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ABSTRACT: Spatial organization of cellular processes is crucial to
efficiently regulate life’s essential reactions. Nature does this by
compartmentalization, either using membranes, such as the cell and nuclear
membrane, or by liquid-like droplets formed by aqueous liquid−liquid
phase separation. Aqueous liquid−liquid phase separation can be divided in
two different phenomena, associative and segregative phase separation, of
which both are studied for their membraneless compartmentalization
abilities. For centuries, segregative phase separation has been used for the
extraction and purification of biomolecules. With the emergence of
microfluidic techniques, further exciting possibilities were explored because
of their ability to fine-tune phase separation within emulsions of various
compositions and morphologies and achieve one of the simplest forms of
compartmentalization. Lately, interest in aqueous liquid−liquid phase
separation has been revived due to the discovery of membraneless phases
within the cell. In this Perspective we focus on segregative aqueous phase separation, discuss the theory of this interesting
phenomenon, and give an overview of the evolution of aqueous phase separation in microfluidics.

■ INTRODUCTION

Nature is very efficient in organizing its cellular processes. Cells
are able to transport, localize, and concentrate specific
compounds at their site of action, making them more readily
available. This enables them to organize and regulate life’s
essential reactions, enhance their efficiency, and control in- and
outgoing fluxes. Creating compartments is a mechanism to
protect vulnerable processes in their own environment from
external factors as well. This is achieved by membranes, such as
the cell and nuclear membrane, and by the presence of liquid-
like droplets within the cytoplasm, which are formed by
liquid−liquid phase separation (LLPS).1 A lot of research on
the formation and functionality of these membraneless phases
within cells is still ongoing and inspiring chemists for the
realization of cell-like models with life-inspired functionality.2

Over many years, scientists have studied and designed
micro- and nanocompartments, aiming to develop micro-
environments that can mimic the functionality of the cellular
architecture for catalysis3 or drug delivery purposes.4,5

Different strategies have been attempted to efficiently
reproduce compartmentalization within systems, with every
approach being unique. The first attempts to mimic the cell’s
compartment were to mimic the cell as close as possible by
using lipids to form a membrane-based vesicle. Further
approaches included the self-assembly of amphiphilic mole-
cules in the broadest sense, including, but not limited to,
liposomes,6−8 polymersomes,8,9 and dendrimersomes (Figure

1).10,11 Furthermore, scientists were able to obtain control over
the morphology of these membrane assemblies, which allows
for the generation of different shapes,12 of which some contain
multiple compartments, such as polymer stomatocytes.13

Compartmentalization is not exclusive to membrane-contain-
ing systems.14 It can also be achieved via a simpler method,
namely via liquid−liquid phase separation. Two different
phenomena are distinguished in LLPS, associative and
segregative phase separation (Figure 1). The former occurs
for oppositely charged polyelectrolytes, which form a polymer-
rich phase and a polymer-poor phase, and these systems are
called complex coacervates. The latter, also called aqueous
phase separation (APS), is the phase separation of two neutral
polymers or a polymer and salt into two phases, each enriched
in one compound and depleted in the other.
APS has been known for centuries. It was first reported in

1896 by Beijerinck, who accidentally observed the phase
separation of two aqueous solutions, that is, gelatin/agar and
gelatin/soluble starch.15 This discovery remained trivial, until
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Per-Ake Albertsson rediscovered the formation of an aqueous
two-phase system (ATPS) during chloroplast purification.16

The application of ATPS for the purification of biological
materials inspired a generation of scientists. Later on, in fact,
Johansson studied “interactions, charge, isoelectric point,
hydrophobicity, purity and the presence of multiple forms of
enzymes” using partitioning in ATPSs and demonstrated the
importance of such systems for the separation and purification
of biomolecules.17 Many different ATPSs were discovered, and
systems up to six phases have been generated.18 The advantage
of ATPSs over classic liquid−liquid extraction is the possibility
to create a gentle aqueous environment using biocompatible
and biodegradable polymers and salts.

