
the 10 follicles in each replicate and calculating the differ-
ence in follicle weight between the beginning and the end
of the incubation period, as previously described and val-
idated for epinephrine stimulation [36]. Since contraction
results in the expulsion of yolk through the puncture site,
decreases in follicle weight indicate increases in follicular
contraction. In all the experiments described, statistical
significance was determined by one-way ANOVA, fol-
lowed by the Fisher's Protected Least Significant Differ-
ence test [37].

Isolation of trout macrophages and production of 
macrophage conditioned medium
Brook trout macrophages were isolated from the head kid-
ney and cultured as previously described [26]. To obtain
supernatants from LPS-activated macrophages, macro-
phages were incubated at a density of 1 × 107 cells/ml in
DMEM high glucose medium (Gibco) and stimulated in
the absence or presence of LPS (10 μg/ml) for 12 h at
18°C under 5% CO2. This concentration of LPS has previ-
ously been shown to be effective in stimulating cytokine
and chemokine expression in trout macrophages [26,32].
Following the incubation, the medium was collected and
centrifuged for 10 min at 2000 × g at 4°C. Supernatants
were pooled and used directly to incubate punctured
brook trout preovulatory follicles in the follicle contrac-
tion experiments (see above).

Steroid radioimmunoassays
The concentrations of testosterone, 17OH-P and 17β-
estradiol in brook trout ovarian follicle incubates and
plasma were measured directly using commercial radio-
immunoassays (Schering-CIS, Madrid, Spain), as
described previously [38,39]. The concentration of corti-
sol was determined by radioimmunoassay, as described
previously [40], but with minor modifications. The anti-
body used for the cortisol radioimmunoassay was pur-
chased from Biolink, S.L. (Costa Mesa, CA) and was used
at a final dilution of 1:6000. The cross reactivity of this
antibody with cortisol, 21-deoxycorticosterone, 11-deox-
ycortisol and 17β-hydroxyprogesterone was 100%,
11.4%, 8.9% and 1.6%, respectively.

In situ TUNEL analyses
In order to determine the incidence of apoptosis in preo-
vulatory ovaries from saline- and LPS-injected female
brook trout, fragmentation of DNA in paraffin-embedded
ovaries, previously de-yolked by gentle pressure, was
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detected by the terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP nick end labeling (TUNEL) tech-
nique [41]. Labeling of DNA strand breaks by TUNEL was
performed using a commercial kit (In Situ Cell Death
Detection Kit, Roche Diagnostics GmbH, Mannheim,
Germany), according to the manufacturer's instructions.
After labeling with fluorescein-dUTP, ovarian sections
were visualized under a fluorescence microscope and dig-
ital images were captured from at least two sections of
each ovary from saline-(n = 5) and LPS-injected (n = 5)
fish. Negative (no TdT) and positive (DNase I treatment)
controls were performed as indicated in the TUNEL kit
using ovarian sections from LPS- and saline-injected trout
and yielded the expected results (data not shown). Addi-
tional sections from de-yolked ovaries from saline- and
LPS-injected brook trout were examined microscopically
by routine hematoxylin-eosin staining.

Microarray analyses
Microarray analyses were performed using a rainbow trout
cDNA microarray platform previously validated and
described [30,31,42] that has been deposited in GEO
under accession number GPL1212. Briefly, total ovarian
RNA was extracted from pooled ovaries from saline- (n =
5) and LPS-injected (n = 5) rainbow trout with TriReagent
(Molecular Research Center, Cincinatti, OH) according to
the manufacturer's specifications. Labeling with Cy3- and
Cy5-dCTP (Amersham Pharmacia) was made using
SuperScript III reverse transcriptase (Invitrogen) and
oligo(dT) primer; cDNA was purified with Microcon
YM30 (Millipore). The slides were pretreated with 1% BSA
(fraction V), 5 × SSC, 0.1% SDS (30 min at 50°C) and
washed with 2 × SSC (3 min) and 0.2 × SSC (3 min) and
hybridized overnight in cocktail containing 1.3 × Den-
hardt's, 3 × SSC, 0.3% SDS, 2.1 μg/μl polyadenylate and 1
μg/μl yeast tRNA. All chemicals were from Sigma-Aldrich.
Scanning was performed with ScanArray 5000 and images
were processed with QuantArray (GSI Luminomics). The
measurements in spots were filtered by criteria I/B ≥ 3 and
(I-B)/(SI + SB) ≥ 0.6, where I and B are the mean signal and
background intensities and SI, SB are the standard devia-
tions. After subtraction of mean background, LOWESS
normalization [43] was performed. To assess differential
expression of genes, the normalized log intensity ratios
(expression ratio) were analyzed with Student's t-test (P <
0.05).

Results
Effects of LPS on steroid production
The in vivo administration of LPS did not affect the basal
in vitro production of testosterone (597.6 ± 131.2 pg/ml);
however, LPS administration significantly potentiated the
stimulatory effects of sLH on testosterone production by
brook trout ovarian follicles (Fig. 1A). Neither the basal
(65 ± 6.2 pg/ml) nor the sLH-stimulated production of

17OH-P appeared to be affected by the in vivo administra-
tion of LPS (Fig. 1B) and 17OH-P was produced at a much
lower concentration than testosterone. When tested
directly in vitro, LPS did not significantly affect the basal or
the sLH-stimulated production of testosterone or 17OH-P
by trout ovarian follicles (Fig. 2).

Steroidogenic output of brook trout ovarian follicles treated withsaline and lipopolysaccharide (LPS) in vivoFigure 1
Steroidogenic output of brook trout ovarian follicles 
treated withsaline and lipopolysaccharide (LPS) in 
vivo. Preovulatory trout follicles from saline- and LPS-treated 
fish were incubated for 18 h at 12°C in the absence or pres-
ence of salmon LH (sLH; 25 ng/ml). At the termination of the 
incubation period, testosterone (A) and 17α-hydroxyproges-
terone (B) were measured in the medium. Each bar repre-
sents the mean ± SEM of five fish for each treatment, with 
each assayed in triplicate. The results are expressed as per-
cent change with respect to the saline-injected control (no 
sLH) group which has been set at 100%. Statistically signifi-
cant (p ≤ 0.05) differences among groups are indicated by dif-
ferent letters.

