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We have carried out a long-timescale simulation study on crystal structures of nine
antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular
dynamics with enhanced sampling and an explicit water model to explore interface
conformation and hydration. By combining atomic level simulation and replica exchange
to enable full protein flexibility, we find significant numbers of bridging water molecules at
the antibody-antigen interface. Additionally, a higher proportion of interactions excluding
bulk waters and a lower degree of antigen bound CDR conformational sampling are
correlated with higher antibody affinity. The CDR sampling supports enthalpically driven
antibody binding, as opposed to entropically driven, in that the difference between antigen
bound and unbound conformations do not correlate with affinity. We thus propose that
interactions with waters and CDR sampling are aspects of the interface that may
moderate antibody-antigen binding, and that explicit hydration and CDR flexibility
should be considered to improve antibody affinity prediction and computational
design workflows.

Keywords: antibody-antigen interactions, antibody binding, antibody affinity, antibody interface hydration, CDR
flexibility, molecular dynamics, replica exchange
1 INTRODUCTION

Antibodies are increasingly attractive biological drugs, and at present are at the forefront of vaccine
and therapeutic developments against COVID-19, a pandemic that has caused over 5.5 million
deaths as of January 2022 (1, 2). The majority of an antibody’s high affinity and specificity is dictated
via six hypervariable loops at the antigen binding site, known as Complementarity Determining
Regions (CDRs) (3, 4). This makes antibodies ideal for treating diseases, but their binding is difficult
to predict and understand at the atomic level.

Therapeutic antibodies are currently generated by animal immunization followed by hybridoma
or B-cell selection technology, or by display methods (5–7). Structure-based rational design however
offers additional insight and benefits including epitope specificity, mechanisms of action, and
affinity maturation. A proof-of-concept example demonstrating the advantage of atomistic
structure-based design was carried out by the Vendruscolo group, who designed complementary
peptides against different parts of an amyloid-b peptide (8, 9). Grafting these designs onto single
org May 2022 | Volume 13 | Article 8841101
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domain heavy chain CDR3s, the rate of amyloid-b peptide
aggregation during in vivo validation was only affected when
specific parts of the amyloid peptide were targeted. Additionally,
rational design of a therapeutic antibody was recently
exemplified in the case of an anti-IL-17, Bimekizumab, where a
computational affinity maturation method was used to provide
neutralization potency against both IL-17A and IL-17F
isoforms (10).

Computational methods offer a solution to modern structure-
based rational antibody design. There have been several in silico
attempts at de novo design: OptMAVEn (11), AbDesign (12),
hotspot grafting with CDR-H3 swapping (13), and re-epitoping
(14). OptMAVEn and AbDesign use a jigsaw-like approach,
assembling fragments of antibody variable region structures. The
most notable differences lie in how the variable regions are
fragmented, the in-house protocols to optimize and refine
designs, and the scoring functions used to predict binders.
AbDesign shares the same scoring function as Liu et al.’s
attempt of hotspot grafting and CDR-H3 swapping, applied to
proof-of-concept target Keap1 (13). This target has a solved
structure with native binder Nrf2. In silico alanine scanning
identified Nrf2 residues that contribute strongly to the Keap1-
Nrf2 interaction, and antibody scaffolds were selected based on
their ability to replicate the hotspots’ conformation, allowing
Nrf2’s binding motif to be grafted onto a CDR. This was followed
by a round of swapping out the selected antibody’s H3 with other
known H3 structures.

Re-epitoping is the only structure-based rational design
protocol without a stage of piecing together different antibody
fragments (14). Instead, potential binders are docked against
antigens and ranked by the agreement between docking
programs’ models and predicted interfacial contacts. The best
model’s mutations to CDRs were assessed by scoring and
molecular dynamics to determine their effect on the model’s
stability. Libraries were designed for mutations at specific
positions determined by the scoring, which were then screened
by experimental display methods. Although the final stage here is
purely experimental, the previously mentioned protocols also
required some form of manual interference, sometimes even
between in silico stages, to filter out false positives (15, 16). In all
cases, false negatives may have also been missed, making the
success rates for these protocols even more difficult to compare
when they are reported.

