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Abstract

Behavioral and neuroimaging evidence shows that human decisions are sensitive to the sta-

tistical regularities (mean, variance, skewness, etc.) of reward distributions. However, it is

unclear what representations human observers form to approximate reward distributions, or

probability distributions in general. When the possible values of a probability distribution are

numerous, it is cognitively costly and perhaps unrealistic to maintain in mind the probability

of each possible value. Here we propose a Clusters of Samples (CoS) representation

model: The samples of the to-be-represented distribution are classified into a small number

of clusters and only the centroids and relative weights of the clusters are retained for future

use. We tested the behavioral relevance of CoS in four experiments. On each trial, human

subjects reported the mean and mode of a sequentially presented multimodal distribution of

spatial positions or orientations. By varying the global and local features of the distributions,

we observed systematic errors in the reported mean and mode. We found that our CoS

representation of probability distributions outperformed alternative models in accounting for

subjects’ response patterns. The ostensible influence of positive/negative skewness on the

over/under estimation of the reported mean, analogous to the “skewness preference” phe-

nomenon in decisions, could be well explained by models based on CoS.

Author summary

Life is full of uncertainties: An action may yield multiple possible consequences and a per-

cept may imply multiple possible causes. To survive, humans and animals must compen-

sate for the uncertainty in the environment and in their own perceptual and motor

systems. However, how humans represent probability distributions to fulfill probabilistic

computations for perception and action remains elusive. The number of possible values in

a distribution is vast and grows exponentially with the dimension of the distribution. It

would be costly, if not impossible, to maintain the probability of each possible value. Here

we propose a sparse representation of probability distributions, which can reduce an arbi-

trary distribution to a small set of coefficients while still keeping important global and

local features of the original distribution. Our experiments provide preliminary evidence

for the use of such representations in human cognition.
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Introduction

As Horace Barlow wrote, “the brain has to decide upon actions in a competitive, chance-driven

world, and to do this well it must know about and exploit the non-random probabilities and

interdependences of objects and events” [1]. In general, the probabilistic information the cog-

nitive system needs to deal with lies in the form of probability distributions of varying kinds:

distributions of sensory stimuli in the natural environment [2–4], distributions of sensorimo-

tor errors for motor actions [5–7], and distributions of rewards and penalties for alternative

choices [8, 9]. There is evidence for close-to-optimal probabilistic inference in human percep-

tion [10], cognition [11], and motor control [6], suggesting that the cognitive system is capable

of coding probability distributions to satisfactory precision. Given that an arbitrary distribu-

tion can have myriad possible values and render an exact representation unaffordable, what

approximations may be used in human representation of probability distributions?

Three general approaches have been proposed for the internal coding of probability distri-

butions [12]. The first is to represent the event probabilities separately [13, 14]. However, such

coding schemes would be practically impossible for continuous probability distributions

where the number of potential events is infinite, unless additional discretization procedures

are assumed. The second approach is sampling; that is, to represent the values of a set of sam-

ples from the underlying distribution [15–17]. Probabilistic inference or decision making,

therefore, could be based upon samples harnessed from the underlying distribution [18–21],

analogous to Monte Carlo methods. Indeed, there are circumstances where people seem to

base their judgment or decision on a few [22] or even one [23, 24] random sample taken from

the distribution. Third, any probability distribution, in the form of probability density or prob-

ability mass functions, may be approximated by the linear combination of a set of basis func-

tions [25–29], much like the fact that time series can be decomposed into the sum of sine and

cosine functions in Fourier analysis. The idea of basis function representations is appealing,

because it reduces the whole distribution into a set of coefficients and therefore alleviates the

cognitive load subjects would have otherwise undertaken, given that the forms of the basis dis-

tributions are known [25]. Recently, Zhang, Daw, and Maloney [30] have provided prelimi-

nary behavioral evidence that people might represent their own sensorimotor error

distributions with a small number of basis distributions.

A fourth approach, which has not been explicitly proposed but has been the foundation of

statistical decision theory, is to encode the moments of probability distributions, such as mean

(first), variance (second), skewness (third central moment), and so on [31–33]. Mathemati-

cally, the whole sequence of moments of a specific distribution contains all the information of

the distribution. There have been a number of empirical studies of economic decision-making

where efforts have been made to map brain regions dedicated to the calculation of the first

three moments [34–38], with the implicit assumption that different moments might be sepa-

rately processed by different brain structures.

In the present study, we explore the basis function hypothesis where a probability distribu-

tion is represented as a set of coefficients of particular basis functions. What is often empha-

sized in previous theoretical work [25, 28] is the flexibility of this approach. In theory, any

probability distribution can be well approximated as long as enough basis distributions are

used. Humans in practice, however, may not be able to afford a large number of basis distribu-

tions, and the coefficients they extract from the empirical distribution are error-prone. There

is increasing evidence that human representations of prior distributions can deviate signifi-

cantly from the empirical distribution [30, 39] and such deviations prove to be an important

source of suboptimality in human probabilistic inference [40]. If humans do not necessarily

have a lossless representation of the encoded distribution, a natural question arises: What

Clusters-of-samples representation of probability distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007047 May 14, 2019 2 / 29

performed on the High Performance Computing

Platform of the Center for Life Sciences at Peking

University. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007047


information is extracted from the empirical distribution? Here we propose the following repre-

sentation of probability distributions (Fig 1). After a stochastic clustering process, samples

from the distribution are classified into a small number of clusters and the centroids and rela-

tive weights of the clusters—fðck;wkÞg
K
k¼1

—are maintained for future use. We call it Clusters-

of-Samples (CoS) representation for which, as in the sampling approach, probabilistic infor-

mation initially comes from samples and, as in the basis function approach, only a finite set of

coefficients needs to be estimated and maintained to approximate the encoded distribution.

An idea akin to our proposal was Shelton et al.’s [41] select-and-sample approach, which

assumes that a specific probability distribution is coded by samples but only a small set of pre-

selected high-density areas of the distribution may be sampled. Similar to the CoS representa-

tion, the select-and-sample approach would reduce an arbitrary distribution to a small number

of high-density centers. Shelton et al. [41] proved theoretically that such centers could effi-

ciently approximate multimodal distributions in high-dimensional spaces while retaining the

correlations between dimensions. Whereas in our hypothesis, by representing an arbitrary dis-

tribution with a set of cluster centers, we are essentially using the clusters as the basis functions

to discretize the distribution and obtaining a mixture of Dirac delta functions. The CoS repre-

sentation can also be extended to the usage of uniform or Gaussian distributions as the bases,

with additional coefficients for the spread of the basis distributions.

Fig 1. Scheme of the Clusters-of-Samples (CoS) representation. The samples from the empirical distribution are

partitioned into a few clusters after a stochastic clustering process and the centroids and relative weights of the clusters

are internally maintained for future use (“Representation”). When asked to report the Mode and Mean of the

distribution, subjects would report the centroid of the largest cluster as the Mode estimate, and a weighted average of

all clusters (whose weights may be subject to additional transformations) as the Mean estimate.

https://doi.org/10.1371/journal.pcbi.1007047.g001

Clusters-of-samples representation of probability distributions
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On the one hand, even with just a small number of clusters, a CoS representation reflects

the overall shape of the encoded distribution and is capable of capturing multiple modes if

the encoded distribution is multimodal. On the other hand, the CoS representation is prone

to information loss. With groups of samples summarized by the cluster centers, information

about individual samples in each cluster and thus local details about the distribution are

lost. Moreover, the stochasticity in the clustering process may cause variations in the

weights as well as in the centroids of the clusters. Due to its characteristic lossy coding, CoS

can lead to systematic errors in certain tasks, which would allow us to test CoS against can-

didate representations that predict no such errors or different patterns of errors. Following

the reasoning above, a possible testbed for CoS would be processing multimodal distribu-

tions. The main goal of our study is to test how humans cope with the structure of multi-

modal distributions.

In Marr’s [42] term, our proposal of the CoS representation resides on the computational

level, concerning what statistics for a probability distribution are internally maintained.

How CoS is implemented algorithmically or biologically, however, is a separate question. In

order to make our arguments concrete and testable, we specified certain computational pro-

cedures about the stochastic clustering process. In particular, we implemented the stochas-

tic clustering process as a distance-dependent Chinese Restaurant Process (ddCRP) [43]. It

has the desirable property that the number of clusters does not have to be specified in

advance and is instead determined by a self-adaptive probabilistic process (see Methods). It

should also be noted that not all the alternative representations we reviewed earlier are

incompatible with CoS on the computational level. For example, a sampling-based repre-

sentation following the select-and-sample approach [41] may have similar behavioral conse-

quences as CoS.