0

200

400

600

800

1000

Saline LPS

1
7

-h
y
d

ro
x

y
p

ro
g

e
s
te

ro
n

e
(%

 o
f

c
o

n
tr

o
l)

 

Control

sLH

a

b

b

a

0

100

200

300

400

500

600

700

800

Saline

T
e
s
to

s
te

ro
n

e

(%
 o

f
c
o

n
tr

o
l)

Control

sLH

LPS

a

b

c

a

A

B

Page 4 of 12
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2006, 4:46 http://www.rbej.com/content/4/1/46
In order to determine whether LPS administration in vivo
affected the plasma concentration of steroids in female
brook trout, we measured the concentration of testoster-
one, 17OH-P, 17β-estradiol and cortisol in plasma of
saline- and LPS-injected female trout. Our results showed
that testosterone plasma concentration was not affected
by LPS administration (Fig. 3A). The plasma concentra-
tions of 17OH-P and 17β-estradiol were not detectable
(data not shown), in agreement with the known decrease
in their circulating concentrations during the progression
of final oocyte maturation and ovulation [44]. Interest-
ingly, the plasma concentration of cortisol in LPS-treated
female trout was 4–5 fold-higher than in saline-treated
female trout (Fig. 3B).

Effects of LPS on oocyte maturation
Ovarian follicles from saline- and LPS-injected brook
trout showed no difference in their ability to undergo
oocyte maturation in response to 17,20β-P in vitro (Fig.
4A). In addition, incubation of trout ovarian follicles with
increasing concentrations of LPS (up to 50 μg/ml) or at
various times (0 to 48 hours) prior to 17,20β-P stimula-
tion did not affect their responsiveness to 17,20β-P in vitro
(Figs. 4B,C).

Effects of LPS on follicular contraction
LPS administration in vivo (Fig. 5A) did not affect the
basal rate of contraction of brook trout ovarian follicles or
the contractile response to epinephrine, a well known
stimulator of follicular contraction in the brook trout
ovary [45]. In addition, LPS did not have any direct effects
on the in vitro contraction of trout ovarian follicles (Fig.
5B). Interestingly, incubation of trout ovarian follicles in
the presence of LPS-stimulated trout macrophage condi-
tioned medium caused a small but significant (p < 0.05)
increase in follicular contraction, as evidenced by the
decrease in follicle weight (Fig. 5C).

Effects of LPS on ovarian apoptosis
Analysis of ovarian sections by in situ TUNEL indicated
the presence of abundant positive nuclei indicative of
apoptotic cells in the ovaries of LPS-injected female brook
trout (Fig. 6B). In contrast, almost no positive nuclei were
detected in ovaries of saline-injected female trout (Fig.
6A). In the ovaries of LPS-injected brook trout, apoptotic
cells were found primarily in the granulosa and theca cell
layers. Since oocytes were damaged by the process of de-
yolking the ovarian follicles prior to fixation and histolog-
ical processing, we could not evaluate the incidence of
apoptosis directly within oocytes from LPS-injected
female trout. In addition, no gross morphological differ-
ences were observed between the ovaries (de-yolked) of
saline- and LPS-injected brook trout (Fig. 6C).

Effects of LPS on ovarian gene expression
To investigate the effects of LPS-treatment on gene expres-
sion in the trout ovary, we used a trout cDNA microarray
platform previously validated for studies involving
response to stress and toxicity [30,31] and, more recently,
to LPS stimulation [46] in trout.

In support of the observed increase in apoptosis in the
ovary of LPS-treated fish, the expression of several genes
known to be involved in apoptosis underwent changes in
response to LPS administration in the ovary (Table 1).
One the one hand, death-associated protein kinase 3, also
refered to as ZIP kinase, was up-regulated at 24 hours
post-injection. On the other hand, various genes involved
in apoptosis were significantly down-regulated, such as
beclin 1, apoptosis inhibitor 5 and cytochrome P450 2J2
at 72 hours post-injection, and cdk inhibitor p21 binding
protein at 24 hours post-injection. In addition, the expres-
sion of telomerase was also reduced in the trout ovary in
response to LPS administration at 72 hours post-injection.
Also, the expression of the serum/glucocorticoid regulated
kinase, an important mediator of cell survival signals [47],
was similarly down-regulated at 72 hours after the LPS
injection. Interestingly, the alpha 1 and alpha 2 chains of
collagen type I were highly induced by LPS administration
at 72 hours post-injection.

Several genes with an immune function appeared to be
transcriptionally regulated in response to LPS in the trout
ovary. For example, class I and II histocompatibility anti-
gens were up-regulated in response to LPS administration
at 24 hours. In addition, several immune-related genes
were down-regulated in response to LPS administration
only at 72 hours post-injection: immunoglobulin epsilon
(IgE) receptor alpha subunit, allograft inflammatory fac-
tor-1, epsilon coat protein and lactoferrin.

The administration of LPS also caused a decrease in the
expression of genes involved in metabolism, such as beta
enolase, acyl-CoA dehydrogenase 9, alanine-glyoxylate
aminotransferase, hypoxantine-guanine phosphoribosyl
transferase and oxidoreductase (Table 1). Furthermore,
the expression of the cytochrome c oxidase subunit III,
part of the mitochondrial respiratory chain, was also
decreased at 24 hours post-injection.

Discussion
In mammals, bacterial LPS, commonly used to induce an
immune response, is known to cause alterations in the
normal function of the ovary. In the present study, we
have sought to study for the first time the consequences of
activating the innate immune system with LPS on ovarian
function in fish. In particular, we examined the in vivo and
in vitro effects of LPS administration on ovarian steroid
production, oocyte maturation, follicular contraction,
Page 5 of 12
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incidence of apoptosis and multiple gene expression in
trout.