For many years, ATPS has been used for the bulk extraction
of biomolecules, such as proteins,19−21 enzymes,22 mem-
branes,23 viruses,24 and nucleic acids,25,26 in biotechnological
applications.27 Recently, ATPSs are finally recognized for their
versatility and flexibility,28 as well as their suitability as a model
system for mimicking the crowded environment within cells.29

The emergence of microfluidic technologies opened up new
possibilities to study ATPSs in more confined environments
and utilize ATPSs for other exciting applications outside the
scope of biomolecule extractions. Microfluidics, as well as
ATPS, have evolved rapidly, starting from relatively simple set-
ups generating water/water (w/w) jets to create complex
multicomponent emulsions with diverse applications. Here, we
focus on the use of APS in microfluidics to generate complex
emulsions. First, we briefly explain the fundamentals of APS,
after which we continue with APS in microfluidics, starting
from simple ATPS jets and emulsions to complex multiphase
droplets.

■ FUNDAMENTALS OF AQUEOUS PHASE
SEPARATION

The most common APS systems consist of aqueous solutions
of two or more incompatible polymers or polymer and salts
above a critical concentration which is dependent on the
compounds used. Other APS systems include ionic liquids,
short chain alcohols, or even surfactants (Figure 2).18 These
mixtures separate into two liquid phases, which are in
equilibrium, each phase is enriched in one of the respective
forming components. Water remains the main component,
typically over 80% by weight,28,30 of both phases in ATPS,
which ensures a biocompatible and gentle environment for
separation and fractionation of biomolecules.

Polymer−Polymer ATPS. The phase separation in
polymer mixtures is very common and based on steric
exclusion, which is related to the concentration and molecular
weight of the polymers.31 The demixing process, found in
polymer−polymer solvent systems, is driven by the enthalpy
related to the interactions of the solvent with the different
components.32 Even though there is a loss in entropy due to
phase separation, the gain in enthalpy is higher. Water, as a

Figure 1. Different designs of micro- and nanoscale compartmental-
ization divided in membrane-based (left) and membraneless systems
(right).

Figure 2. Overview of different compounds, including polymers, salts, and surfactants, that form aqueous-phase-separated systems. Reprinted with
permission from ref 18. Copyright 2012 American Chemical Society.
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solvent, has many noncovalent interactions with the polymers.
Since these interactions increase proportionally with the size of
the molecules, phase separation occurs at low concentrations
for high molecular weight polymers.33 As a result, polymers in
a polymer−polymer system start forming aggregates and
eventually separate in two different phases. The most
frequently made biphasic polymer−polymer systems have
been those of poly(ethylene glycol) (PEG) and dextran.
Polymer−Salt ATPS. Similar exclusion phenomena can be

observed in polymer−salt systems, however, they are based on
a different phenomenon.34 In such a system, the salt absorbs
large amounts of water that induce phase separation. This
phase behavior is influenced by the concentration and the type
of salt.35,36 In the most common polymer−salt systems, the
salts are phosphates, sulfates, or citrates. Usually, an adequately
high concentration of salt in these systems is necessary to
induce phase separation, generating a salt-rich bottom phase
coexisting with a polymer-rich top phase. The ability of the salt
to promote phase separation follows the Hofmeister series, a
classification of ions based on their salting-out ability, of which
multivalent anions, such as HPO4

2− and SO4
2−, are the most

efficient in inducing phase separation with PEG.37 However,
the exact mechanism through which salts influence the phase
separation in ATPS is still poorly understood.
Single Polymer ATPS. An ATPS can even be formed from

a single polymer by inducing thermoseparation. This happens
when a polymer has a decreased solubility in water above a
certain temperature. These thermoresponsive polymers have a
lower critical solution temperature (LCST) above which they
become increasingly hydrophobic. This induces aggregation of
the polymer in globules and will result in a water-rich top
phase and a polymer-rich bottom phase. Many thermoseparat-
ing polymers contain ethylene oxide and propylene oxide
because of their low LCST.38,39 One of the most appealing
thermoresponsive polymers is poly(N-isopropylacrylamide),
(PNIPAM), which shows a sharp LCST transition in an
aqueous environment near 32 °C. At the temperature-induced
demixing transition, individual molecules of PNIPAM are
highly sensitive to temperature changes due to their
coordinated dehydration process during heating.40 When
passing the LCST, phase separation is caused by the partial
dehydration of polymer chains that collapse and aggregate into
polymer-rich domains undergoing a coil-to-globule transition
in water. The model of reversible aggregation with variable
attraction energy might explain the coordinated dehydration of
PNIPAM molecules.41 According to this model, the association
rate is larger than the dissociation rate at the gelation
transition, which results in nonequilibrium and time-depend-
ency. For this reason, the collapse of individual PNIPAM
chains is relatively fast compared to the growth of the polymer-
rich domains, which can take from minutes to hours. During
this reversible transition, the amount of bound water decreases
as a result of new intra- and interchain hydrogen bond
formation. Due to its biocompatibility, its favorable LCST,
which is close to body temperature, and its sharp transition, it
is an often-studied polymer for biomedical applications.
Over the last decades there has been a growing interest in