In a series of behavioral experiments, we asked human subjects to report the summary sta-

tistics of visually presented distributions. On each trial (Fig 2A), 70 vertical lines, whose hori-

zontal coordinates were samples randomly drawn from a specific underlying probability

distribution, were briefly and sequentially presented along the middle axis of the computer

screen. Subjects’ task was to move a mouse pointer to locate (1) the Mean and (2) the Mode
(location of the highest density) of the observed distribution of spatial positions. Subjects were

not required to memorize the spatial positions of individual vertical lines but rather to report

the ensemble statistics of spatial positions [44–48] (see [49] for a review of ensemble percep-

tion). The Mean and Mode estimation tasks were specifically chosen to test whether subjects’

representations captured both the global features and local details of the empirical distribution.

The underlying distributions were generated as the weighted mixtures of multiple evenly-

spaced beta-like distributions (Fig 2B–2D). By varying the relative weight of different beta

components, for example by assigning more weights to the left or to the right, we were able to

manipulate the global distribution to be more positively or more negatively skewed. In con-

trast, by varying the shape of individual beta components, we modified the local asymmetry of

the distribution. Subjects’ Mean and Mode estimates, therefore, afford a unique opportunity to

test different representation hypotheses.

Had subjects represented the distribution exactly as it was observed, their Mean and Mode

reports would be unbiased estimators about the true values of the Mean and Mode. However,

in all four experiments that we tested, systematic deviations between subjects’ estimates and

the ground truths of the empirical distributions were detected. We constructed computational

models based on the CoS representation and alternative representations and compared differ-

ent models’ performance in quantitatively predicting subjects’ Mean and Mode estimates. The

CoS models outperformed the alternative models for both estimates.

Clusters-of-samples representation of probability distributions
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Fig 2. Task and design of the experiments. (A) Time course of one trial. Following a fixation cross, subjects saw 70 red vertical lines sequentially presented on a

white horizontal axis. Their task was to move a blue vertical line to indicate their estimate of the Mean (the average horizontal position of the red lines) and then a

blue box to indicate the Mode (the area that would catch the largest number of red lines). (B) An example of a 3-beta mix (i.e. mixture of three beta distributions)

underlying distribution used in Experiments 1, 3 and S1. This example consists of three negatively skewed beta components (“LocalNeg”), with the weights of the

three components from left to right being 0.2, 0.3 and 0.5 (“weights = 235”). (C) An example of a 4-beta mix (i.e. mixture of four beta distributions) underlying

distribution used in Experiments 2 and 3. This example consists of four positively skewed beta components (“LocalPos”), with the weights of the four components

being 0.1, 0.2, 0.4 and 0.3 (“weights = 1243”). (D) All 3-beta mix underlying distributions used in Experiments 1, 3 and S1. “Pos”, “Sym”, and “Neg” are abbreviations

respectively for positive, symmetric, and negative. Local skewness (LocalPos, LocalSym, and LocalNeg) refers to the skewness of the beta components and is

Clusters-of-samples representation of probability distributions
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Results

Systematic errors in subjects’ estimates

In Experiment 1, the positions of the 70 vertical lines for each trial were randomly drawn from

a mixture of three beta-like distributions that adjoined each other. We call this underlying dis-

tribution “3-beta mix”, for which both the shape (identical for all the components in the same

distribution) and weights of the beta components were varied across trials (Fig 2D). The shape

of the beta components could be negatively skewed, symmetric, or positively skewed (see

Methods for details). The weights for the three components, from left to right, could be (0.2,

0.3, 0.5), (0.3, 0.2, 0.5), (0.2, 0.5, 0.3), (0.3, 0.5, 0.2), (0.5, 0.2, 0.3), or (0.5, 0.3, 0.2). In what fol-

lows, “local skewness” refers to the skewness (shape) of the individual beta components in the

3-beta mix. We refer the skewness of the whole 3-beta mix distribution as “global skewness”

here to differentiate from “local skewness”, which relies mainly on the weights of the beta com-

ponents. Thus the effects of shape and weight conditions correspond to the local and global

skewness effects, respectively. In the experiment, each of the 18 combinations of shape and

weight conditions was repeated for 9 times, resulting in 162 trials.

“True mode” and “true mean” refer to the statistics computed from the empirical distribu-

tion (i.e. the 70 samples, see Methods). All 16 subjects’ Mode and Mean estimates were posi-

tively correlated with the true mode and mean (Pearson’s correlation, all p< 0.001). Besides,

subjects’ Mode estimate was closer to the true mode than to the true Mean (t(15) = -7.78,

p< 0.001), and their Mean estimate was closer to the true Mean than to the true Mode

(t(15) = -26.36, p< 0.001), indicating that subjects did report the two statistics as instructed

instead of using the same estimates for the two tasks.

Meanwhile, the deviations of subjects’ Mode and Mean estimates from the ground truth

varied systematically with the shape and weight conditions (Fig 3A and 3C). For subjects’

errors in Mode estimates, a two-way (3 shapes × 6 weights) repeated-measures ANOVA

showed significant main effects of shape (F(2, 150) = 71.52, p< 0.001) and weight conditions

(F(5, 150) = 199.96, p< 0.001) as well as their interaction (F(10, 150) = 3.25, p = 0.001). Fur-

ther post-hoc comparisons indicated that the three shape (local skewness) levels differed from

each other (all p< 0.001, Bonferroni corrected for three comparisons; Fig 3B). A similar

ANOVA on subjects’ errors in Mean estimates showed that the main effect of the weight con-

dition (F(5, 150) = 39.13, p< 0.001) was significant, and no other effects reached the 0.05 sig-

nificance level.

Three patterns emerged from the behavioral data. First, the Mode was overestimated for

positive compared to negative local skewness (Fig 3A and 3B, differences between the three

colors). That is, though on average still falling within the beta component where the true mode

resided, subjects’ Mode estimate was biased towards the center of the beta component. Second,

the Mode was overestimated for positive and underestimated for negative global skewness (Fig

3A, the ascending lines, but note the exceptions at 253 and 352). In other words, the Mode esti-

mate was also biased towards the mean of the empirical distribution.

Third, the Mean was overestimated for positive and underestimated for negative global

skewness (Fig 3C, the ascending lines). When choosing among probability distributions of

rewards, besides the well-known preference for higher mean (expected gain) and lower vari-

ance [50], it has been suggested that people tend to prefer positively skewed over symmetric,

and symmetric over negatively skewed distributions. This phenomenon is known as “skewness

controlled by the shape condition. Global skewness (GlobalPos, GlobalSym, and GlobalNeg) refers to the skewness of the whole distribution and is controlled by the

weight condition.

https://doi.org/10.1371/journal.pcbi.1007047.g002

Clusters-of-samples representation of probability distributions
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preference” in economic decisions [51–55], which was considered to be associated with activi-

ties in dedicated brain structures devoted to the processing of skewness [34, 56, 57]. Our find-

ing that the reported Mean was positively associated with distribution skewness, other things

being equal, echoed previous literature on skewness preference and raised the possibility that

skewness preference might be due to the mis-estimation of the mean of skewed reward

distributions.

If subjects had an accurate representation of the empirical distribution and computed the

required statistics properly, their Mode and Mean estimates would not systematically deviate

from the true mode and mean. What representation of probability distributions could best

account for the error patterns described above? Based on the different representations intro-

duced earlier, we constructed a variety of models for the estimations of the Mode and Mean,

and compared different models’ performance in explaining the data.

Mode estimates: clusters-of-samples versus alternative models

In the CoS representation of a specific distribution—fðck;wkÞg
K
k¼1

, detailed information about

the individual samples that constitute each cluster has been lost. As a result, the mode of the

distribution cannot be exactly recovered from its CoS representation. In the CoS model for

Mode estimates (see Methods), we assume that the subject simply reports the centroid of the

cluster that is of the highest weight as the Mode estimate.

Intuitively, the CoS model can produce the observed two error patterns of Mode estimates

(Fig 4): On the one hand, because the CoS representation is ignorant of the individual samples

of each cluster and only identifies their means, the CoS model would predict that the mean—

instead of the mode—of the largest beta component mainly drives subjects’ Mode estimates.

On the other hand, due to the stochasticity of the clustering process, the largest cluster in the

CoS representation occasionally does not correspond to the largest beta component. Thus, on

average, the Mode estimate would deviate from the mean of the largest beta component

towards the mean of the whole distribution. In addition, the occasional mismatch of the

largest cluster in the CoS representation with the largest beta component in the underlying

Fig 3. Systematic errors of subjects’ estimates in Experiment 1. (A, C) Subjects’ errors in Mode (A) and Mean (C) estimates varied with the weight condition

(abscissa) and the shape condition (different colors). Shaded areas denote 1 SE. See the legend of Fig 2 or the text for the definition of global and local skewness.