The results from the present study indicate that LPS
administration increased apoptosis in the trout ovary.
This conclusion is derived from the observed increase in
the number of apoptotic cell nuclei in the follicular layers
surrounding the trout oocyte and also from the observed
changes in the ovarian expression of genes involved in the
regulation of apoptosis. In particular, LPS administration
increased the expression of ZIP-kinase, a positive media-

tor of apoptosis [48], in the trout ovary as early as 24
hours. Furthermore, LPS administration decreased the
expression of several anti-apoptotic genes in the trout
ovary: beclin 1, cdk inhibitor p21 binding protein, cyto-
chrome P450 2J2, apoptosis inhibitor 5 and telomerase.
For example, beclin 1 has been reported to have anti-
apoptotic functions and to be involved in cell defense in
mammals [49]. In addition, p21 is expressed in the
murine ovary and is involved in follicular growth [50] and
luteal differentiation and, more importantly, to have an
anti-apoptotic function in granulosa cells [51]. Further-

Plasma steroid concentration in saline- and lipopolysaccha-ride (LPS)-treated brook trout femalesFigure 3
Plasma steroid concentration in saline- and lipopoly-
saccharide (LPS)-treated brook trout females. Plasma 
concentrations of testosterone (A) and cortisol (B) were 
measured in saline- and LPS-injected brook trout females. 
Each bar represents the mean ± SEM of five fish for each 
treatment, with each assayed in triplicate. Statistically signifi-
cant (p ≤ 0.05) differences among groups are indicated by dif-
ferent letters.
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Steroidogenic output of brook trout ovarian follicles treated with lipopolysaccharide (LPS) in vitroFigure 2
Steroidogenic output of brook trout ovarian follicles 
treated with lipopolysaccharide (LPS) in vitro. Preovu-
latory trout follicles from untreated fish were incubated for 
18 h at 12°C in the absence or presence of salmon LH (sLH; 
25 ng/ml) and LPS (50 μg/ml). At the termination of the incu-
bation period, testosterone (A) and 17α-hydroxyprogester-
one (B) were measured in the medium. Each bar represents 
the mean ± SEM of three separate experiments, with each 
assayed in triplicate. The results are expressed as percent 
change with respect to the control group which has been set 
at 100%. Statistically significant (p ≤ 0.05) differences among 
groups are indicated by different letters.
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Effects of lipopolysaccharide (LPS) on follicular contraction in brook troutFigure 5
Effects of lipopolysaccharide (LPS) on follicular con-
traction in brook trout. A. Effects of in vivo LPS administra-
tion on trout follicular contraction. Punctured, preovulatory 
brook trout follicles from saline- and LPS-treated fish were 
incubated for 8 h at 12°C in the absence or presence of 
epinephrine (5μM). Each bar represents the mean ± SEM of 
five fish for each treatment, with each assayed in triplicate. 
The results are expressed as percent change with respect to 
the saline-injected control (no epinephrine) group which has 
been set at 100%. Statistically significant (p ≤ 0.0001) differ-
ences among groups are indicated by different letters. B. 
Effects of LPS treatment in vitro on trout follicular contraction. 
Punctured trout preovulatory ovarian follicles were incu-
bated in the absence or presence of epinephrine (5μM) or 
LPS (25 μg/ml) for 8 hours. The results show the mean ± 
SEM from six separate experiments, with each assayed in 
triplicate. Statistically significant (p ≤ 0.001) differences 
among groups are indicated by different letters. C. Effects of 
macrophage conditioned medium on trout follicular contraction. 
Punctured, trout ovarian follicles were incubated with mac-
rophage conditioned medium (Control-MCM) and with LPS-
stimulated macrophage-conditioned medium (LPS-MCM) for 
8 hours. Statistically significant (p < 0.05) differences among 
groups are indicated by different letters.
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Effects of lipopolysaccharide (LPS) on oocyte maturation in brook troutFigure 4
Effects of lipopolysaccharide (LPS) on oocyte matu-
ration in brook trout. A. Effects of in vivo LPS administration 
on brook trout oocyte maturation. Preovulatory trout follicles 
from saline- and LPS-treated fish were incubated for 48 h at 
12°C in the presence of 17α,20β-dihydroxy-4-pregnen-3-one 
(maturation-inducing steroid or MIS;100 ng/ml). At the ter-
mination of the incubation period, follicles were scored for 
the germinal vesicle breakdown (GVBD). Each bar repre-
sents the mean ± SEM of five fish for each treatment, with 
each assayed in triplicate. B. Dose-response of LPS treatment in 
vitro on brook trout oocyte maturation. Normal trout preovula-
tory ovarian follicles were incubated with MIS (100 ng/ml) 
and in the absence or presence of different concentrations of 
LPS (0–50 μg/ml) for 48 hours and scored for GVBD. The 
results show the mean ± SEM from three separate experi-
ments, with each assayed in triplicate. C. Time course of LPS 
treatment in vitro on brook trout oocyte maturation. Normal 
trout preovulatory ovarian follicles were preincubated in the 
absence or presence of LPS (25 μg/ml) for different amounts 
of time (0–48 hours) and subsequently incubated in the pres-
ence of MIS (100 ng/ml), as indicated above, and assayed for 
GVBD. The results show the mean ± SEM from three sepa-
rate experiments, with each assayed in triplicate. In all 
graphs, the results are expressed as percentage of total ovar-
ian follicles at the peripheral GV stage that underwent 
GVBD. Statistically significant (p ≤ 0.05) differences among 
groups are indicated by different letters.
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more, cytochrome P450 2J2 produces epoxyeicosatrienoic
acids which have anti-apoptotic properties [52], similar to
apoptosis inhibitor 5 [53]. Finally, telomerase, a gene
important for the life-span of cells due to its involvement
in the synthesis and maintenance of telomeres, is known
to have anti-apoptotic activity [54]. In addition to changes
in genes involved in apoptosis, LPS administration caused
a marked decrease in the expression of genes involved in
metabolism and mitochondrial biogenesis. Similar
changes were recently reported in rainbow trout macro-
phages stimulated with LPS [46] and, as in macrophages,
one of the responses of the ovary to LPS administration
could be to depress cellular metabolism and energy pro-
duction by attenuating the expression of key genes
involved in basic cellular functions. In the present study,
we report on significant changes in gene expression that in

most cases are less than two fold, supporting the notion
that small expression differences, as those significantly
detected using our validated microarray platform, could
be functionally important.