This clear dependence on experimental validation suggests
that current scoring functions do not account for all affinity-
determining aspects of antibody-antigen interactions. One
feature these methods share is the use of implicit solvent
models when scoring their designs – OptMAVEn, AbDesign,
and Liu et al. use the Lazaridis-Karplus model, whereas re-
epitoping utilizes the Generalized Born using Molecular
Volume model (17, 18). Without the use of explicit waters, any
indirect interactions formed via individual bridging waters will
be poorly described using an implicit model. A second common
feature is the use of static crystal structures or models, despite the
potential for antibodies to undergo conformational change upon
antigen binding (19).
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Previous work to simulate these interfaces and study
conformations did not focus on antibody design. Scoring of
antibody-antigen molecular dynamics simulations by MM-
PBSA/GBSA methods either struggled to distinguish poorly
docked poses from crystal structure ones, or only used
neutralizing activity data as opposed to kinetic data when
comparing predicted binding energies (20, 21). Methods
involving enhanced sampling come closer to scoring different
designs, such as combining free energy perturbation with Replica
Exchange with Solute Tempering for an in silico alanine scan on
antibodies (22). The authors achieved an R2 of 0.49 for their
predicted binding energies with experiment, although all fifty-
five mutations tested did not change the side chain’s charge. The
Liedl group ran metadynamics on antigen bound CDRs and
produced Markov state models for their conformational
populations. They proposed a correlation between specificity
and lower H3 flexibility, and that CDRs interchange between
canonical structures on the µs to ms timescale (23, 24). We wish
to further explore how CDRs behave without their antigens and
how they behave when all subjected to increased sampling, as
well as relate their behavior to antibody affinity.

To further our understanding on the potential role of water
and CDR flexibility at these interfaces, we have carried out a
sophisticated simulation study at the highest level of theory
feasible to maximize our resources. Replica Exchange with
Solute Scaling (REST2), a cutting edge advanced molecular
dynamics technique that is rarely applied to antibodies, was
used to enable large scale sampling of the CDRs and capture
waters explicitly in simulation (25). REST2 simulations do not
require prior knowledge of CDR behavior, allowing their full
flexibility to be explored by weakening interactions these loops
experience with their environment. We analyzed antibody-
antigen interfaces in a varied dataset of carefully curated
crystal structures, selected to be representative of those
deposited in the Protein Data Bank. CDR sampling was also
quantified, and different aspects of this analysis were compared
to the antibodies’ experimental affinities. The analyses illustrate
that these interfaces involve many waters and provide evidence
of a potential link between water, CDR flexibility, and an
antibody’s affinity. We thus propose that these aspects play an
important role in antibody binding and need explicit
consideration in antibody design.
2 MATERIALS AND METHODS

2.1 Starting Structures
Nine antibodies’ structures were chosen using the SAbDab
database’s non-redundant search, ensuring a range of
sequences were found in the selection (26). Structures were
initially filtered by the following criteria: the antigen was a
protein but not a short peptide; the antibody was solved in
complex with and without its antigen; structures had no missing
residues in the variable (Fv) region; and CDR sequences were
identical in both structures. From this initial selection,
therapeutic antibodies and structures under 2.5 Å resolution
May 2022 | Volume 13 | Article 884110
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were prioritized, and binding affinities were considered to ensure
a wide range in the dataset. The details of the filtering process are
described fully in the Supplementary Methods. The final
structures are listed in Table 1.

Only the antibody’s Fv region, the antigen where applicable,
and crystal waters were kept for simulation. Missing residues
were modelled using MODELLER version 9.19 (43). The N- and
C-termini were capped with acetyl and amide groups
respectively, and structures had protonation states assigned for
pH 7.4 using HTMD 1.12.2 (44). Histidine protonation states
were determined on a case-by-case basis, with the aim of
maximizing hydrogen bonding.

2.2 Simulation Details
Although molecular dynamics can model the time evolution of a
system, extensive exploration of CDR conformational
populations would not be achievable within reasonable
timescales. We thus turn to enhanced sampling methods such
as Replica Exchange with Solute Scaling (REST2), whereby
interactions between atoms are weakened by a ratio (l) during
molecular dynamics, increasing the rate they sample different
conformations (25). An acceptance test ensures that only
conformations compatible with fully interacting atoms are
included in the final trajectory that is analyzed.

All simulations were performed using GROMACS 2018.2
patched with PLUMED 2.4.2 (45–48). Structures were modelled
by the Amber ff14SB force field except for the Mn2+ ion in PDB
3hi6, which was modelled using parameters by Bradbook et al.
(49, 50). Distance restraints of 1000 kJ mol-1 nm2 were applied
between the Mn2+ ion and coordinating antigen atoms. Cubic
boxes with edges 1.2 and 1.8 nm away from the protein were used
for Fv only (apo) and Fv-antigen (holo) simulations respectively,
with periodic boundary conditions applied in all three directions.
Boxes were solvated with TIP3P water and 0.15 M NaCl,
including ions to neutralize the system (51). This generated
systems of 55,000-73,000 atoms for the apo setup, and
149,000-326,000 atoms for the holo setup depending on the
size of the antigen. The energy of each system was minimized
using steepest descent and conjugate gradient for 5000
steps each.