Different weight conditions are arranged from left to right in increasing global skewness. Note that subjects’ errors in Mode estimates changed non-monotonically

with global skewness. See text for intuitions how this non-monotonicity can arise from the CoS representation. (B) The main effect of the shape condition (local

skewness) on subjects’ errors in Mode estimates. ���: p< 0.001 for Bonferroni corrected post-hoc comparisons. Error bars denote 1 SE.

https://doi.org/10.1371/journal.pcbi.1007047.g003

Clusters-of-samples representation of probability distributions
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distribution gives rise to two more specific predictions for Mode estimates, both of which are

supported by our data. First, it predicts that subjects’ Mode estimates across trials would be

multimodally distributed, with the major peak centered at the largest beta component and a

minor peak at the second largest beta component (see Fig 5C for our further specifications of

the data and model predictions). Second, it can naturally predict the observed non-monotonic

increase of errors with global skewness (Fig 3A): Given that the 253 weight condition has its

second largest beta component on the right of its largest beta component and the 352 condi-

tion has the reverse arrangement, the former is likely to incur a more positive error than the

latter, though the former is associated with negative global skewness and the latter with posi-

tive global skewness.

We considered several alternative models for Mode estimates. One model is the ground-

truth model, where the Mode estimate is assumed to be the same as the true mode. Apparently

the ground-truth model cannot explain any systematic biases from the true mode and there-

fore only serves as a baseline for the other models.

The second model is a Bayesian ideal observer model (see Methods), in the consideration

that even an ideal observer may not be able to build an accurate representation of the empirical

distribution from the available samples and thus may show certain biases. Following Orhan

and Jacobs’ [58] modeling of working memory, we used a Dirichlet Process Mixture Model

(DPMM) as the generative model assumed by the ideal observer. That is, the ideal observer

Fig 4. Intuition of how CoS may explain the observed error patterns in Mode estimates. Black or gray curves

denote the empirical distribution. Yellow rectangles denote the clusters formed for the CoS representation. Orange

dotted lines denote the means of the clusters. The red brown vertical line with circle arrowhead indicates the true

Mode. The red brown arrow indicates the influence of local skewness. Given that subjects would report the mean of

the largest cluster as the Mode estimate, the mode estimate would be overestimated for locally positively skewed

distributions (“LocalPos”) and underestimated for the reverse (“LocalNeg”). Blue arrows indicate the influence of

global skewness. Due to the stochasticity of the clustering process, occasionally the largest cluster in the CoS

representation does not correspond to the largest beta component, leading to an overestimation of mode for globally

positively skewed distributions (“GlobalPos”) and underestimation in the reverse case (“GlobalNeg”).

https://doi.org/10.1371/journal.pcbi.1007047.g004

Clusters-of-samples representation of probability distributions
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Fig 5. Modeling results of Experiment 1. (A, B) Summed ΔAICc (lower is better) for Mode estimates (A) and Mean estimates (B). GT:

ground-truth model; IO: ideal observer model; MoMe: mode+mean model; MeSk: mean+skewness model; MoSk: mode+skewness model;

Clusters-of-samples representation of probability distributions
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assumes a “bumpy” world: Each observed sample descends from a specific cluster and its value

is generated from the Gaussian distribution associated with the cluster. The number of clusters

and the number of samples in each cluster are assumed to follow a Dirichlet random process.

DPMMs are commonly used to model cognitive processes [58–60], which have the desirable

property that the number of clusters need not to be pre-specified but can be estimated from

the data. By estimating the parameters of such a generative model from the observed samples,

the ideal observer can approximate the empirical distribution with a Gaussian mixture distri-

bution, whose mode would be reported as the Mode estimate. We found that the Gaussian

mixture distribution obtained by the ideal observer closely matches the empirical distribution,

even for beta mixtures that have skewed beta components (S4 Fig). That is, the behavior

responses of the Bayesian ideal observer model would be almost equivalent to those of the

ground-truth model and not show systematic errors.

The other alternative models are based on a moment-based representation of probability

distributions, all of which can qualitatively reproduce, at least part of, the observed error pat-

terns in Mode estimates. The moment representation does not necessarily suggest any biases:

In theory, the mode of a distribution can be recovered from the set of moments of the distribu-

tion. However, if subjects only represented the first a few moments and used them to estimate

the mode, or if subjects had an unbiased internal estimate of the true mode but their responses

were biased by certain task-irrelevant moments, their responses might show systematic errors.

To test these possibilities, we constructed a series of moment representation models where the

Mode estimate is a weighted average of the true mode and moments of the distribution plus

random noises. In particular, the models were mean+skewness, mode+mean, mode+skewness,

and mode+mean+skewness. We did not include variance as a predictor in these models since

all the distributions were generated with equal variance.

All models share a common assumption that the final Mode response undergoes an additional

linear transformation and contains a Gaussian random noise, due to the imperfect mapping from

perception to motor response. We fit each model to each subject’s Mode estimates using maxi-

mum likelihood estimates and computed the Akaike information criterion corrected for small

sample-size (AICc) [61, 62] as the metric of goodness-of-fit for model comparison. The ΔAICc of

a specific model for a specific subject is defined as the difference between the AICc of the model

and the lowest AICc for the subject. According to the summed ΔAICc across subjects (Fig 5A), the

CoS model was the best predictor of Mode estimates. A group-level Bayesian model selection [63,

64] showed that the protected exceedance probability of the CoS model, i.e. the probability for the

CoS model to outperform all the other models’ predictions of Mode estimates, was close to 100%.

The CoS model well predicted the systematic errors in subjects’ Mode estimates, including the

non-monotonic increase of errors with global skewness and the effect of local skewness (Fig 6A).

Mean estimates: clusters-of-samples versus alternative models

On each trial, subjects reported both the mean and mode of the empirical distribution. It is

reasonable to assume that the two estimates are based on a shared CoS representation. The

MoMeSk: mode+mean+skewness model; CoS: clusters-of-samples model; SW: subjective weighting model. (C) Joint distributions of Mode

and Mean estimates collapsed across subjects for data, the ideal observer models, the moment-based second-best models (mode+mean

+skewness for Mode and mean+skewness for Mean) and the CoS models. (D) Relative frequency of different cluster sizes (number of

samples per cluster) estimated for subjects’ CoS representations. For each subject, the relative frequency of each cluster size was averaged

across trials and possible CoS representations on each trial. The statistics were then averaged across subjects. Error bars denote 1 SE. Overall,

the clustering process had a tendency to generate clusters of small sizes. The frequencies for cluster sizes of 14, 21, and 35—which

correspond to the three relative weights used in 3-beta mix—were much higher than those of their neighbors, indicating that the clustering

process could partly recover the multimodal structure of the empirical distribution.

https://doi.org/10.1371/journal.pcbi.1007047.g005
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exact CoS representation for a specific trial is not deterministic because the stochastic cluster-

ing process may end up with different clustering results and thus different CoS representations

on different runs. However, subjects’ Mode estimates had allowed us to infer a probability dis-

tribution over different CoS representations for each trial (see Methods) and we used this

information to model subjects’ Mean estimates. Given a specific CoS representation

fðck;wkÞg
K
k¼1

, we assume that the Mean estimate is a weighted average of all ck, where the sub-

jective weight for ck is a transformation of wk that reflects probability distortion [65] and lateral

inhibition [66, 67].

We hypothesize that the systematic errors in subjects’ Mean estimates arise as a conse-

quence of CoS representations followed by further transformations upon CoS. The CoS repre-

sentation itself would not lead to any systematic errors in Mean estimates, because the relative

weight of each sample in computing the mean is faithfully transferred to the cluster it is

assigned to and thus effectively not altered by the clustering process. Probability distortion and

lateral inhibition, as we specify later in a model lesion analysis, would cause overweighting or

underweighting of different parts of the distribution and thus biases in Mean estimates. To

Fig 6. Model predictions and model lesion analysis for Experiment 1. (A) Subjects’ errors in Mode and Mean estimates (left panels, the same as Fig 3A & 3C)

versus the predictions of the CoS models (right panels). The CoS models could well predict subjects’ errors. Insets refer to the mean across the three local skewness

conditions. (B) Summed ΔAICc of the CoS model for Mean estimates and its lesioned models. The lesioned models included models without Lateral Inhibition (“CoS

w/o LI”), without Power Transformation (“CoS w/o PT”), without both the components (“CoS w/o LI&PT”), and without clustering (“SW”, which is the subjective

weighting model in Fig 5B). The unlesioned CoS model outperformed the lesioned models, implying that power transformation, lateral inhibition and the clustering

process were all necessary for the CoS model to explain subjects’ Mean estimates. (C) Predictions of the four lesioned CoS models, which deviated from the data

quantitatively or qualitatively. Given the models’ considerable differences in ΔAICc, their differences in the prediction plots might look counterintuitively small,

which is partly due to the fact that these predictions are only about the mean trend of data whereas different models can also differ in their noise distributions. See text

for the intuitions for these results.

https://doi.org/10.1371/journal.pcbi.1007047.g006
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exclude the possibility that the observed biases are solely induced by the additional transforma-

tions, we constructed an alternative model for Mean estimates with similar transformations

but no clustering—the subjective weighting model (see Methods), and compared its perfor-

mance with that of the CoS model (Fig 5B & Fig 6B and 6C).