The observed increase in apoptosis by LPS in the fish
ovary suggests that the pro-apoptotic effects of LPS may be
evolutionarily conserved since LPS induces ovarian apop-
tosis in mammals [6,55]. It is believed that the pro-apop-
totic effects of LPS in the ovary of mammals and birds are
mediated by pro-apoptotic cytokines. For instance, TNFα
directly stimulates apoptosis in intact follicles and cul-
tured granulosa cells [18,56,57]. Although the direct
effects of cytokines on apoptosis in the fish ovary have not
been examined to date, it is possible that the pro-apop-
totic effects of LPS in the fish ovary could also be mediated
by immune factors. In fact, trout macrophages increase
the expression of cytokines in response to LPS
[25,26,28,58]. Furthermore, the fish ovary contains recep-
tors for cytokines. For example, a death-domain contain-
ing receptor of the TNF family and a TNF-decoy receptor
are expressed in the zebrafish ovary [59] and in the gran-
ulosa cells of the trout ovary [60], respectively. At present
it is not known if pro-apoptotic cytokines acting on fish
ovarian cells could be produced systemically by LPS-acti-
vated immune cells in the pronephros, the hematopoietic
organ in fish, or locally by resident ovarian macrophages.
In the mammalian ovary, TNFα is expressed in various
cellular compartments, including the oocyte, granulosa
and theca cells, as well as in resident macrophages
[21,24,61]. Furthermore, LPS administration in vivo
increases the number of ovarian macrophages in the rat
ovary [6], suggesting that infiltrating macrophages could
represent a possible additional source of pro-apoptotic
cytokines. In fish, pro-apoptotic cytokines are also pro-
duced in the ovary [59], although it remains to be shown
if they are produced by macrophages and/or follicular
cells. Interestingly, LPS induces the expression of a CCL4-
like chemokine in the trout ovary [32], suggesting that
trout immune cells, like their mammalian counterparts,
could be recruited to the ovary in response to an immune
challenge in the form of LPS. The regulated expression of
several immune-related genes in the ovary of LPS-injected
females strongly suggests that immune cells or factors are
indeed found or produced by the ovary of the rainbow
trout. For example, genes involved in antigen presenta-
tion, such as MHC class I and II major histocompatibility
complex molecules, and shown to be expressed in LPS-
stimulated trout macrophages [28], are also expressed in
the rainbow trout ovary. Interestingly, mammalian luteal
cells also express MHC class I and II molecules in response
to immune stimuli [62]. In addition, it is possible that
ovarian macrophages in trout could be induced by LPS to
produce cytokines such as TNFα, as has been shown in
trout macrophages differentiated in vitro [25,26]. Thus,

Effects of lipopolysaccharide (LPS) administration on apopto-sis in the brook trout ovaryFigure 6
Effects of lipopolysaccharide (LPS) administration on 
apoptosis in the brook trout ovary. Sections of paraffin-
embedded ovaries from saline (A)- and LPS (B)-injected 
brook trout were analyzed for in situ end-labeling by TUNEL. 
Two representative images of ovaries from saline- and LPS-
injected trout are shown. In C, hematoxylin-eosin stained 
sections of representative ovaries from saline (left) and LPS-
injected (right) brook trout are shown. Prior to fixation, the 
ovaries were de-yolked by gentle pressure. F, follicular cells; 
C, chorion.
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once the necessary tools (antibodies, immune cells mark-
ers, etc.) become available, future studies can be con-
ducted to determine the cellular localization of cytokine-
expressing cells and their regulation by LPS, or to investi-
gate the effects of LPS on macrophage influx into the trout
ovary.

In marked contrast with the known inhibitory effects of in
vivo LPS administration on ovarian steroidogenesis in
mammals [6,9,10], LPS administration in vivo did not
inhibit the production of ovarian steroids in trout. Our
results indicate that the administration of high doses of
LPS in vivo does not affect the circulating concentrations of
sex steroids, the basal sex steroid output or the production
of 17OH-P in response to gonadotropin stimulation in
isolated trout ovarian follicles. However, the stimulatory
effects of sLH on testosterone production were slightly
potentiated in follicles from LPS-injected fish. The physi-
ological significance of this result is not clear particularly
in view of the lack of changes in the concentration of

plasma testosterone in LPS-injected females. Moreover,
trout ovarian follicles did not show a steroidogenic
response to LPS in vitro. This is in contrast with the
reported inhibitory effects of LPS on gonadotropin-stimu-
lated steroid production in rat theca and granulosa cells
[63,64], which are presumably attributed to the direct
actions of LPS on steroidogenic cells [65].

Interestingly, the administration of LPS, either in vitro or
in vivo, did not affect the ability of trout ovarian follicles
to undergo oocyte maturation in response to 17,20β-P or
to contract in response to epinephrine [29,36,45]. In con-
trast to the ineffectiveness of in vivo LPS administration on
follicular contraction, conditioned medium from LPS-
activated trout macrophages stimulated follicular contrac-
tion, suggesting that this process could be regulated by
factors produced by activated immune cells. Collectively,
these results indicate that in trout, ovarian steroid produc-
tion, oocyte maturation and follicular contraction were
not inhibited by an acute treatment with high doses of

Table 1: Differentially expressed genes in the ovary of lipopolysaccharide (LPS)-treated female trout.

Time (hours p.i.)