another type of thermoresponsive polymers, which are elastin-
like polypeptides (ELPs). These ELPs are biologically inspired,
stimulus-responsive polypeptides derived from human elastin,
an extracellular matrix protein, with a LCST that can be
controlled by the length and sequence of the polymer.
Furthermore, they can be recombinantly synthesized with

complete control over polymer length and sequence, allowing
for the generation of a monodisperse population, which is
impossible for synthetic polymers.42 This makes them very
attractive temperature-responsive materials to use in bio-
medical applications.42,43 Their LCST phase behavior is
explained by their change in hydrogen bonds between the
peptide and surrounding water. Upon temperature increase,
the number of hydrogen bonds formed within the peptide itself
increases, while less H-bonds are formed between peptide and
water.44

ATPS in a Phase Diagram. Each two-phase system can be
characterized by its unique phase diagram that, like a
fingerprint, shows the potential working area of the ATPS. A
phase diagram indicates the point at which concentration the
solution acts as a homogeneous mixture and at which
concentration the solution phase-separates; this is unique for
each system under specific conditions. The binodal curve
distinguishes the homogeneously mixed region, below the
binodal curve, from the phase-separated region, above the
binodal curve (Figure 3). Above the critical concentration

curve, two separate aqueous phases form, enriched in one
material and deficient in the other. A tie line connects the two
coexisting phases and represents the overall composition of the
system. The intersection with the binodal curve marks the
concentration of each of the polymers for the top (A) and
bottom (B) phase. All points on this line correspond to the
same equilibrium composition of phases, but in different
volume ratios. At the critical point C, the composition of both
phases is identical, resulting in a single homogeneous phase.
Close to the binodal curve, the system is sensitive to additives
and changes in the environment, such as the addition of salt or
change in temperature, which can affect the ATPS formation
and composition. Besides concentration, molecular weight
influences phase separation greatly. At higher molecular
weights, steric exclusion will be stronger and lower
concentrations are needed to induce APS. Moreover, the

Figure 3. Schematic representation of phase diagram. Aqueous two-
phase system is formed for concentrations above the binodal curve
(ABC), while below the binodal curve, a homogeneous mixture is
formed.
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difference in molecular size between the two polymers affects
the shape of the binodal curve. A larger difference will result in
a more asymmetric phase diagram. Temperature has a great
effect on phase separation and is therefore important to keep as
constant as possible. Concerning polymer−polymer systems,
phase separation occurs more easily at lower temperatures,
while polymer−salt systems exhibit the opposite.45,46

■ APS IN MICROFLUIDICS

ATPSs have been used extensively for batch extraction of
biomolecules because of their mild conditions. A sample, such
as enzymes, can be extracted from one aqueous phase by
mixing it with another incompatible aqueous phase. By
generating an emulsion, partitioning takes place due to the
high surface to volume ratio. The lack of control over emulsion
size and the resulting low efficiency of batch processing is a
major drawback of this method. The emergence of microfluidic
techniques allows for high-throughput processing and strict
control over contact area of the immiscible phases. Micro-
fluidics opens up many new possibilities for the design and use
of ATPSs. Here, we discuss the generation of various ATPS
systems, ranging from simple two-phase systems to complex
multiphase systems.
All Aqueous Microfluidics. The simplest form of ATPS in