A Bayesian ideal observer model and several moment representation models for Mean esti-

mates were defined in a similar way as their counterparts for Mode estimates (see Methods).

Parallel to the models for Mode estimates, all models for Mean estimates include a linear trans-

formation and Gaussian noise. The model fitting and comparison procedures were the same

as those of Mode estimates.

The CoS model outperformed the other models for Mean estimates in the summed ΔAICc.

According to a group-level Bayesian model selection, it had a 99.5% probability to excel all the

other models (Fig 5B). Note that the mean+skewness model—Mean estimate as a weighted

average of the mean and skewness of the distribution—was among the models that were infe-

rior to the CoS model, though it seems to provide a straightforward explanation for the “skew-

ness preference” (Fig 3C). Similarly, though assuming a lateral inhibition between samples can

cause samples underweighted in dense areas and overweighted in sparse areas and thus explain

the “skewness preference” (S5 Fig), the subjective weighting model without clustering fit worse

to the data than the CoS model did.

The CoS model for Mean estimates (but not that for Mode estimates) includes additional

transformations. In a model lesion analysis, we tested further how the additional transforma-

tions as well as the clustering process of the CoS model contributed to its performance in

Mean estimates. When lateral inhibition, power transformation, both the transformations, or

clustering were removed from the CoS model (the CoS model w/o clustering is equivalent to

the subjective weighting model in Fig 5B), the resulting model fit worse to subjects’ Mean esti-

mates than the CoS model did (Fig 6B, also see S7 Fig for similar results of further experi-

ments). Compared to its lesioned versions, CoS had a smaller summed ΔAICc and a protected

exceedance probability of 95.6%. The CoS model well predicted subjects’ errors in Mean esti-

mates (Fig 6A), whereas the lesioned models failed quantitatively or qualitatively (Fig 6C). The

failure of the CoS model without both transformations (i.e. the CoS w/o both model) is

straightforward since the CoS representation alone does not introduce biases into Mean esti-

mates, as we mentioned earlier. The intuitions for the other two lesioned models are as follows.

When there is no lateral inhibition (i.e. the CoS w/o LI model), power transformation leads to

a re-distribution of cluster weights that depends only on the values of the weights but not on

how the clustered are aligned. As we elaborate later, the major clusters in subjects’ CoS repre-

sentations closely followed the beta components in the empirical distribution. Therefore, the

weight re-distributions would be similar for the 235 and 325 weight conditions (weights mov-

ing from the rightmost cluster to the left two clusters) and for the 523 and 532 weight condi-

tions (weights moving from the leftmost cluster to the right two clusters). As the result, the

CoS w/o LI model predicted an S-shaped error pattern (left panel of Fig 6C). In contrast, when

there is lateral inhibition but no power transformation (i.e. the CoS w/o PT model), the re-dis-

tribution of cluster weights depends on the alignment of the clusters, for which 235 and 325,

or 523 and 532 would be rather different. Consequently the CoS w/o PT model predicted a

close-to-linear error pattern (central panel of Fig 6C). The error patterns predicted by the CoS

model as well as that of the data lay between those of the two lesioned models.

To see whether subjects really, as we assumed, reported their Mode and Mean estimates

based on a common CoS representation, we constructed an additional lesioned CoS model for

Mean estimates that does not use the representational information inferred from the Mode

estimate on the same trial. If two distinct CoS representations had been used for Mode and

Mean estimates, the CoS representation inferred from the Mode estimate would be non-

Clusters-of-samples representation of probability distributions
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informative for predicting the Mean estimate and the lesioned model would perform equally

well as the original model. Instead, we found that this lesioned model was inferior to the origi-

nal CoS model in fitting subjects’ Mean estimates (S6 Fig), thus providing evidence for a

shared CoS representation across the two estimation tasks.

Multimodality and statistics of the clusters

Though more than one model can qualitatively predict the error patterns of Mode and Mean

estimates in Fig 3, the CoS models outperformed the alternative models in predicting the full

distributions of Mode and Mean estimates. Fig 5C shows the joint distributions of Mode and

Mean estimates, collapsed across subjects and separately for the six weight conditions, com-

pared between data and model predictions. In most of the data plots, the joint distributions

appeared to be multimodal: We can see at least two separate peaks, one dominant and the

other minor (see S9 Fig for statistical evidence). The major peak for each weight condition cor-

responds to the beta component of the largest weight, while the minor peak corresponds to the

second-largest beta component. The CoS models predicted such multimodality, while the

moment representation models predicted only unimodal distributions. The CoS representa-

tion could lead to the observed multimodality in Mode estimates because of the stochasticity

inherent in its clustering process so that the same empirical distribution may be parsed into

different partitions in different runs.

To illustrate how the clusters in subjects’ CoS representations can capture the statistics of

the empirical distribution, we plot the relative frequencies of different cluster sizes (i.e. number

of samples per cluster, see Fig 5D), which were averaged across trials and possible CoS repre-

sentations on each trial. The frequencies for 14, 21, and 35 samples per cluster—which corre-

spond to the relative weights of 0.2, 0.3, and 0.5 that were used in our stimuli—were much

higher than those of their neighbors, indicating that the clustering process could partly recover

the multimodal structure of the empirical distribution.

To test whether our findings in Experiment 1 can generalize to decision contexts other than

spatial position judgments, we performed Experiment S1 (see Methods and S8 Fig), which

used the same design as Experiment 1 but replaced spatial positions with orientations—

another widely used stimuli in ensemble perception [49]. The results of Experiment S1 (S3

Fig) replicated the major findings of Experiment 1, including the three error patterns in Mode

and Mean estimates, the superiority of the CoS models over the alternative models, and the

multimodal distributional structure captured in subjects’ CoS representations. We also noted a

slight difference between the results of the orientation and the spatial position experiments:

the CoS model for Mean estimates in Experiment S1 had a considerably lower protected

exceedance probability compared to its counterpart in Experiment 1.

In Experiment 1, we found that subjects might be sensitive to the multimodality of the dis-

tribution and formed clusters accordingly. To further test this hypothesis, we conducted two

new experiments, where the task structures were similar to Experiment 1 but the number of

modes in the underlying distributions were varied. In Experiment 2, we increased the number

of modes to four. In Experiment 3, we had separate mini-blocks where the numbers of modes

were different (three or four).

Experiment 2: 4-beta mix

Sixteen new subjects took part in Experiment 2, where the underlying distribution in each trial

was a mixture of four beta-like distributions, abbreviated as 4-beta mix (Fig 2C). As in Experi-

ment 1, we found systematic deviations of the Mode and Mean estimates from the true mode

and mean (S1 Fig): Both errors were significantly influenced by the weight condition, F(23,

Clusters-of-samples representation of probability distributions
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644) = 53.27, p< 0.001, and F(23, 644) = 13.58, p< 0.001, according to repeated-measures

ANOVAs. For Mode estimates, the main effect of the shape condition (F(2, 644) = 4.83,

p = 0.008) and its interaction with the weight condition (F(46, 644) = 2.87, p< 0.001) were

also significant. Post-hoc comparisons (Bonferroni corrected for three comparisons) showed

that the errors for locally-negatively-skewed distributions were significantly more negative

than those of the locally-symmetric (t(14) = -3.684, p = 0.008) and locally-positively-skewed

distributions (t(14) = -4.481, p< 0.001), while the difference between the latter two conditions

was insignificant (t(14) = 0.011, p = 1.000). There were no other significant effects for Mean

estimates.

Again, the Bayesian ideal observer model was able to perfectly recover the underlying

4-beta mix distribution (S4B Fig), which could not explain the systematic errors in Experiment

2. Among the models developed for Experiment 1, the CoS models still performed the best in

predicting subjects’ Mode and Mean estimates in Experiment 2, according to summed ΔAICc

(S1 Fig). The probabilities for the CoS models to excel the alternative models (i.e. protected

exceedance probability) were 100.0% and 93.6%, respectively for the Mode and Mean

estimates.

Similar to Experiment 1, subjects’ CoS representations could capture the multimodal struc-

ture of the empirical distribution: Clusters of 7, 14, 21, and 28 samples, which correspond to

the relative weights of 4-beta mix, stood out from the histogram (S1F Fig).

Experiment 3: interleaved 3-beta and 4-beta mix

In Experiment 3, we tested whether our CoS model is flexible enough to adapt to a dynamic

environment where 3-beta mix and 4-beta mix distributions were presented in alternating

mini-blocks of 10–14 trials. As in Experiments 1 and 2, all subjects’ Mode and Mean estimates

were significantly correlated with the true mode and mean (Pearson’s correlation, all

p< 0.001) but had systematic errors (S2 Fig), with the error patterns of the 3-beta and 4-beta

trials respectively resembled those of Experiments 1 and 2. We performed 2 (shape conditions)

× 2 (weight conditions) repeated-measures ANOVAs separately for 3-beta and 4-beta trials.