Prior to generating the scaled replicas, systems were
equilibrated for 50 ps under NVT conditions and 200 ps under
NPT conditions. Temperature was maintained at 300 K using the
velocity-rescaling thermostat with a time constant of 0.1 ps, and
Frontiers in Immunology | www.frontiersin.org 3
pressure at 1 bar using the Berendsen barostat and a time
constant of 2 ps (52, 53). The leapfrog integrator with a 2 fs
timestep was used (54). Both non-bonded van der Waals and
electrostatic Coulomb interactions had a 0.8 nm cut-off, using
the Verlet cut-off scheme and long range dispersion corrections
for energy and pressure. The particle mesh Ewald algorithm was
used for long range electrostatics with a Fourier spacing of 0.1
nm and cubic interpolation to assign charges to the grid (55).
Hydrogen-containing bonds were constrained using LINCS (56).

To prevent proteins from unfolding due to REST2’s weakened
interactions, we specifically scale down CDR residues. Replicas
with geometrically distributed l values between 0.35 and 1 were
generated from the equilibrated structures, with the minimum l
determined by preliminary work to ensure sufficient CDR
sampling was taking place. Twenty-four replicas were used for
holo systems and twenty for apo, chosen to keep acceptance
probabilities between 20-40% for as much of the dataset as
possible. CDR residues, selected by their Chothia numbering as
in the AbDb database, had their inter- and intra-molecular
interactions scaled (57, 58). All six CDRs on an antibody were
scaled simultaneously, as preliminary work suggested that their
conformations were dependent on each other. Each replica
underwent a second NVT equilibration for 1 ns under the
same conditions as the first NVT, but with a Nosé-Hoover
thermostat and time constant of 2 ps, as well as increased van
der Waals and electrostatic cut-offs to 1.0 nm and no dispersion
correction (59, 60). This was followed by 100 ns of REST2 under
the same simulation conditions, with frames deposited every 10
ps in output trajectories. This culminated in 40 µs of simulations
for the entire dataset.

2.3 Analysis
In REST2, the interface behavior of interest is found in the
unscaled replica, which has an ensemble equivalent to that of
unbiased MD. Each trajectory was aligned by backbone atoms
making up the Fv’s heavy and light chain (VH/VL) interface, and
subject to the analysis methods described in this section.

2.3.1 Antibody-Antigen Interactions
Python package MDAnalysis 0.19.2 was used to identify different
types of antibody-antigen and intramolecular antibody
interactions, applied to both REST2 trajectories and crystal
structures prepared for simulation (61, 62). The interface was
defined as residues of any two atoms that are not hydrogens, one
TABLE 1 | Antibody-antigen dataset structures. Names for referring to antibodies in the results and discussion are given in parentheses.

Antibody Antibody-Antigen PDB Antibody only PDB Kd (nM)

5J8 (Anti-H1N1) 4m5z (27) 4m5y (27) 26 (28)
125-2H (Anti-IL-18) 2vxt (29) 2vxu (29) 0.533 (30)
AL-57 (Anti-LFA) 3hi6 (31) 3hi5 (31) 4700 (32)
3M4E5 (Anti-MHC) 3gjf (33) 3gje (33) 46 (33)
9F8 (Anti-ObR) 3v6o (34) 3vg0 (34) Not available
Canakinumab (Anti-IL-1ba) 4g6j (35) 4g5z (35) 0.0305 (36)
Certolizumab (Anti-TNFa) 5wux (37) 5wuv (37) 0.09 (38)
Gevokizumab (Anti-IL-1bb) 4g6m (35) 4g6k (35) 0.0003 (39)
Pembrolizumab (Anti-PD) 5ggs (40) 5dk3 (41) 0.029 (42)
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from the Fv and one from the antigen, within 4.5 Å of each other.
The crystal structure’s interface residue selection was applied to
its simulated counterpart’s entire trajectory when making
comparisons between them. For comparisons of interface
interactions with affinity, all possible interactions between
antibody and antigen at the interface were captured as the
system fluctuated. For interactions with bulk solvent, where a
residue selection was required for the simulation interface,
antibody atoms were selected from the NPT equilibrated
structure, justified by checks that the interface does not change
on a residue basis throughout the REST2 simulation. The
interface criteria for these antibody atoms included their
hydrogens, as their dynamics are modelled in simulations and
we wished to maximize the advantages of in silico methods.

Hydrogen bonds were identified using the HydrogenBondAnalysis
class, and the subset formed with interface bridging waters was
identified using the WaterBridgeAnalysis class. Distance and angle
criteria for the different interactions analyzed are given in Table 2. Salt
bridges were identified using definitions recommended in the
MDAnalysis documentation. Interactions with Na+ or Cl- ions were
defined by applying salt bridge thresholds for any interactions they
form with the Fv. Hydrophobic interactions’ distance and angle
thresholds, as well as qualifying atom types, were adapted from
Arpeggio’s source code and RIP-MD, but these were counted by
residue as opposed to individual contacts (63, 64). Intramolecular
interaction counts include those with residues i+1, i+2, and i+3.