24 72 Gene name
Up-regulated genes

1,57** -1,16 Death-associated protein kinase 3 (ZIP-kinase).
1,32* 1,42 HLA class II histocompatibility antigen, gamma chain
1,56* 1,30 HLA class I histocompatibility antigen
1,25** 1,04 Myosin heavy chain, skeletal muscle, adult 1
1,33* -1,15 Synapse associated protein 1
-1,07 1,56* Collagen, type I, alpha 1chain
1,06 1,49* Collagen, type I, alpha 2 chain
-1,05 1,39* Phospholipase D family, member 4
1,05 1,56* Microtubule-associated protein RP/EB
-1,14 1,28* Translocon-associated protein, delta subunit precursor

Down-regulated genes
-1,38* 1,09 Cdk inhibitor p21 binding protein
-1,35* -1,23 Cytochrome oxidase subunit III-2
-1,39* -1,15 Cytochrome oxidase subunit III-3
-1,49* -1,12 Oxidoreductase UCPA
-1,22* -1,02 Hypoxanthine-guanine phosphoribosyltransferase
-1,05 -1,32* Beclin 1
1,23 -1,21* Apoptosis inhibitor 5
1,04 -1,48* Cytochrome P450 2J2
-1,01 -1,35* Serum/glucocorticoid-regulated kinase
-1,14 -1,26** Lactoferrin
-1,20 -1,49* Alanine-glyoxylate aminotransferase
-1,07 -1,65* Allograft inflammatory factor-1
-1,10 -1,31* NADH dehydrogenase subunit 5–2
-1,06 -1,34* Acyl-CoA dehydrogenase 9, mitochondrial
-1,05 -1,25* High affinity immunoglobulin epsilon receptor alpha
-1,05 -1,24* Troponin I, slow skeletal muscle
-1,18 -1,79* Beta enolase
-1,05 -1,77* Telomerase reverse transcriptase
-1,03 -1,23* Coatomer epsilon subunit (Epsilon-COP).

The expression ratio (normalized log intensity ratio) data at 24 and 72 hours post-injection (p.i.) are shown. Significant differences between control 
and LPS-injected fish, as analyzed by Student's t-test, are indicated by asterisks (* p < 0.05; ** p < 0.01)
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LPS in vivo. This lack of inhibitory effects of LPS support
the notion that fish are remarkably resistant to LPS, a fact
further corroborated by the lack of mortality during the
study. However, since ovarian apoptosis was increased in
response to LPS in the present study, it is possible that the
number of viable ovarian follicular cells could progres-
sively decrease with time, eventually causing alterations in
normal ovarian function. Notably, under the present
experimental conditions, female trout were sacrificed one
day after the last LPS injection, and therefore, their ovar-
ian function was evaluated right after the termination of
the acute LPS treatment. Thus, future studies in our labo-
ratory will assess the long-term effects of treatment with
LPS on ovarian function, gamete production and viability.

In the current study, LPS administration elevated cortisol
concentration, a result previously shown in several teleost
species [66-69]. Since elevated cortisol concentration in
the blood of female trout has been correlated with repro-
ductive alterations, namely decreased plasma steroid con-
centration, delayed ovulation, reduced egg size and
decreased survival in the progeny [70,71], we cannot rule
out the possibility that cortisol may have contributed, at
least in part, to the observed effects of LPS on apoptosis in
the trout ovary. However, several of our findings would
argue against this possibility. First, acute stressed-induced
cortisol inhibits the production of ovarian steroids in
trout [70]. However, despite a five-fold increase in cortisol
concentration, the acute administration of LPS did not
alter the production of ovarian steroids or the process of
oocyte maturation in the present study. Second, cortisol
has anti-apoptotic functions in fish and, therefore, if it
were involved in the regulation of ovarian apoptosis it
would be expected to antagonize the effects of LPS in the
ovary. Instead, cortisol appears to modulate the response
of in vitro differentiated trout macrophages to LPS [46].
Therefore, it is unlikely that elevated cortisol concentra-
tion is involved in the increased apoptosis in the ovary of
LPS-injected females. It is also possible that cortisol may
have had some anti-inflammatory actions in the trout
ovary, as suggested by the decreased expression of two
immune-related genes. The expression of the allograft
inflammatory factor 1 (AIF-1), known to be involved in
the immune response during macrophage activation and
which is inhibited by the synthetic glucocorticoid dexam-
ethasone [72], was decreased in the trout ovary in
response to LPS. Further, the expression of the high affin-
ity IgE receptor alpha subunit, known to be involved in
IgE-induced allergen presentation in antigen-presenting
cells and also inhibited by dexamethasone in mammals
[73], was also decreased in response to LPS.

In conclusion, to our knowledge, we report for the first
time the effects of LPS administration on ovarian function
in fish. Our results indicate that an acute administration

of LPS had no inhibitory effects on ovarian steroidogene-
sis, oocyte maturation or follicle contraction, but it caused
a marked increase in apoptosis in the follicular layers sur-
rounding the oocyte. At present, we do not know if the
observed increase in LPS-induced apoptosis could cause
changes in the number of follicular cells and/or altera-
tions in ovarian function in fish. Future studies in our lab-
oratory will be conducted to answer these questions.

Authors' contributions
SM participated in the design of the study, in the execu-
tion of the experiments and in the writing of the manu-
script. NM performed the TUNEL assays and participated
in the generation of the sex steroid data. MM participated
in the measurement of sex steroids. LA performed the cor-
tisol assays. LT participated in the writing of the manu-
script. AK performed the microarray analyses and
participated in the writing of the manuscript. FWG partic-
ipated in the design of the study, in the execution of the
experiments and in the writing of the manuscript. JVP
coordinated and participated in the design of the study as
well as in the execution of the experiments and drafted the
manuscript. All authors read and approved the final man-
uscript.

Acknowledgements
This project was funded in part by grant 20055 from the Fulbright US-Spain 
Science and Technology Program to JVP and FWG. We wish to thank Rolf 
Sara (Center of Biotechnology Turku, University of Turku) for the prepa-
ration of microarrays and Dr. Penny Swanson (National Marine Fisheries 
Service, Seattle) for kindly providing coho salmon LH.

References
1. Entrican G, Wheelhouse NM: Immunity in the female sheep

reproductive tract.  Vet Res 2006, 37:295-309.
2. Quayle AJ: The innate and early immune response to patho-

gen challenge in the female genital tract and the pivotal role
of epithelial cells.  J Reprod Immunol 2002, 57:61-79.

3. Sharara FI, Seifer DB, Flaws JA: Environmental toxicants and
female reproduction.  Fertil Steril 1998, 70:613-622.

4. Janeway CAJ, Medzhitov R: Innate immune recognition.  Annu Rev
Immunol 2002, 20:197-216.

5. Han J, Ulevitch RJ: Limiting inflammatory responses during
activation of innate immunity.  Nat Immunol 2005, 6:1198-1205.