microfluidics is the formation of an ATPS jet. These jets are
used for high-throughput, continuous extraction of biomole-
cules.47−51 Two coexisting, immiscible phases are led through a
microchannel, ensuring a large surface-to-volume ratio that is
beneficial for partitioning. By decreasing the width and
increasing the length of the channel, an even larger contact
area is created, allowing for efficient and complete partitioning
of a sample. Although w/w jets are easily formed, generation of
monodisperse w/w emulsions proves to be more difficult. This
is due to the ATPS’s low interfacial tension values, reported to
be, depending on the ATPS composition, between ∼0.08 and
10 μN m−1,52−54 and is therefore in the same range of
magnitude as membraneless organelles55,56 and several orders
of magnitude lower than for typical w/o emulsions. The
extremely low interfacial tension in ATPS’s results in long w/w
jets or uncontrolled breakups, generating polydisperse
droplets.57 Therefore, a different approach is needed to
generate ATPS droplets. Until now, two types of techniques
have been used, passive flow focusing and the application of
external forces, respectively. In both traditional applications

and microfluidic set-ups, PEG and dextran ATPSs are widely
used.
Passive generation of droplets uses traditional flow-focusing

devices and techniques to generate stable flows. Due to the low
interfacial tension of two aqueous solutions, droplet formation
appears only at extremely low flow rates, which are impossible
to generate using traditional pumps. To circumvent this
problem, hydrostatic or air pressure can be used to generate
these flows. The first example of passive microfluidics used
hydrostatic pressure, generated by fluid-filled pipet tips, to load
the solutions directly into the inlets (Figure 4A).58,59 This
ensures very low flow rates, that is, 0.02−0.05 μL/min,
resulting in the frequent breakup of the dispersed phase by the
continuous phase, often dextran and PEG, respectively.
Monodisperse droplets are generated close to the junction,
equivalent to relative high pressure for the continuous phase
and low pressure for the dispersed phase. When dextran
pressure is higher, or PEG pressure lower, the droplets are
formed further from the junction, resulting in high
polydispersity. When dextran pressure is too low, no droplets
are formed, since the dextran phase flows back due to the
relatively high pressure of the continuous PEG phase. The
droplet size can be adjusted by changing viscosity, interfacial
tension, and inlet height. Hydrostatic pressure and, thus, flow
rates can be adjusted by the column height of the solution in
the tip. Although this approach is extremely simple, it has one
major drawback. Upon droplet generation, the solution level
will drop and thus change the hydrostatic pressure. One of the
main advantages of microfluidics is its high-throughput
production. However, due to the low flow rates and the
limited amount of solvent in the tip, this does not apply
anymore for these systems. To compensate for this, parallel
channels can be used to increase the output. A more
sophisticated and controlled approach is the use of air pressure
to drive the flow of solution (Figure 4B).60 This method can
reach flow conditions that are difficult to obtain using syringe
pumps or pipet tips, which need to be on the lowest and
highest limit of their abilities, respectively.
The other option is the generation of droplets by applying

an external force to break up the stable flows. This method
allows the use of normal pumps to control flow rates. Breakup
of the aqueous jet can be obtained by many different external
forces, the simplest, however, is by mechanical actuation on the
tubing.61 Droplet size was found to be dependent on the

Figure 4. Schematic representations of all aqueous microfluidic set-ups. (A) Passive flow focusing microfluidic setup utilizing hydrostatic pressure
via fluid filled pipet tips inserted in the inlets. Reprinted with permission from ref 59. Copyright 2017 Elsevier. (B) Passive flow focusing
microfluidic setup utilizing air pressure to obtain low flow rates. Reprinted with permission from ref 60. Copyright 2018 American Chemical
Society.
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frequency of the shaker and could generate droplets
reproducibly. Many other possible external forces can be
used, either on- or off-chip, such as electric or magnetic forces,
these were reviewed before and are beyond the scope of this
perspective.57