2.3.2 CDR Sampling
CDR conformational populations were examined by their extent
of dihedral and Cartesian space sampling. Each CDR was
measured individually to avoid the noise of other loops
obscuring distinct conformations. Dihedral sampling was
measured using Dynamics Analysis by Salt and Hudson
(DASH), which histograms a time series of each CDR
backbone dihedral angle (65). Peaks in the histograms with
bins representing at least 1.5% of trajectory frames were
combined with the rest of the CDR’s histograms to obtain
states. The resulting states that appeared for less than 1% of
the trajectory were considered rare and discarded. States that
passed these thresholds were compared with each other using
DASHSIM, which calculates the circular similarity of two states
(66). In brief, differences between the two states’ mean torsion
angles are normalized to between 0 and 180°, which are
normalized again to give a score between 0 (180° difference)
Frontiers in Immunology | www.frontiersin.org 4
and 1 (0° difference and thus identical). Different states with a
circular similarity of 80% or above were considered as the
same conformation.

Cartesian space sampling was measured using principal
component analysis (PCA) (67). Using GROMACS 2018.2, apo
and holo trajectories were superimposed using the backbone of
residues making up the VH/VL interface. A covariance matrix
between the mass-weighted CDR backbone atoms was calculated
and diagonalized to generate eigenvectors and their associated
eigenvalues. Frames projected along the first three principal
components (PCs) were used to identify conformations and
quantify the overlap between apo and holo trajectories.
Conformations were identified by average linkage hierarchical
clustering using the Python package scikit-learn 0.22.1, with a
Euclidean linkage distance threshold of 11 (68). This was selected
by testing a range of potential thresholds, aiming to minimize
differences between clusters identified from the algorithm and
those identified by visual inspection. The overlap between apo
and holo frames projected along their first three PCs was
quantified by MDAnalysis’ dimensionality reduction ensemble
similarity (DRES) module (69, 70). Briefly, each trajectory’s
projected frames were considered as a representative sample of
the CDR’s conformational probability distribution, and the apo
and holo trajectories’ probability densities were compared using
the Jensen-Shannon divergence.
3 RESULTS

In this work, nine antibodies’ Fv-antigen (holo) and Fv only
(apo) structures underwent 100 ns of REST2 simulation, and the
unscaled replica was analyzed to further our understanding of
antibody-antigen interactions. REST2 is an enhanced sampling
method that allows more CDR dynamics to be explored than in
the same amount of unbiased molecular dynamics. We first
outline characteristics of the antibody-antigen interface seen in
these trajectories, then describe the behavior of the CDRs, and
lastly present correlations from our observations.

3.1 Antibody-Antigen Interface
Interactions at the antibody-antigen interface were identified using
the MDAnalysis Python package, as described in Materials and
Methods (61, 62). Each antibody was analyzed in four scenarios: apo
crystal structure, holo crystal structure, apo simulation, and holo
TABLE 2 | Distance and angle criteria for identification of antibody interface interactions.

Interaction type Criteria

Hydrogen bonds Heavy atom donor-acceptor distance ≤ 3.5 Å
Donor-hydrogen-acceptor angle between 120° and 180°

Salt bridges Side chain oxygen/nitrogen atom pairs from charged residues
Atom pair distance ≤ 4.5 Å

Cation-p interactions Between positively charged atom and aromatic ring
Aromatic ring centroid-charged atom distance ≤ 6 Å
Angle between ring centroid-cation vector and normal vector of the ring is either between 0-60° or 120-180°

p-stacking Distance between two aromatic ring centroids ≤ 6 Å
General hydrophobic contacts Distance between two hydrophobic atoms ≤ 4.5 Å
May 2022 | Volume 13 | Article 884110
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simulation. The holo crystal structure’s interface residue selection
was used across all four scenarios to ensure fair comparisons for
interaction counts. Results for the dataset, classified by interaction
type, are summarized in Figure 1. The counts for direct polar
interactions, namely antibody-antigen hydrogen bonds and salt
bridges, are similar in simulation and crystal structure. The largest
difference between simulated and crystal structure intermolecular
interactions lies in the involvement of water. As exemplified in
Figure 1A, the difference between total polar interactions of apo and
holo crystal structures is not seen in simulation, where the
discrepancy is filled by interactions with water and a small
number of interactions with ions.

When comparing apo and holo simulations (left plot,
Figure 1A), a decrease in the apo number of hydrogen bonds
Frontiers in Immunology | www.frontiersin.org 5
with water led to an increase in the holo number of direct
hydrogen bonds and salt bridges with the antigen; this is
unsurprising given that some solvent interactions must be lost
and replaced by the antigen. Of these holo interactions, the
antibodies formed similar numbers of hydrogen bonds to
antigens and bridging waters. Another notable difference in
Figure 1A’s left plot is the holo bar’s extra hydrophobic
interactions, of which there is no apo equivalent. The majority
of these are general contacts between hydrophobic atoms.
Intramolecular interactions were also analyzed using the same
method and are presented in Figure 1B. These are very similar
between simulation and crystal structure, and the majority of
intramolecular interactions involve general hydrophobic
contacts. This suggests that changes occurring at the antibody
A

B

FIGURE 1 | Interface interactions of the antibody-antigen dataset. Error bars show one standard deviation of the mean total. Graphs for individual antibodies are in
Supplementary Figure 1. (A) Mean intermolecular interactions for REST2 simulations and crystal structures. (B) Mean intramolecular interactions for REST2
simulations and crystal structures.
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interface upon antigen binding are mostly intermolecular,
particularly in interactions with water. We thus present further
analyses on the holo antibodies’ hydrogen bonding with water.