6. Besnard N, Horne EAL, Whitehead SA: Prolactin and lipopolysac-
charide treatment increased apoptosis and atresia in rat
ovarian follicles.  Acta Physiol Scand 2001, 172:17-25.

7. Deb K, Chaturvedi MM, Jaiswal YK: A 'minimum dose' of lipopol-
ysaccharide required for implantation failure: assessment of
its effect on the maternal reproductive organs and inter-
leukin-1a expression in the mouse.  Reproduction 2004,
128:87-97.

8. Karsch FJ, Battaglia DF, Breen KM, Debus N, Harris TG: Mecha-
nisms for ovarian cycle disruption by immune/inflammatory
stress.  Stress 2002, 5:101-112.

9. Shakil T, Snell A, Whitehead SA: Effects of lipopolysaccharide
and cyclosporin on the endocrine control of ovarian function.
J Reprod Fertil 1994, 100:57-64.

10. Sancho-Tello M, Tash JS, Roby KF, Terranova PF: Effects of lipopol-
ysaccharide on ovarian function in the pregnant mare serum
gonadotropin-treated immature rat.  Endocr J 1993, 1:503-512.

11. Baines MG, Duclos AJ, de Fougerolles AR, Gendron RL: Immuno-
logical prevention of spontaneous early embryo resorption is
mediated by non-specific immunosimulation.  Am J Reprod
Immunol 1996, 35:34-42.
Page 10 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16611549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16611549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9797086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9797086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16369559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16369559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11437736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11437736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11437736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15232066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15232066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15232066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8182612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8182612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8789558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8789558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8789558


Reproductive Biology and Endocrinology 2006, 4:46 http://www.rbej.com/content/4/1/46
12. Berczi I, Bertók L, Bereznai T: Comparative studies on the tox-
icity of Escherichia coli lipopolysaccharide endotoxin in vari-
ous animal species.  Can J Microbiol 1966, 12:1070-1071.

13. Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW: Endotoxin
recognition: In fish or not in fish?  FEBS Letters 2005,
579:6519-6528.

14. Salati F, Ikeda Y, Kusuda R: Effect of Edwardsiella tarda lipopol-
ysaccharide immunization on phagocytosis in the eel.  Bull Jap
Soc Sci Fish 1987, 53:201-204.

15. Paulsen SM, Lunde H, Engstad RE, Robertsen B: In vivo effects of b-
glucan and LPS on regulation of lysozyme activity and
mRNA expression in Atlantic salmon (Salmo salar L.).  Fish
Shellfish Immunol 2003, 14:39-54.

16. Pate JL: Involvement of immune cells in regulation of ovarian
function.  J Reprod Fertil Suppl 1995, 49:365-377.

17. Gottschall PE, Katsuura G, Arimura A: Interleukin-1b is more
potent than interleukin-1a in suppressing follicle-stimulating
hormone-induced differentiation of ovarian granulosa cells.
Biochem Biophys Res Commun 1989, 163:764-770.

18. Kaipia A, Chun SY, Eisenhauer K, Hsueh AJ: Tumor necrosis fac-
tor-a and its second messenger, ceramide, stimulate apopto-
sis in cultured ovarian follicles.  Endocrinology 1996,
137:4864-4870.

19. Roby KF, Terranova PF: Tumor necrosis factor a alters follicular
steroidogenesis in vitro.  Endocrinology 1988, 123:2952-2954.

20. Kawano Y, Fukuda J, Itoh H, Takai N, Nasu K, Miyakawa I: The effect
of inflammatory cytokines on secretion of macrophage col-
ony-stimulating factor and monocyte chemoattractant pro-
tein-1 in human granulosa cells.  Am J Reprod Immunol 2004,
52:124-128.

21. Wu R, Van der Hoek KH, Ryan NK, Norman RJ, Robker RL: Macro-
phage contributions to ovarian function.  Hum Reprod Update
2004, 10:119-133.

22. Wang LJ, Brannstrom M, Robertson SA, Norman RJ: Tumor necro-
sis factor a in the human ovary: presence in follicular fluid
and effects on cell proliferation and prostaglandin produc-
tion.  Fertil Steril 1992, 58:934-940.

23. Spaczynski RZ, Arici A, Duleba AJ: Tumor necrosis factor-a stim-
ulates proliferation of rat ovarian theca-interstitial cells.  Biol
Reprod 1999, 61:993-998.

24. Chen HL, Marcinkiewicz JL, Sancho-Tello M, Hunt JS, Terranova PF:
Tumor necrosis factor-a gene expression in mouse oocytes
and follicular cells.  Biol Reprod 1993, 48:707-714.

25. Iliev DB, Liarte CQ, MacKenzie S, Goetz FW: Activation of rain-
bow trout (Oncorhynchus mykiss) mononuclear phagocytes
by different pathogen associated molecular pattern (PAMP)
bearing agents.  Mol Immunol 2005, 42:1215-1223.

26. MacKenzie S, Planas JV, Goetz FW: LPS-stimulated expression of
a tumor necrosis factor-a mRNA in primary trout mono-
cytes and in vitro differentiated macrophages.  Dev Comp
Immunol 2003, 27:393-400.

27. Zou J, Wang T, Hirono I, Aoki T, Inagawa H, Honda T, Soma GI, Oto-
take M, Nakanishi T, Ellis AE, Secombes CJ: Differential expression
of two tumor necrosis factor genes in rainbow trout, Onco-
rhynchus mykiss.  Dev Comp Immunol 2002, 26:161-172.

28. Goetz FW, Iliev DB, McCauley LAR, Liarte CQ, Tort LB, Planas JV,
MacKenzie S: Analysis of genes isolated from lipopolysaccha-
ride-stimulated rainbow trout (Oncorhynchus mykiss) mac-
rophages.  Mol Immunol 2004, 41:1199-1210.

29. Goetz FW, Bergman HL: The effects of steroids on final matu-
ration and ovulation of oocytes from brook trout (Salvelinus
fontinalis) and yellow perch (Perca flavescens).  Biol Reprod
1978, 18:293-298.