The main disadvantage of w/w emulsions is that they are
highly unstable and upon coalescence will fuse together usually
shortly after their formation inside the microfluidic chip. Due
to the low interfacial tension and relative thickness of the
interface, small molecules do not adsorb onto the interface and
can thus not be used for stabilization of the droplet. However,
particles do adsorb at the interface and result in stable
Pickering emulsions.62 Other options are the generation of a
thin shell or a hydrogel in situ by either a precipitation or
gelation reaction at the emulsions interface.61,63,64 This way,
stable droplets can be generated, capable of containing their
intended cargo. Although all-aqueous microfluidics is simple in
its setup, it can be increasingly complex to obtain and maintain
stable flow rates and frequent breakup of the jet into
monodisperse droplets. Higher order emulsions are difficult
to generate using w/w microfluidics; only a few examples are
known of higher-order emulsions.65−68 Combining ATPS with
classical w/o microfluidics makes it possible to increase the
stability and complexity of the emulsions and obtain more
flexibility in choice of materials.
ATPS Double Emulsions. In the past decade, more and

more scientists rediscovered the use of ATPS in combination
with traditional oil−water microfluidics to generate complex
multiphase droplets. While stability is a problem for w/w
emulsions, water/oil (w/o) emulsions can be stabilized with
surfactants and thus they will not fuse together and can be
easily produced, stored and even manipulated. Simple flow

focusing microfluidic chips produce single water droplets in oil.
Introduction of an extra inlet for an immiscible aqueous phase
will produce an ATPS jet, forming droplet-in-droplet
morphologies upon emulsification by the oil phase (Figure
5A). Tuning the phase separation and flow rates allow for the
generation of droplets with different ratios of phases and
compound compositions, which can either be concentric or
asymmetric depending on the interfacial tension of the system
(Figure 5B).69,70 These double emulsions can be gelated using
different methods, such as chemical cross-linking71,72 or
photoinitiated polymerization,73,74 which enables long-term
storage in aqueous solutions. Any chemical reaction linking
two polymer strands together can, in principle, be used. The
different reactants are separated in different solutions so that,
upon formation of the emulsion, the reaction occurs, and the
droplets are solidified (Figure 5C). By incorporating a
polymerizable phase, such as diacrylate funtionalized polymers,
droplets can be cross-linked upon UV-exposure (Figure 5A).
In the case of an asymmetric PEG diacrylate−dextran double
emulsion, PEG diacrylate can be selectively UV-polymerized,
forming a hydrogel, while dextran templates an asymmetric
shape. This has been utilized for various applications, such as
cell growth chambers,73 cargo buckets,75 and as a base for
micromotors.74 By manipulating the aqueous phases and flow
rates and by tuning the gelation reaction, different shapes and
types of microgels can be generated.

■ INDUCED PHASE SEPARATION

Increasing the number of phases inside a droplet will result in
an increased complexity of the microfluidic setup. While simply
expanding the microfluidic chip with more inlets is possible,

Figure 5. (A) Schematic representation of a flow focusing microfluidic chip to generate double emulsions of which one phase can be UV-
polymerized resulting in asymmetrical gels. Adapted with permission from ref 73. Copyright 2012 John Wiley & Sons, Inc. (B) Examples of double
emulsions consisting of different compositions. Adapted with permission from ref 69. Copyright 2017 American Chemical Society. (C) A glass
capillary microfluidic device generating double emulsions; depending on pH, they are either core−shell or Janus-type. Adapted with permission
from ref 72. Copyright 2019 American Chemical Society.
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some practical limitations will arise, such as increasing
complexity in the fabrication of the master chip and increasing
the amount of pumps for the microfluidic setup. Furthermore,
the formation of more complex morphologies, such as those
known for traditional emulsions, including three-phase or so-
called Cerberus droplets and onion-shaped droplets consisting
of all aqueous emulsion droplets proved difficult. Induced
phase separation can overcome these limitations. Phase
separation only occurs at certain conditions and at high
enough concentrations. If these requirements are not met, a
homogeneous mixture is obtained. Taking advantage of this
knowledge, a simple w/w or w/o single emulsions can give rise
to complex multiphase droplets upon changing the conditions
to favor APS. There are two methods to induce phase
separation, either mass-transfer induced or stimulus-induced
phase separation, MTIPS or SIPS, respectively.
Mass-Transfer Induced Phase Separation. MTIPS is