Simulation of these antibodies in a solvated environment
enables a fairer comparison of hydrogen bonding with water
across the dataset, as counts from crystal structures alone would
depend on the number of solved crystal waters. Figures 2A, B
show the differences between simulation and crystal structure
counts. Some members of the dataset were solved over a decade
ago; newer, higher resolution structures that visualize all waters
would make our computational results more in line with
experimental observations. All antibodies formed more
hydrogen bonds with bulk solvent in simulation, and these are
most pronounced in anti-H1N1 and anti-TNFa, whose holo
structures have one and zero solved crystal waters respectively.
The relationship between simulation and crystal structure
bridging waters is less consistent, as shown by Figure 2B
where three antibodies’ bridging waters were underrepresented
in simulation (anti-MHC, anti-ObR, anti-IL-1bb) and two were
underrepresented in the crystal structure (anti-H1N1, anti-
TNFa). Simulation counts of hydrogen bonds with bridging
waters also varied more than solvent waters. Of the crystal
structures with multiple solved waters, anti-IL-1ba had the
largest increase in hydrogen bonding with bridging waters, and
an example frame is given in Figure 2C. These bridging waters
Frontiers in Immunology | www.frontiersin.org 6
were found across the interface, implying that multiple CDRs
involve them in antigen binding.

Given the difficulty in providing crystal structures with
sufficient resolution to identify all waters consistently,
conclusions on these interfaces were drawn from simulation
data. This is further justified by the similar numbers of direct
antibody-antigen interactions between simulation and crystal
structure. The large amount of hydrogen bonding with water
suggests that the antibody-antigen interface is highly water-
mediated, an aspect that is not easily captured when examining
static crystal structures alone.

3.2 CDR Sampling
CDR dynamics during REST2 simulations were measured by
their extent of Cartesian space and dihedral angle sampling.
Principal component analysis (PCA) of the CDR backbone
atoms was used to help visualize the Cartesian coordinate
variance. The first three principal components (PCs) from a
combined trajectory of apo and holo frames were found to give a
sufficient representation, accounting for 60-95% of the variance.
Plots of the frames projected along each CDR’s first three PCs are
given in Supplementary Figure 2, showing that most CDRs did
not deviate from the crystal structure throughout the simulation,
but apo frames tend to be more spread out than holo ones. The
CDR with the highest RMSD relative to its crystal structure, anti-
A B

C

FIGURE 2 | Hydrogen bonding with water in the dataset. Mean numbers of (A) antibody-solvent hydrogen bonds and (B) antibody-bridging water hydrogen bonds
formed by the dataset’s holo complexes, for both their static crystal structures and when simulated. Error bars for the simulation means are given to one standard
deviation. (C) Anti-IL-1ba’s bridging waters (red spheres) in a representative simulation frame (left) and in the crystal structure (right). The Fv is in blue and the antigen
in green.
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MHC’s L1, is shown in Figures 3A, B. Apo L1 clearly sampled
more areas of physical space than holo L1, with a cluster of
frames having an RMSD with respect to the crystal structure of
over 5 Å.

Two methods were then employed to quantify the difference
between apo and holo frames projected along their first three
PCs, the first being Dimensionality Reduction Ensemble
Similarity (DRES) (69). This scores the overlap between apo
and holo projections, with 0 signifying identical ensembles and
ln (2) signifying no overlap. The mean scores for each CDR
across the dataset are plotted in Supplementary Figure 3A.
Clear overlaps of the standard deviations reflect the large
variation in scores, with no CDR having consistently different
apo and holo ensembles. The second method involved average
linkage hierarchical clustering of these 3D plots, returning
numbers of clusters for each CDR’s apo and holo trajectories.
Clusters with an average Euclidean linkage distance above 11
were considered separate, and numbers of clusters are given in
Frontiers in Immunology | www.frontiersin.org 7
Supplementary Table 1. Apo and holo cluster comparisons are
summarized in Table 3.