30. Koskinen H, Pehkonen P, Vehniainen E, Krasnov A, Rexroad C, Afa-
nasyev S, Molsa H, Oikari A: Response of rainbow trout tran-
scriptome to model chemical contaminants.  Biochem Biophys
Res Commun 2004, 320:745-753.

31. Krasnov A, Koskinen H, Pehkonen P, Rexroad CE, Afanasyev S, Molsa
H: Gene expression in the brain and kidney of rainbow trout
in response to handling stress.  BMC Genomics 2005, 6:3.

32. MacKenzie S, Liarte CQ, Iliev DB, Planas JV, Tort L, Goetz FW: Iden-
tification and characterization of a highly inducible novel CC
chemokine from differentiated rainbow trout (Oncorhyn-
chus mykiss) macrophages.  Immunogenetics 2004, 56:611-615.

33. Swanson P, Suzuki K, Kawauchi H, Dickhoff WW: Isolation and
characterization of two coho salmon gonadotropins, GTH I
and GTH II.  Biol Reprod 1991, 44:29-38.

34. Planas JV, Goetz FW, Swanson P: Stimulation of brook trout
ovarian steroidogenesis by gonadotropins I and II is medi-
ated by the cyclic adenosine 3',5'-monophosphate/protein
kinase A pathway.  Biol Reprod 1997, 57:647-654.

35. Planas JV, Athos J, Goetz FW, Swanson P: Regulation of ovarian
steroidogenesis in vitro by follicle-stimulating hormone and
luteinizing hormone during sexual maturation in salmonid
fish.  Biol Reprod 2000, 62:1262-1269.

36. Hsu SY, Goetz FW: The effects of E and F prostaglandins on
ovarian cAMP production and follicular contraction in the
brook trout (Salvelinus fontinalis).  Gen Comp Endocrinol 1992,
88:434-443.

37. Dowdy S, Wearden S: Statistics for research.  New York, J. Wiley
and Sons; 1991. 

38. Montserrat N, Gonzalez A, Mendez E, Piferrer F, Planas JV: Effects
of follicle stimulating hormone on estradiol-17b production
and P-450 aromatase (CYP19) activity and mRNA expres-
sion in brown trout vitellogenic ovarian follicles in vitro.  Gen
Comp Endocrinol 2004, 137:123-131.

39. Mendez E, Maeland M, Skalhegg BS, Planas JV: Activation of the
cAMP-dependent protein kinase signaling pathway by lutei-
nizing hormone in trout theca layers.  Mol Cell Endocrinol 2003,
205:11-20.

40. Rotllant J, Balm PH, Perez-Sanchez J, Wendelaar-Bonga SE, Tort L:
Pituitary and interrenal function in gilthead sea bream (Spa-
rus aurata L., Teleostei) after handling and confinement
stress.  Gen Comp Endocrinol 2001, 121:333-342.

41. Bortner CD, Oldenburg NBE, Cidlowski JA: The role of DNA frag-
mentation in apoptosis.  Trends in Cell Biology 1995, 5:21-26.

42. Vuori KA, Koskinen H, Krasnov A, Koivumaki P, Afanasyev S, Vuori-
nen PJ, Nikinmaa M: Developmental disturbances in early life
stage mortality (M74) of Baltic salmon fry as studied by
changes in gene expression.  BMC Genomics 2006, 7:56.

43. Cleveland WS, Grosse E, Shyu WM: Local regression models.  In
Statistical Models Edited by: Chambers JM and Hastie TJ. Pacific Grove,
Wadsworth and Brooks/Cole; 1999:309-376. 

44. Goetz FW, Fostier AY, Breton B, Jalabert B: Hormonal changes
during meiotic maturation and ovulation in the brook trout
(Salvelinus fontinalis).  Fish Physiol Biochem 1987, 3:203-211.

45. Goetz FW, Bradley JA: Stimulation of in vitro ovulation and
contraction of brook trout (Salvelinus fontinalis) follicles by
adrenaline through a-adrenoreceptors.  J Reprod Fertil 1994,
100:381-385.

46. MacKenzie S, Iliev D, Liarte C, Koskinen H, Planas JV, Goetz FW,
Molsa H, Krasnov A, Tort L: Transcriptional analysis of LPS-
stimulated activation of trout (Oncorhynchus mykiss)
monocyte/macrophage cells in primary culture treated with
cortisol.  Mol Immunol 2006, 43:1340-1348.

47. Leong MLL, Maiyar AC, Kim B, O'Keeffe BA, Firestone GL: Expres-
sion of the serum- and glucocorticoid-inducible protein
kinase, Sgk, is a cell survival response to multiple types of
environmental stress stimuli in mammary epithelial cells.  J
Biol Chem 2003, 278:5871-5882.

48. Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S: ZIP kinase, a
novel serine/threonine kinase which mediates apoptosis.  Mol
Cell Biol 1998, 18:1642-1651.

49. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G,
Herman B, Levine B: Protection against fatal sindbis virus
encephalitis by beclin, a novel Bcl-2-interacting protein.  J
Virol 1998, 72:8586-8596.

50. Bayrak A, Oktay K: The expression of cyclin-dependent kinase
inhibitors p15, p16, p21, and p27 during ovarian follicle
growth initiation in the mouse.  Reprod Biol Endocrinol 2003, 1:41.

51. Jirawatnotai S, Moons DS, Stocco CO, Franks R, Hales DB, Gibori G,
Kiyokawa H: The cyclin-dependent kinase inhibitors p27Kip1
and p21Cip1 cooperate to restrict proliferative life span in
differentiating ovarian cells.  J Biol Chem 2003, 278:17021-17027.

52. Chen JK, Capdevila J, Harris RC: Cytochrome P450 epoxygenase
metabolism of arachidonic acid inhibits apoptosis.  Mol Cell Biol
2001, 21:6322-6331.