For 3-beta trials, the main effects of the shape condition (F(2, 150) = 9.43, p< 0.001) and the

weight condition (F(5, 150) = 82.73, p< 0.001) were significant for Mode estimates, while only

the main effect of the weight condition was significant for Mean estimates (F(5, 150) = 22.78,

p< 0.001). For 4-beta trials, the main effects of the shape condition (F(2, 690) = 3.6, p = 0.028)

and the weight condition (F(23, 690) = 32.48, p< 0.001), and their interaction (F(46, 690) =

1.95, p< 0.001) were significant for Mode estimates, while only the main effect of the weight

condition (F(23, 690) = 4.36, p< 0.001) was significant for Mean estimates.

The results of model comparisons replicated those of Experiments 1 and 2: The CoS models

fit best to both the Mode and Mean estimates, according to summed ΔAICc (S2 Fig). On the

group level, the probabilities for the CoS models to outperform the alternative models

approached 100% and were 99.9%, respectively for the Mode and Mean estimates. The fre-

quency statistics of cluster sizes of the 3-beta and 4-beta trials mimicked those of Experiments

1 and 2.

Discussion

We proposed clusters-of-samples (CoS) as an approximate representation of probability distri-

butions and tested it against a variety of alternatives in four behavioral experiments. Human

subjects were required to report the Mean and Mode of various multimodal probability distri-

butions and systematic errors were observed in their estimates. We found that models based

Clusters-of-samples representation of probability distributions
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on the CoS representation accounted for subjects’ error patterns better than alternative models

that implement more straightforward explanations based on moment representations.

The moment representation for probability distributions

The fact that probability distributions can be represented by their central moments—mean,

variance, skewness, etc.—has gained increasing popularity in cognitive and decision neurosci-

ence research. Though it was not among the theoretical possibilities formally proposed [12],

the moment representation was implicitly assumed in the decision making studies that

attempted to separate the brain regions for mean, variance, and skewness [34, 37, 38]. These

studies tested subjects’ preferences for different reward distributions to see how the choice-

related neural activities may vary with specific moments of the reward distribution. However,

concerning the coding of the moments higher than the mean (i.e. variance and skewness), the

brain regions identified by recent neuroimaging studies were rather inconsistent: Variance

representation was associated with anterior cingulate cortex [34] or ventral striatum and ante-

rior insula [38]; skewness was associated with dorsal insula [34], ventral striatum [38], or ante-

rior insula and dorsomedial prefrontal cortex [37].

These conflicting findings raised the possibility that variance and skewness might not be

the variables actually encoded in the brain. Instead, their influences on human decisions may

come through another set of more basic variables humans adopt to appraise uncertainty.

Indeed, we found that the moment-based models were inferior to the CoS models in fitting

both the Mode and Mean estimates, even though the coding of task-irrelevant skewness seems

to be a natural explanation for the increase of the Mode and Mean estimates with the skewness

of the distribution. An obvious failure of the moment-based models was their inability to cap-

ture the multimodality of subjects’ responses.

CoS and skewness preference

The phenomenon of skewness preference—positively skewed reward distributions are favored

over symmetric, and symmetric over negatively skewed reward distributions—have been

widely reported in animal studies [57] and in economics and finance [34, 53, 54, 56]. Recent

studies started to look into the neural basis of skewness preference, in an attempt to identify

the brain regions dedicated to the processing of skewness [34, 37, 38]. However, as discussed

earlier, identification of brain regions dedicated in skewness processing is still actively debated

and the proposition of skewness (or variance) preference was inconsistent with emerging

behavioral results. For example, Strait and Hayden [35] reported a non-monotonic preference

ranking of reward distributions in monkeys where weakly negatively skewed reward distribu-

tions were less preferable to weakly positively skewed reward distributions and the latter were

further less preferable to strongly negatively skewed reward distributions.

Alternative explanations other than explicit representation of skewness have been proposed

for skewness preference. For example, Genest, Stauffer, and Schultz [57] measured the utility

function for individual monkeys and found that the skewness preference in monkeys’ choices

can be accounted for by utility maximization, given that the monkeys’ utility functions are

convex. This explanation, however, might have trouble generalizing to the skewness preference

observed in human choices [34, 56], because humans’ utility functions are typically concave

[68, 69]) and would predict the opposite behavior. Indeed, a recent empirical study of decision

under risk in humans [70] reported the coexistence of skewness preference with concave utility

functions.

The findings of the present study suggest a new possibility: skewness preference can be the

epi-phenomenon of mis-estimating the mean—the expected value of the distribution. We

Clusters-of-samples representation of probability distributions
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found that subjects overestimated the mean of positively skewed distributions and underesti-

mated the mean of negatively skewed distributions. This would appear to be skewness prefer-

ence if subjects had been asked to choose between two distributions to maximize the expected

value of their choice. In accordance with our conjecture, one recent neuroimaging study

showed that higher skewness of reward distributions would lead to stronger activation in ven-

tral striatum [38], a brain region involved in the representation of expected value [71, 72].

Since no preference judgment was involved in our task, the patterned errors we found in

subjects’ Mean estimates cannot be an effect of non-linear utility functions. Instead, we showed

that an approximate representation of probability distributions along with subsequent distor-

tions of probabilities, as implemented in the CoS model for Mean estimates, may give rise to

the “skewness preference”.

CoS as a simplified representation of probability distributions

Representing probability distributions in the real world, which are often high-dimensional

and multimodal, confronts human cognition with potential problems such as the curse of

dimensionality [28, 73–76]. The CoS representation proposed here provides a simplified repre-

sentation of probability distributions by reducing an arbitrary distribution to a few pairs of

summary statistics fðck;wkÞg
K
k¼1

. Though coming at the cost of information loss, such simplifi-

cation is likely to alleviate the mnemonic and computational load in probabilistic inference

and decision making.

As a basis-function representation [25, 29, 30], CoS adds to extant sparse-coding

approaches to simplifying the representation and computation of probabilistic information

[75, 77, 78]. Zhang, Daw, and Maloney [30] investigated subjects’ internal representation of

their own visuo-motor error distributions in a motor choice task and found empirical evidence

for the basis-function representation. Though the objective distribution was unimodal and

close to Gaussian, they found that subjects’ internal representation was multimodal and,

among a variety of distribution families, was best fit by the mixture of a small number of non-

overlapping basis functions. What remains unknown, however, is how subjects’ internal repre-

sentation arises from the empirical distribution. Here, with the CoS representation, we

attempted to bridge the gap between an empirical distribution and its internal representation

through a stochastic clustering process.

We showed that a Bayesian ideal observer that is unaware of the generative process of the

distribution stimuli used in our experiments can form an accurate representation of the empir-

ical distribution based on Gaussian mixtures (S4 Fig). As a result, the ideal observer model

failed to account for the systematic errors in subjects’ Mode and Mean estimations, but rather

performed close to the ground-truth model (Fig 5A and 5B). The CoS model differs from the

ideal observer model in several aspects. First, CoS does not involve Bayesian inference and the

stochasticity inherent in clustering may not be eliminated even with a large number of samples

observed. Second, by only keeping the cluster centers, CoS loses higher-order information

about each cluster such as the local skewness. As we reasoned earlier, these characteristics

allow CoS to explain the specific error patterns in subjects’ Mode estimates. The combination

of CoS and additional transformations but not the transformations alone can also explain sub-

jects’ Mean estimates. By comparing CoS with the ideal observer model in predicting human

data, we have obtained evidence for the two key assumptions of the CoS representation: sto-

chastic clustering and the loss of local information.

Our results raise the possibility that inferring the generative process from the observed sam-

ples might not occur for a complicated generative process. Even when the form of the generative

model is simple and known, a recent study [79] found that people tend not to estimate the
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generative model. On each trial of their task, subjects saw an array of four dots distributed around

a vertical line and were explicitly informed that the horizontal coordinates of the dots were gener-

ated from a Gaussian distribution centered at the line. Subjects were required to locate the range

that would include 65% of the distribution. Despite comprehensive feedbacks after each trial, sub-

jects’ behavioral patterns systematically deviated from those predicted by a Gaussian internal

model. Instead, subjects’ internal model was well approximated by a kernel density estimation

based on the four samples, which was consequently multimodal. Though there is doubt whether

the kernel density representation holds for distributions presented by more than four samples

(see [30] for opposing evidence), the results of [79] as well as our own study suggest that humans

may not function as Bayesian ideal observers in probability density estimation.

The CoS representation we proposed also echoes the spontaneous clustering process theo-

rized in the memory literature, for both working memory [58, 80] and long-term memory [81,

82]. According to Orhan and Jacobs [58], people assume the world is “bumpy” and try to infer

the clusters from which individual items have been generated. Though their task was to memo-

rize individual items, subjects’ biases during retrieval suggest that the inferred clusters were

also maintained and used to compensate for perceptual and mnemonic noises. What we con-

sidered here is a different situation, where the task was not to memorize individual items but

to report the summary statistics of a distribution. That is, subjects were nudged to extract a

representation of the distribution from the samples. While an ideal observer can almost per-

fectly recover the underlying distribution used in our experiments (S4 Fig), human behavioral

data suggested that the local features of the distribution were lost.