PCA describes a CDR’s conformation in each frame as a
single point in PC space. It thus only shows large, slow changes in
physical space, potentially obscuring any small motions of the
CDR. We thus employed Dynamics Analysis by Salt and Hudson
(DASH) as a complementary analysis method. Dihedral
distributions of the CDRs were plotted as histograms, and
states generated by combining peaks in different plots whilst
discarding rare conformations. Again, the remaining states were
counted and compared, with counts and rare conformation
percentages in Supplementary Tables 2, 3. Apo and holo
states were also matched using circular similarity, allowing an
estimate of their conformational overlap. Percentages of matched
states are in Supplementary Table 4, and apo/holo comparisons
are also summarized in Table 3. CDRs were either equally or
more flexible in their apo form except for anti-MHC’s H2, which
had a higher rare conformation percentage and more
A B

DC

FIGURE 3 | Anti-MHC PCA and DASH examples. The Fv is in blue and the antigen in green on the right subfigures. (A) Apo and holo anti-MHC frames projected
along the first three PCs of L1, with frames colored by RMSD with respect to their crystal structure conformation. (B) Representative structures of L1 conformations,
with colors corresponding to the circles in (A). (C) Percentage of each CDR’s trajectory classified as rare in DASH, showing H2 with more rare conformations in its
holo state. (D) Representative structures for H2’s apo-unique (cyan), holo-unique (red), and matched conformations present in both trajectories (yellow).
TABLE 3 | Comparison of PCA clusters and DASH conformations for each CDR from the dataset.

Method % of CDRs

More apo sampling Equal sampling More holo sampling

PCA (Cartesian analysis) 38.9 57.4 3.7
DASH (dihedral analysis) 22.2 75.9 1.9
May 2022 | Volum
Percentages are rounded to one decimal place.
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conformations when antigen bound, as presented in
Figures 3C, D.

Both Cartesian space and dihedral analysis show that
conformational populations of CDRs are not the same upon
antigen binding. A higher proportion of CDRs sampled more in
their apo state than vice versa, suggesting these loops are more
flexible in the absence of the antigen. There is little overlap in the
PCA clusters when quantified using DRES (Supplementary
Figure 3), as apo frames tend to be spread wider by the most
significant PCs (Supplementary Figure 2). However, significant
overlap is seen in dihedral analysis when apo and holo were
compared using circular similarity, as binding state-specific
conformations form a minority of a CDR’s overall dihedral
population (Supplementary Table 4). We thus conclude that
CDRs are more flexible when the antigen is absent, but the
difference is more pronounced in Cartesian space analysis than
dihedral analysis. In the latter, more flexible apo CDRs visit
higher numbers of unique conformations, but these tend to be
less populated than the matched ones.

3.3 Correlations
Following our observations of hydrogen bonding dominating
intermolecular interactions and varying CDR flexibilities in
different antibodies, we have yet to answer the question of
whether this provides any indication of affinity. Since affinity is
not dictated by any single CDR, comparisons were made to
metrics that included all six CDRs of an antibody, quantified by
squaring the Pearson correlation coefficient (R2). Our first
interesting observation is the lack of correlation between an
antibody’s total CDR length or molecular weight with its affinity
(Supplementary Figures 4A, B), showing that the size of CDRs
do not dictate their binding. In terms of flexibility, we used each
antibody’s mean DASH and PCA cluster counts. Comparisons of
individual CDR lengths against our clustering results are in
Supplementary Figure 5, confirming that longer CDRs are not
always more flexible. Their length alone did not provide detailed
information on their behavior.

Clustering results were then compared to their SPR-
determined affinities as listed in Table 1, with the exception of
anti-ObR which only had IC50 data. The antibodies’ mean DRES
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scores, a measure of the overlap between apo and holo frames
when projected along their first three PCs, are plotted against
affinity in Supplementary Figure 3B. No correlation is present
between ensemble similarity and affinity, with an R2 of 0.28. The
quantified flexibility of apo and holo CDRs were next examined
separately, by plotting affinity against mean PCA cluster and
DASH conformation counts. There is no discernible correlation
between apo counts and affinity (Supplementary Figures 4C, D).
However, an arguably positive correlation is seen for holo counts
in Figures 4A, B. When the difference between apo and holo
clustering is plotted in Supplementary Figures 4E, F, this trend
disappears. Instead, the numerically small differences between apo
and holo suggest that some CDRs are preorganized for antigen
binding. Together, these correlations further support that CDR
flexibility after the formation of antibody-antigen interactions may
be linked to binding affinity.