53. Tewari M, Yu M, Ross B, Dean C, Giordano A, Rubin R: AAC-11, a
novel cDNA that inhibits apoptosis after growth factor with-
drawal.  Cancer Res 1997, 57:4063-4069.
Page 11 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5339644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5339644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5339644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7623327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7623327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2506855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2506855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8895358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8895358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8895358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3058464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3058464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15274652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15274652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15274652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1426379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1426379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1426379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10491635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10491635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8485234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8485234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8485234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12631521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15482855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15482855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15482855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=630027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=630027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=630027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15634361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15634361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15503008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15503008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15503008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2015351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2015351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2015351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9283003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9283003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9283003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10775175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10775175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10775175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1337050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15158124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15158124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15158124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14731429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14731429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16545121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7912733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7912733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7912733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16239032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12488318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12488318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12488318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9488481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9488481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12777178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12777178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12777178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12609976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12609976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12609976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9307294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9307294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9307294


Reproductive Biology and Endocrinology 2006, 4:46 http://www.rbej.com/content/4/1/46
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

54. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S: Regu-
lation of telomerase activity and anti-apoptotic function by
protein-protein interaction and phosphorylation.  FEBS Lett
2003, 536:180-186.

55. Perez GI, Kujjo LL, Bosu WT: Endotoxin-induced apoptosis in
ovarian follicles is partially blocked by 2-methylthioATP or
2-chloroATP.  Mol Reprod Dev 1996, 44:360-369.

56. Santana P, Llanes L, Hernandez I, Gallardo G, Quintana J, Gonzalez J,
Estevez F, Ruiz de Galarreta C, Fanjul LF: Ceramide mediates
tumor necrosis factor effects on P450-aromatase activity in
cultured granulosa cells.  Endocrinology 1995, 136:2345-2348.

57. Witty JP, Bridgham JT, Johnson AL: Induction of apoptotic cell
death in hen granulosa cells by ceramide.  Endocrinology 1996,
137:5269-5277.

58. Laing KJ, Wang T, Zou J, Holland J, Hong S, Bols N, Hirono I, Aoki T,
Secombes CJ: Cloning and expression analysis of rainbow trout
Oncorhynchus mykiss tumour necrosis factor-a.  Eur J Biochem
2001, 268:1315-1322.

59. Bobe J, Goetz FW: Molecular cloning and expression of a TNF
receptor and two TNF ligands in the fish ovary.  Comp Biochem
Physiol B Biochem Mol Biol 2001, 129:475-481.

60. Bobe J, Goetz FW: A tumor necrosis factor decoy receptor
homologue is up-regulated in the brook trout (Salvelinus
fontinalis) ovary at the completion of ovulation.  Biol Reprod
2000, 62:420-426.

61. Sancho-Tello M, Perez-Roger I, Imakawa K, Tilzer L, Terranova PF:
Expression of tumor necrosis factor-a in the rat ovary.  Endo-
crinology 1992, 130:1359-1364.

62. Cannon MJ, Pate JL: The role of major histocompatibility com-
plex molecules in luteal function.  Reprod Biol Endocrinol 2003,
1:93.

63. Taylor CC, Terranova PF: Lipopolysaccharide inhibits rat ovar-
ian thecal-interstitial cell steroid secretion in vitro.  Endocrinol-
ogy 1995, 136:5527-5532.

64. Taylor CC, Terranova PF: Lipopolysaccharide inhibits in vitro
luteinizing hormone-stimulated rat ovarian granulosa cell
estradiol but not progesterone secretion.  Biol Reprod 1996,
54:1390-1396.

65. Sancho-Tello M, Chen TY, Clinton TK, Lyles R, Moreno RF, Tilzer L,
Imakawa K, Terranova PF: Evidence for lipopolysaccharide bind-
ing in human granulosa-luteal cells.  J Endocrinol 1992,
135:571-578.

66. Wedemeyer G: Pituitary activation by bacterial endotoxins in
rainbow trout (Salmo gairdneri).  J Bacteriol 1969, 100:542-543.

67. Balm PH, van Lieshout E, Lokate J, Wendelaar Bonga SE: Bacterial
lipopolysaccharide (LPS) and interleukin 1 (IL-1) exert mul-
tiple physiological effects in the tilapia Oreochromis mossa-
mbicus (Teleostei).  J Comp Physiol [B] 1995, 165:85-92.

68. Haukenes AH, Barton BA: Characterization of the cortisol
response following an acute challenge with lipopolysaccha-
ride in yellow perch and the influence of rearing density.  J Fish
Biol 2004, 64:851-862.

69. Holland JW, Pottinger TG, Secombes CJ: Recombinant inter-
leukin-1b activates the hypothalamic-pituitary-interrenal
axis in rainbow trout, Oncorhynchus mykiss.  J Endocrinol 2002,
175:261-267.

70. Pankhurst NW, Van Der Kraak G: Evidence that acute stress
inhibits ovarian steroidogenesis in rainbow trout in vivo,
through the action of cortisol.  Gen Comp Endocrinol 2000,
117:225-237.

71. Campbell PM, Pottinger TG, Sumpter JP: Stress reduces the qual-
ity of gametes produced by rainbow trout.  Biol Reprod 1992,
47:1140-1150.

72. Deininger MH, Meyermann R, Schluesener HJ: The allograft
inflammatory factor-1 family of proteins.  FEBS Lett 2002,
514:115-121.

73. Gosset P, Lamblin-Degros C, Tillie-Leblond I, Charbonnier AS, Joseph
M, Wallaert B, Kochan JP, Tonnel AB: Modulation of high-affinity
IgE receptor expression in blood monocytes: opposite effect
of IL-4 and glucocorticoids.  J Allergy Clin Immunol 2001,
107:114-122.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8858606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7720683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7720683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7720683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8940345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8940345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1537297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1537297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14613531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7588304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7588304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8724369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8724369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8724369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1283178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1283178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4899008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4899008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12379511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12379511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12379511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1493180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1493180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11943136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11150000
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Animals
	Hormones and reagents
	Ovarian tissue incubations
	Isolation of trout macrophages and production of macrophage conditioned medium
	Steroid radioimmunoassays
	In situ TUNEL analyses
	Microarray analyses

	Results
	Effects of LPS on steroid production
	Effects of LPS on oocyte maturation
	Effects of LPS on follicular contraction
	Effects of LPS on ovarian apoptosis
	Effects of LPS on ovarian gene expression

	Discussion
	Authors' contributions
	Acknowledgements
	References