Limitations and future directions

For Gaussian or any symmetric unimodal distributions, mean, median, and mode are all the

same. In such cases, it would be theoretically difficult to tell apart different hypotheses about

human representations of probability distributions. That is why highly skewed [40, 83, 84] or

multi-modal [6, 40, 85] distributions have been used to investigate how people represent prob-

ability distributions. Indeed, the specific one-dimensional multimodal distributions we used in

the present study revealed diagnostic error patterns, which provided preliminary evidence in

support of the CoS representation. But it is still an empirical question whether CoS well

describes human representations of probability distributions that are beyond multimodal

distributions.

In theory, the CoS representation is applicable to distributions of a higher dimension. It can

also be extended to accommodate modulations from top-down cognitive processes by assum-

ing that the parameters controlling the clustering process may be modulated by prior knowl-

edge. Further empirical tests in a broader range of tasks would be required to establish the CoS

representation as a general heuristic in representing probability distributions.

Methods

Ethics statement

The experiments had been approved by the Institutional Review Board of School of Psycholog-

ical and Cognitive Sciences at Peking University. Informed consent was given by all subjects

prior to the experiments.

Experiments

Sixty-four paid subjects (19–25 years old, 36 females) participated in the four experiments,

with 16 subjects for each experiment. All of them were naïve to the goal of our study. Subjects
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whose Mode or Mean estimates failed to show significant correlations with the corresponding

true statistics were excluded from further data analysis. Only one subject from Experiment 2

was excluded.

Stimuli were presented on black backgrounds on a 52.0×32.5-cm computer screen

(1920×1200 px, refresh rate 60 Hz) controlled by Matlab and Psychophysics Toolbox [86–88]

and were viewed by subjects from a distance of approximately 65 cm. The experimental proce-

dure was the same for all the experiments, with spatial positions used as stimuli for Experi-

ments 1–3 and orientations used for Experiment S1. On each trial of Experiments 1–3 (Fig

2A), following a 1-s fixation cross, a 40-cm white horizontal axis appeared in the middle of the

screen. In the subsequent 25 seconds, 70 red vertical lines were sequentially presented on the

axis at different horizontal positions, each for 0.18-s and separated by 0.18-s intervals. The

tasks were to report the Mean and Mode of the observed horizontal distribution of the red

lines: Subjects first saw a blue vertical line and were required to move it along the axis to locate

the Mean (the average horizontal position of the red lines); after completing the estimation of

the Mean, they saw a blue box and were instructed to locate it at the position where it would

catch the largest number of red lines. To help subjects understand the task, graphed illustra-

tions of mean and mode were given during the instructions. The initial position of the blue

line or box was randomly chosen. Subjects used the mouse cursor to move it and left clicked to

confirm. No time limit was imposed on either task.

The horizontal coordinates of the 70 red lines on each trial were sampled from a specific

underlying distribution, which was a linear combination of multiple beta-like distributions (Fig

2B–2D). Experiments 1–3 differed in the number of components that consisted of the beta-mix

distributions: three components for Experiment 1 (“3-beta mix”), four components for Experi-

ment 2 (“4-beta mix”), and a combination of 3-beta and 4-beta mix for Experiment 3.

Each beta-mix distribution had two sets of parameters: shape and weight. The shape param-

eters, (α, β), controlled the shape of individual beta components and were the same for all the

components in the same distribution. The (α, β) could be (3.1, 1.1), (2.9, 2.9) or (1.1, 3.1),

respectively corresponding to negatively-skewed, symmetric, and positively-skewed local com-

ponents of equal variance. In contrast, the weight parameters, (φ1,φ2,. . .,φm), with
Xm

i¼1

φi ¼ 1,

referred to the relative weight of each component in the mixture distribution, ordered from

left to right. The different beta components of a beta-mix distribution had equal widths and

joined each other’s ends, whose standard deviations were 0.19 times of their widths.

In Experiment 1, where the distributions were 3-beta mix, the relative weights could be

(0.2, 0.3, 0.5), (0.3, 0.2, 0.5), (0.2, 0.5, 0.3), (0.3, 0.5, 0.2), (0.5, 0.2, 0.3), or (0.5, 0.3, 0.2), that is,

the full permutation of (0.2, 0.3, 0.5). Each combination of the 3 shape and 6 weight conditions

was repeated for 9 times, resulting in 3×6×9 = 162 trials. In Experiment 2, the relative weights

for the 4-beta mix were the full permutation of (0.1, 0.2, 0.3, 0.4). Each combination of the 3

shape and 24 weight conditions was repeated twice, resulting in 3×24×2 = 144 trials. Experi-

ment 3 was a combination of 72 trials of 3-beta mix from Experiment 1 (3 shapes × 6

weights × 4 repetitions) and 72 trials of 4-beta mix from Experiment 2 (3 shapes × 24

weights × 1 repetition). The 144 trials were divided into 12 mini-blocks of 10–14 trials, with

each mini-block devoted to either 3-beta or 4-beta mix and the two types of mini-blocks inter-

leaved. The existence of mini-blocks was unbeknown to the subject.

The 70 samples for each trial (i.e. the horizontal coordinates of the red lines) were first gen-

erated by random and independent draws from its underlying beta-mix distribution, and sub-

sequently scaled to a specific standard deviation and jittered around the center of the screen.

The standard deviations of the samples for Experiments 1, 2, and 3 were respectively set to be

Clusters-of-samples representation of probability distributions
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7.27, 7.20 and 7.55 cm. Given the screen center as the origin, the samples were allowed to

range from –20 to 20 cm and the mean of the samples was within the range of –3.8 to 3.8 cm.

In a specific experiment, the same set of samples was used for all subjects, but the order of sam-

ples within each trial and the order of the trials were randomized for each subject.

Experiment S1 was a conceptual replication of Experiment 1 where orientations instead of

spatial positions were used as stimuli (S8 Fig). Samples were lines of 8 cm long, starting from

the center of the screen and pointing to various directions. For a specific subject, all sample

lines pointed towards either the upper or lower half of the screen so that the whole range of the

stimuli was within 180 degrees. Subjects rotated a line or bar around the origin to report the

Mean or Mode of the orientations, analogous to the responding procedures in Experiments

1–3. Half of the subjects reported the Mean first and half reported the Mode first. We did not

find any significant differences between these two task orders in subjects’ error patterns, no

matter for Mode or Mean estimates.

There were three practice trials preceding the formal experiment. Each experiment took

approximately 1.5 hours.

Data analysis and modeling

True mode, mean and skewness. The true mode, mean, and skewness of the distribution

were defined based on the 70 samples subjects actually saw, which might be different from

those of the underlying distribution. The true mean and skewness were simply the correspond-

ing statistics of the samples. To compute the true mode, we applied the diffusion algorithm of

kernel density estimation [89]—a smoothing method performing well for multi-modal distri-

butions—to the samples, with bandwidth parameters chosen automatically by the algorithm.

The true mode was defined as the highest peak of the resulting density curve.

Clusters-of-samples model for mode estimates. According to the clusters-of-samples

(CoS) representation, on each trial, subjects would classify the 70 samples into clusters and

maintain the centroids and relative weights of the clusters—fðck;wkÞg
K
k¼1

—as the representa-

tion for the empirical distribution. In particular, we implemented the clustering process as a

distance-dependent Chinese Restaurant Process (ddCRP, [43]) where the number of clusters is

controlled by the random process and samples that are close to each other are more likely to

be assigned to the same cluster. It should be noted that we used the ddCRP not as a prior for

Bayesian inference but as a clustering algorithm.

In the original ddCRP, each sample is attracted by all other samples and may join one of

them, otherwise staying alone. Given the large number of samples in our case, for simplicity,

we assumed that the probability for a sample to stay alone approaches zero. The probability for

the j-th sample to join the l-th sample (j6¼l) is a function of their distance djl:

Pjoinðj; lÞ / expð� d2

jl=gÞ; ð1Þ

where γ is a scaling parameter controlling how quickly the joining probability would decay

with distance, and
X

l6¼j

Pjoinðj; lÞ ¼ 1. Each sample goes to the same cluster as the sample it

joins.