Interface interactions from the holo simulations were
explored further to rationalize this link. When comparing
simulations to crystal structures in Figure 1, the latter’s
interface residue selection was used in all trajectory frames to
allow a fair comparison. For identifying trends with affinity, we
wished to account for the dynamics of the system, and all
possible interactions with the antigen were counted to fully
capture the antibody’s behavior. The resulting mean counts for
each intermolecular interaction type are plotted against antibody
affinities in Supplementary Figure 6. The interactions show little
correlation with affinity when plotted individually, except for the
number of hydrogen bonds with bulk solvent in Supplementary
Figure 6A. To make this more applicable to affinity prediction,
intermolecular interactions not to bulk solvent are plotted as a
percentage of all intermolecular interactions in Figure 5A.
Bridging waters are included as an intermolecular interaction
as they indirectly form an antibody-antigen contact. Although
the R2 of the eight antibodies is only 0.17, omission of anti-LFA’s
count increases this to 0.89, demonstrating a positive correlation
in the remaining eight. Further inspection showed that the
correlation with Kd is more associated with the reported koff
values (Figure 5B). Combined with the observation that the
change in CDR flexibility is not correlated with binding affinity,
which could imply a more entropic component, formation of
A B

FIGURE 4 | Antigen bound CDR sampling and affinity. The mean number of (A) holo PCA clusters and (B) holo DASH conformations across all six CDRs is plotted
for each antibody. Note that two points overlap in subfigure B at ln(Kd) = -3.5. ln(Kd) is used as a proxy for affinity due to the Gibbs free energy equation of DG° =
-RTln(Keq), and natural logarithms of Kd values in nM are used (see Table 1).
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more antibody-antigen interactions in higher affinity antibodies
suggest that antibody binding is more enthalpy-driven, although
solvent-mediated entropic effects cannot be ruled out.

We have however identified that anti-LFA is different from
the rest of the dataset. Firstly, it is the only antibody where a non-
solvent ion is part of the epitope. Secondly, it has an experimental
affinity of 4.7 µM, a 100-fold increase from the next lowest
affinity of anti-MHC’s 46 nM, and the SPR was done using Mg2+

buffer as opposed to the crystal structure’s Mn2+ (32, 33). An
attempt was made to include anti-LFA by plotting the non-
solvent polar intermolecular interaction percentage, i.e. not bulk
solvent and not hydrophobic interactions, and this gives a
slightly weaker R2 of 0.70 (Figure 5C). The interactions
measured using fluctuating simulation interfaces further reveal
that anti-LFA forms proportionally more hydrophobic
interactions than the rest of the dataset (Figure 5D). We thus
propose that anti-LFA’s interface may not be representative of a
typical antibody, and affinity is more likely related to the number
of specific antibody-antigen interactions. From the remaining
seven, an increased proportion of non-solvent interactions with
the antigen may be enabling the increased rigidity of antigen
bound CDRs.
4 DISCUSSION

In this work, we simulated nine antibody-antigen crystal
structure pairs, enhancing sampling of CDRs due to their large
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role in dictating binding. By studying the types of interactions
formed, we identified that the antibody-antigen interface had
large numbers of waters. Compared to crystal structures,
simulated complexes tend to form more hydrogen bonds with
water and fewer hydrophobic contacts. However, the work
presented here only specifically increased CDR sampling,
meaning that bridging water interactions were not necessarily
explored as extensively. The presence of water at these interfaces,
and their potential role in facilitating interactions, has been
identified in antibody crystal structures since the 1990s (71,
72). A more recent study on crystal structures of 145 protein-
protein interfaces also concluded that when compared to non-
antibody complexes, a mean of eleven more hydrogen bonds
with waters are found at antibody-antigen interfaces (73). These
results on a dataset larger than ours support the idea that water-
mediated antibody-antigen interactions are important.

Further inspection of these interfaces revealed that higher
affinity antibodies had a higher percentage of non-solvent
interactions with their antigen (Figure 5A). This was only
present when defined interfaces fluctuated with the simulation,
as the equivalent plot using crystal structure interfaces showed a
lower correlation with affinity (Supplementary Figure 7). Firstly,
this demonstrates how simulation of antibody dynamics can
provide new information for these interfaces. Secondly, it
suggests that water has an important role at the interface, as
‘non-solvent interactions’ included hydrogen bonds to bridging
waters . However, as previously mentioned, current
computational design methods do not measure these
A B

DC

FIGURE 5 | Interactions and affinity. The anti-LFA outlier is marked with a black circle, and natural logarithms of Kd values in nM are used (see Table 1). (A) ln(Kd)
and (B) ln(koff) are plotted against the percentage of intermolecular interactions that are not formed with bulk solvent. (C) ln(Kd) against the percentage of
intermolecular interactions that are neither bulk solvent nor hydrophobic contacts. (D) Mean percentage of intermolecular interactions that are hydrophobic in the
dataset’s simulated holo complexes.
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interactions, as they rely on implicit solvation models. Given
Figure 5A’s high R2 of 0.89 when excluding the anti-LFA
anomaly, we suggest that explicit solvent would better capture
antibody-antigen interactions in silico.