For a specific cluster k following the ddCRP, denote the centroid (i.e. mean value) of its

samples by ck and its relative weight (i.e. number of its samples divided by the total number of

samples) by wk, where k = 1,2,. . .,K. In the CoS model for Mode estimates, we assumed that

subjects would report the centroid of the cluster with the highest relative weight, denoted C�.
The ddCRP is a stochastic clustering process, which may lead to different sets of

fðck;wkÞg
K
k¼1

and thus different C� in different runs. In other words, C� is a random variable

Clusters-of-samples representation of probability distributions
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whose distribution is determined by the empirical distribution of the samples and the dis-

tance-scaling parameter γ. The distribution of C� has no closed forms and was estimated

through Monte Carlo methods: For each specific trial and choice of γ, we simulated the cluster-

ing process for 1000 times, obtained 1000 sets of fðck;wkÞg
K
k¼1

and computed the value of C�

for each set.

The response in a magnitude estimation task often has a tendency of regression to mean

[90]. In all the models, we assume that subjects’ final estimate Y undergoes a linear transforma-

tion and is contaminated by a Gaussian noise. That is, for the CoS model for Mode estimates,

Y ¼ b0 þ b1C
� þ Nð0; s2

modeÞ; ð2Þ

where β0, β1, and σmode are free parameters.

In sum, the CoS model for Mode estimates has four free parameters: γ, β0, β1, σmode.

Clusters-of-samples model for Mean estimates. In the CoS model for Mean estimates,

we assume that subjects would report a weighted average of the centroids of all the clusters.

Similar to that of Mode estimates, the modeling of Mean estimates needs to take into account

the randomness in clustering.

As elaborated in the Results, we assume that subjects used the same CoS representation—a

specific set fðck;wkÞg
K
k¼1

—for both Mean and Mode estimates. When fitting the CoS model

for Mode estimate, we had run the stochastic clustering process for 1000 times and obtained

1000 sets of fðck;wkÞg
K
k¼1

for each trial and each γ. For the best-fit γ, we could compute the like-

lihood that the observed Mode estimate, ymode, resulted from the j-th fðck;wkÞg
K
k¼1

:

LsetðjÞ ¼
1

ffiffiffiffiffiffi
2p
p

smode

exp �
ðymode � c�j Þ

2

2s2
mode

 !

ð3Þ

where c�j denotes the centroid of the cluster of the highest weight for the j-th fðck;wkÞg
K
k¼1

.

That is, given the ymode on a specific trial, we could compute the posterior probability of the j-
th fðck;wkÞg

K
k¼1

being the CoS representation in use:

PsetðjÞ / LsetðjÞ; ð4Þ

with the normalization
X1000

j¼1

PsetðjÞ ¼ 1.

Mode is a local feature of a probability distribution, whose value is determined only by the

largest cluster, while mean is a global feature that involves the integration of multiple clusters.

We assume that such integration would introduce two additional transformations on the rela-

tive weight wk. One transformation maps wk to wa
k , which is partly motivated by Stevens’

power law [91]. The power transformation would lead to a subjective weighting of probability

that is mathematically equivalent to the form of linear in log-odds [69] widely observed in

human judgment and decision-making [65]. Depending on the exponent α, small wk is over-

weighted and large wk underweighted, or the reverse. A second transformation on wk works

analogous to the lateral inhibition in perception [92, 93]: The subjective weight of any cluster

is reduced by the existence of any other clusters; the closer or the larger the weight of the other

cluster, the larger the influence. We assume that the lateral inhibition influences the subjective

weight in the form of a shunting inhibition [66], with the inhibitory forces between two clus-

ters decreasing as a Gaussian function of their distance [67]. Combining the two

Clusters-of-samples representation of probability distributions
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transformations, the subjective weight of wk has the form:

yk ¼ A
wa
k

XK

j¼1

wjexp �
ðcj � ciÞ

2

2s2
LI

 ! ; ð5Þ

where α and σLI are free parameters, and A is a constant to normalize
XK

k¼1

yk ¼ 1.

For a specific fðck;wkÞg
K
k¼1

representation, the Mean estimate is thus

M� ¼
XK

k¼1

ckyk: ð6Þ

The final report of the mean is a random mixture of different M� from different fðck;wkÞg
K
k¼1

,

weighted by their posterior probabilities (Eq 4), linearly transformed and contaminated by

Gaussian noise. The CoS model for Mean estimates has five free parameters: α, σLI, β0, β1,

σmean. See S1 Table for the estimated parameters of the CoS models.

In our modeling, we first used subjects’ Mode estimates to infer their CoS representations

and then applied this information to model their Mean estimates. We chose not to do the

other way around because mean is a statistic that integrates over multiple clusters and thus

provides less diagnostic information for individual clusters than mode does (global versus

local). The additional transformations applied to the CoS model for Mean estimates also

increases the computational intractability of using Mean estimates to infer subjects’ CoS

representations.

Subjective weighting model for Mean estimates. The subjective weighting model for

Mean estimates assumes that subjects would report the weighted average of all the samples

(N = 70), with the relative weight of each sample undergoing similar power and lateral inhibi-

tion transformations as those of the CoS model. Given that the original weight of each sample

is equal (i.e. ϕi = 1/N, i = 1,2,. . .,N), the subjective weight has a similar form as Eq 5 except that

the exponent α is naturally dropped:

yi ¼ A
�
a

i

XN

j¼1

�jexp �
ðxj � xiÞ

2

2s2
LI

 ! ¼ B
1

XN

j¼1

exp �
ðxj � xiÞ

2

2s2
LI

 ! ; ð7Þ

where xi denotes the location of the i-th sample, σLI is a free parameter, and B is a constant to

normalize
XN

i¼1

yi ¼ 1. The final estimate is
XN

i¼1

xiyi, linearly transformed and contaminated by

Gaussian noise. In sum, the model has four free parameters: σLI, β0, β1, σmean.

Ideal observer models for mode and mean estimates. In the ideal observer models, we

applied the Dirichlet Process Mixture Model (DPMM) to estimate the generative distribution

underlying a set of samples. Denote the value of the i-th sample by xi, i = 1,2,. . .,N. Similar to

Orhan and Jacobs [58], the ideal observer’s internal model of the generative process is specified

Clusters-of-samples representation of probability distributions
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by the following equations:

G � DPðG0; aÞ; ð8Þ

G0ðmiÞ ¼ Uðmi; a; bÞ; ð9Þ

mijG � G; ð10Þ

t � Gðt; at; btÞ; ð11Þ

xijmi; t � Nðxi; mi; tÞ: ð12Þ

Here G is a distribution of clusters that is itself distributed following a Dirichlet process (DP)

with base distribution G0 and concentration parameter α. μi denotes the mean of the cluster to

which the i-th sample belongs. The base distribution G0(μi) is a uniform distribution over the

interval [a,b]. The precision τ is identical for all clusters and distributed according to a gamma

distribution with scale parameter ατ and shape parameter βτ. The value of the i-th sample xi is

generated from a Gaussian distribution with mean μi and precision τ. The values or priors for

the parameters in the generative model had similar settings as those of Orhan and Jacobs[58]:

The interval [a,b] was set to be sufficiently large to include the minimum and maximum sam-

ple values in each experiment. ατ = 1 and a gamma Gð1; 1Þ prior was put on βτ. A Gðac; 1Þ
prior was put on the Dirichlet process concentration parameter α, where αc was treated as a

free parameter.

On each trial, the ideal observer would use the observed fxig
N
i¼1

to infer the latent variables

of the generative model and thus the Gaussian mixture distribution that has generated the

observed samples. The mean and mode of the Gaussian mixture distribution can then be cal-

culated. The Bayesian inference was performed using a Markov chain Monte Carlo (MCMC)

algorithm of Neal [94], implemented by Matlab codes adapted from Orhan and Jacobs [58].

For each trial, we obtained 1000 samples from four MCMC chains of 500 samples after burn-

ing-in the first 250 samples of each chain.

Following Orhan and Jacobs [58] and others (e.g. [95]), we assume that the ideal observer

would average over all posterior samples of the mean and mode as their Mean and Mode esti-

mates. Parallel to the CoS models, we used subjects’ Mode estimates to infer the Gaussian mix-

ture distributions and applied the results to fit subjects’ Mean estimates. In sum, the ideal

observer model for Mode estimates has four free parameters: αc, β0, β1, σmode. The ideal

observer model for Mean estimates has three free parameters: β0, β1, σmean.

Other models for mode and mean estimates. The ground-truth and all the moment-

based models we considered for Mode and Mean estimates have the general form:

Y ¼ b0 þ
Xq

j¼1

bjZj þ Nð0; s2Þ; ð13Þ

where Y denotes the response (Mode or Mean estimate), Zj denotes the j-th predictor among a

total of q different predictors that may include the true mode, mean, and skewness of the

empirical distribution, β0, βj, and σ are free parameters. The predictors of each model, as sug-

gested by the model name, are described in the Results.

Model fitting and comparison procedures. All the models were fitted on the individual

level using the maximum likelihood estimate. We used fminsearchbnd (J. D’Errico)—a func-

tion that implements the Nelder-Mead method and extends the standard Matlab function

Clusters-of-samples representation of probability distributions
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fminsearch to bounded parameters—to search for the parameters that minimized negative log

likelihood. To verify that we had found the global minimum, we repeated the search process

with different starting points. For the distance-scaling parameter γ in the CoS model of Mode

estimates, whose change would introduce stochasticity that the Nelder-Mead method cannot

handle, we grid searched γ ranging from 0.02 to 2.00, optimized the other parameters of the

model for each value of γ, and chose the combination of γ and other parameters that mini-

mized negative log likelihood. We used a similar grid search procedure for the concentration

parameter αc (ranging from 0.10 to 3.00) in the ideal observer model.

For model comparison, we applied AICc—the Akaike information criterion with a correc-

tion for finite sample size [61, 62]—to each subject and model as the information criterion for

goodness-of-fit. We further calculated the protected exceedance probability based on the

group-level Bayesian model selection method [63, 64], which is an omnibus measure across

subjects to indicate the probability that a specific model is the best model in the comparison

set.

Supporting information

S1 Table. Estimated parameters of the CoS models for mode and mean estimates.

(PDF)

S1 Fig. Results of Experiment 2 (4-beta mix). (A, C) Subjects’ errors in Mode (A) and Mean

(C) estimates varied with the weight condition (abscissa) and the shape condition (different

colors). Different weight conditions are arranged from left to right in increasing global skew-

ness. Shaded areas denote 1 SE. (B) The main effect of the shape condition (local skewness) on

subjects’ errors in Mode estimates. ns: non-significant, �: p< 0.05, ��: p< 0.01, ���: p< 0.001,

for Bonferroni corrected post-hoc comparisons. Error bars denote 1 SE.

(D-E) Model comparison results: summed ΔAICc (left, the lower the better) and protected

exceedance probability (right, the higher the better). The black bar refers to the protected

exceedance probability for the CoS model, and the red bar on the top of the black bar refers to

the sum of protected exceedance probabilities of all other models (which is invisible in the

Mode plot). For both Mode (D) and Mean (E) estimates, the CoS models fit best to data. GT:

ground-truth model; IO: ideal observer model; MoMe: mode+mean model; MeSk: mean+-

skewness model; MoSk: mode+skewness model; MoMeSk: mode+mean+skewness model;

CoS: clusters-of-samples model; SW: subjective weighting model.

(F) Relative frequency of different cluster sizes (number of samples per cluster) estimated for

subjects’ CoS representations. For each subject, the relative frequency of each cluster size was

averaged across trials and possible CoS representations on each trial. The statistics were then

averaged across subjects. Error bars denote 1 SE. Overall, the clustering process tended to gen-

erate clusters of small sizes. The frequencies for cluster sizes of 7, 14, 21, and 28—which corre-

spond to the four relative weights used in 4-beta mix—were much higher than those of their

neighbors, indicating that the clustering process could partly recover the multimodal structure

of the empirical distribution.

(PDF)

S2 Fig. Results of Experiment 3 (interleaved 3-beta and 4-beta mix). Plotted in the same for-

mat as the results of Experiment 2 (S1 Fig).

(A-C) Subjects’ errors in Mode and Mean estimates for 3-beta trials.

(D-F) Subjects’ errors in Mode and Mean estimates for 4-beta trials.

(G, H) Model comparison results for Mode and Mean estimates.

(I) Relative frequency of different cluster sizes estimated for subjects’ CoS representations,
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separately for 3-beta (gray bars) and 4-beta (white bars) trials.

(PDF)

S3 Fig. Results of Experiment S1 (3-beta mix, orientation). Plotted in the same format as the

results of Experiment 2 (S1 Fig).

(A-C) Subjects’ errors in Mode and Mean estimates.

(D, E) Model comparison results for Mode and Mean estimates.

(F) Relative frequency of different cluster sizes estimated for subjects’ CoS representations.

(PDF)

S4 Fig. Distributions recovered by ideal observers versus the empirical distributions. (A)

Examples for 3-beta distributions. (B) Examples for 4-beta distributions. The gray areas in

each panel denote the histogram of the samples presented on a single trial. The generative dis-

tribution of the trial is described in the title of the panel (see the legend of Fig 2 for the nota-

tions). For example, the generative distribution “LocalNeg, 532” (top left panel) consists of

three negatively skewed beta components (“LocalNeg”), with the weights of the three compo-

nents from left to right being 0.5, 0.3 and 0.2 (“532”). The (α, β) parameters of the LocalNeg,

LocalSym and LocalPos beta components were respectively (3.1, 1.1), (2.9, 2.9) and (1.1, 3.1).

Dashed curves denote the kernel density of samples. Solid curves denote the posterior density

estimation of the Bayesian ideal observer modeled by a Dirichlet Process Mixture Model

(DPMM, see the main text). Note that the DPMM posterior density closely matches the empir-

ical kernel density, even for beta mixtures that have skewed beta components.

(PDF)

S5 Fig. Intuition of lateral inhibition leading to “skewness preference”. Suppose there are

three samples (black lines), with the left two samples closer to each other than to the third,

thus forming a positively skewed distribution. If we assume lateral inhibition decreases with

distance, the left two samples would exert strong inhibitions on each other, while the inhibi-

tions between them and the third sample would be weaker. Therefore, the left two samples

would be underweighted, leading to an overestimation of Mean for positively skewed distribu-

tions, and vice versa.

(PDF)

S6 Fig. Evidence for shared CoS representations across Mode and Mean estimations.

Model comparison results for subjects’ Mean estimates between the original CoS model

(“CoS”) and a lesioned model (“CoS w/o Prior”) that does not use the representational infor-

mation inferred from the Mode estimates on the same trial. (A) Experiment 1. (B) Experiment

2. (C) Experiment 3. (D) Experiment S1. The left and right plots are respectively for summed

ΔAICc (the lower the better) and protected exceedance probability (the higher the better). If

two distinct CoS representations had been used for Mode and Mean estimates, the CoS repre-

sentation inferred from the Mode estimate would be non-informative for predicting the Mean

estimate and the lesioned model would perform equally well as the original model. In all the

experiments, however, the CoS model outperformed the CoS w/o Prior model, providing evi-

dence for a shared CoS representation across the two estimation tasks.

(PDF)

S7 Fig. Model lesion analysis for Experiment 2 (A), Experiment 3 (B) and Experiment S1

(C). Model comparisons between the CoS model for Mean estimates and its lesioned models:

summed ΔAICc (left) and protected exceedance probability (right). The lesioned models

included models without Lateral Inhibition (“CoS w/o LI”), without Power Transformation

(“CoS w/o PT”), without both the components (“CoS w/o LI&PT”), and without clustering
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(“SW”, i.e. the subjective weighting model presented in S1E, S2H & S3E Figs). In the protected

exceedance probability plots of Experiments 2 and 3, the black bar refers to the protected

exceedance probability for the CoS model, and the red bar on the top of the black bar refers to

the sum of protected exceedance probabilities of all other models (which is almost invisible for

Experiment 3). For Experiment S1, “1” refers to the CoS w/o PT model, “2” refers to the CoS

w/o LI model, “3” refers to the CoS w/o LI&PT model. In all the experiments, the original CoS

model outperformed the lesioned models, implying that power transformation, lateral inhibi-

tion and clustering were all necessary for the CoS model to explain subjects’ Mean estimates.

(PDF)

S8 Fig. Stimuli of Experiment S1. Experiment S1 was a conceptual replication of Experiment

1 where orientations instead of spatial positions were used as stimuli. Samples were lines of 8

cm long, starting from the center of the screen and pointing to various directions. For a spe-

cific subject, all sample lines pointed towards either the upper or lower half of the screen so

that the whole range of the orientations was less than 180 degrees. Subjects rotated a line or

bar around the origin to report the Mean or Mode of the orientations. Half of the subjects

were required to report the Mean estimate first and the other half the Mode estimate first. Oth-

erwise, the procedure and design were the same as those of Experiment 1 (see Fig 2).

(PDF)

S9 Fig. Multimodality of subjects’ Mode and Mean estimates in Experiment 1. To investi-

gate whether the joint distribution of subjects’ Mode and Mean estimates (Fig 5C) was multi-

modal, we adopted the mixture model clustering method with the integrated completed

likelihood criterion (ICL). The “Rmixmod” R package implementing the method was used to

evaluate the number of clusters in subjects’ Mode and Mean estimates in different weight con-

ditions. Each panel is for one weight condition, corresponding to that of Fig 5C. Each data

point denotes one subject’s Mode and Mean estimates on one trial. The clustering results are

presented using symbols of different colors and superimposed ellipses. When a maximum of

three clusters were allowed, 2–3 clusters were formed for each weight condition, whose posi-

tions agreed with the CoS predictions (Fig 5C, see the main text). ICL: the ICL value of the

clustering results presented. ICL1: the ICL value for one cluster. That ICL< ICL1 indicated

that subjects’ Mode and Mean estimates were better fit by multiple clusters than by one cluster

and were thus multimodally distributed.

(PDF)
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