We have also found that CDRs behave differently in the
presence of their antigen. Over half were equally flexible in
antigen bound and unbound simulations, suggesting their
preorganization for antigen binding. This is in line with our
observation of higher affinity antibodies having less flexible
antigen bound CDRs, with R2s of 0.75 and 0.65 when dihedral
and Cartesian clustering were respectively plotted against
affinity. Preorganization has been proposed as a method to
reduce cross-reactivity (74–77), but this may be exaggerated
(78). This exaggeration could explain the poor correlation
between affinity and the apo/holo overlap of an antibody’s
CDR conformational population, as well as the CDRs where
flexibility changes upon antigen binding. If preorganization were
important, a smaller difference between antigen bound and
unbound sampling would be correlated with better affinity.
The lack of preorganization in some CDRs also has
implications for scoring functions that assume identical CDR
conformations when antigen bound and unbound; Liu et al. for
example measured binding by the difference in system energy
between bound and unbound antibody designs (13). This
definition would not capture differences in binding state-
specific flexibility and could be another reason for the presence
of false positives.

We also note that plotting affinity against the differences
between apo and holo sampling give much lower R2s
(Supplementary Figures 4E, F). We thus cannot relate
antibody affinity to entropically driven changes in CDR
flexibility. This does not exclude the possibility of entropic
contributions by solvent. Numerous studies have dissected the
thermodynamic signature of antibody binding using
isothermal titration calorimetry (ITC). The majority propose
that antibody binding is predominantly enthalpic (79–81), but
two cases of entropy driven binding were also reported. The
first involved an antibody against a staphylococcal nuclease-
derived peptide, where binding to the peptide was enthalpic
but binding to the whole nuclease was entropic (82). However,
crystal structures suggested that the enzyme undergoes
conformational change to achieve the peptide fragment’s
antibody interactions, thereby making binding more
entropically driven. The second case did perform ITC against
its intended antigen, and the nanobody with the longest and
most hydrophobic CDR3 employed entropy driven binding
(83). Here, entropic binding could be attributed to antibody
flexibility or solvent by the hydrophobic effect.

The correlations presented are not always clear, such as the R2

of 0.65 for numbers of holo PCA clusters against affinity. These
poorer correlations could be attributed to limitations in our
study. The majority of these were imposed by computational
limits: a small dataset of only nine antibodies, simulating only the
Fv region, and only 100 ns of REST2 simulation per structure.
Firstly, we imposed a number of strict criteria to obtain a high
quality dataset with a range of affinities, minimal redundancy in
Frontiers in Immunology | www.frontiersin.org 10
antibody and antigen sequences, sufficiently high resolution
structures for simulation, no missing Fv residues, and both
antigen bound and unbound structures available. For our
choice of only simulating the Fv, our current setup already
gave very large systems, and involved 40 µs of advanced
molecular dynamics simulations using national level
supercomputing services, not including preliminary work to
optimize our protocols. These large systems and usage of the
REST2 technique heavily limited simulation lengths, and in
certain cases the conformational populations of CDRs have not
converged (Supplementary Figure 8). Additionally, the
modelling of anti-LFA was suboptimal, due to a Mn2+ ion
present in the epitope. Simulation of metal ions by point
charge models has long posed many challenges, and in the
absence of quantum mechanics methods, the results regarding
that structure may be less accurate than the rest of the dataset
(84). We acknowledge that this study, despite our best efforts,
only offers a limited insight into these complexes. Despite these
limitations, the dataset presented here is the longest timescale
simulation of antibodies to our knowledge. Here we correlate
antibody dynamics with measured binding affinities, and the
conclusions that higher affinity antibodies are more rigid and
form more antigen interactions are not unexpected.

To conclude, we have analyzed the antibody-antigen interface
using extensive simulations of nine antibody-antigen crystal
structure pairs. The analysis confirms that antibodies regularly
interact with waters at the interface, a feature only captured by
high resolution crystal structures. Reduced interactions with
solvent waters may facilitate rigidity of CDRs in antibody-
antigen complexes, and these interlinked features could
provide some indication of an antibody’s binding affinity.
Despite their importance, current protocols’ usage of implicit
water models omits such interactions in affinity prediction
methods. We propose that incorporation of explicit waters
may help improve scoring of rationally designed antibodies.

We have also computationally demonstrated enthalpy driven
binding via analysis of CDR conformations. Using two different
metrics to measure CDR flexibility, we showed that some loops
behave differently when antigen bound or unbound.
Furthermore, differences in CDR flexibility in the presence or
absence of the antigen had no correlation with affinity. Instead,
some CDRs were preorganized for binding, and affinity was
somewhat related to antigen bound sampling. Our calculations
seem to confirm the observations by others that antibody
binding is enthalpy-driven rather than entropy-driven, and
that CDR flexibility should be considered in computational
design methods.

Longer simulations combined with further annotation of
flexibility and interface interactions would provide a clearer
picture of antibody-antigen interactions in the future. We
anticipate this would allow better prediction of crucial residues
for binding and how their mutation affects affinity. Deeper
understanding of these interfaces will enable computational
methods to better complement generating antibodies
experimentally, as well as improve the current state of the art
of rational design against specific epitopes.
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