based on the extraction of a solvent from a homogeneous,
multicomponent, single emulsion system. In most cases, the
extracted solvent is water. APS within this system can only
occur when all polymeric components exceed their critical
concentration, above which phase-separation occurs. Below the
critical concentration, all components are miscible and will
form one homogeneous solution. A single emulsion generated
with this solution will contain all components necessary for
APS, only in dilute concentrations. By actively extracting water
from the homogeneous multicomponent emulsion droplets,
the internal concentrations of all components will inevitably
exceed their respective critical concentrations, upon which
aqueous multiphase systems (AMPSs) are achieved. This can
be done either by the addition of water-attractants,69 by
evaporation,76−79 or by osmosis.67,80 The former two can be
used in w/o systems, while the latter is used in w/w
microfluidics.
The addition of water-attractants allows for the generation of

droplet-in-droplet morphologies via controlled phase separa-
tion, as Cui et al. reported.69 Here, aqueous homogeneous
multiphase beads, containing poly(vinyl alcohol) (PVA), PEG,
and dextran, are generated using a simple coaxial microfluidic
setup. The continuous phase used here is an oil solution,
containing the water attractant dimethyl carbonate (DMC). As
water is more easily dissolved in DMC compared to the oil,
water is slowly extracted from the droplets, resulting in
decreased droplet size and increased compound concentra-
tions. As concentrations keep increasing, the critical concen-
trations of the polymeric components within the droplet are
exceeded, leading to phase separation and ultimately resulting
in multiphased emulsion droplets (Figure 6A). The degree of
phase separation is tunable, as prolonged DMC incubation
times yield more distinct phase separation and smaller droplet
sizes in comparison to shorter DMC incubation times.
Evaporation can be a tool to induce phase-separation as

well.76 Here, a universal method has been proposed for the
generation of Janus particles, which is based on evaporation
driven liquid−liquid phase separation. Janus particles are
spherical, multicomponent particles that display different polar
characteristics. Traditionally, these particles are generated by
using microfluidic setups, where a biphasic laminar monomer
stream is broken into Janus droplets as a result of side by side
emulsification. However, as similar monomer viscosities are
crucial to maintain stable biphasic laminar flow, the choice of
monomers that fit that criteria are limited. To circumvent this
problem, other avenues needed to be pursued. Using simple

microfluidic chips, homogeneous ternary aqueous droplets
could be generated, using fluorinated oil, FC-40, as the
continuous phase. As FC-40 features a high gas/vapor
permeability, volatile cosolvent molecules, such as ethanol,
can evaporate with ease, triggering phase-separation in the
process (Figure 6B). Various morphologies can be generated
via this method by simply changing the volume ratio or by
adjusting the liquid composition of the ternary mixture.
Induced phase separation for w/w microfluidics can also be

achieved through osmosis, as Liang et al. reported.80 Initially,
the generated particles are homogeneous in nature. Once they
move down stream within the microfluidic channel, exchange
of the dispersed and continuous phases takes place at the
droplet interface, namely, the continuous phase enters the
droplet and the dispersive phase leaches into the surrounding
solution creating onion-shaped droplets (Figure 6C). Usually,
the continuous phase consists of a solubilized polymer, such as

Figure 6. (A) Optical (top row) and fluorescence (bottom row)
images depicting the formation of multiphase droplets out of
homogeneous droplets by the addition of a water-attractant. The
scale bar is 50 μm. Adapted with permission from ref 69. Copyright
2017 American Chemical Society. (B) Schematic representation of
the Janus droplet formation via evaporation induced phase separation.
The scale bar is 40 μm. Reprinted with permission from ref 76.
Copyright 2016 Royal Society of Chemistry. (C) Schematic
representation of an all-aqueous microfluidic device for multiphase
droplet generation through osmosis (top). Formation of double,
triple, and quadruple droplets over time with initial PEG diacrylate
concentrations. The scale bar is 200 μm. Adapted with permission
from ref 80. Copyright 2016 American Chemical Society.
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PVA, in water, while the dispersed phase can consist of ionic
liquids or polymeric solutions. A wide range of structures can
be obtained using this method, as reported in literature.65

Stimulus-Induced Phase Separation. SIPS is the
induction of a phase separation in homogeneous aqueous
mixtures by an external stimulus, which can be a change in
physical conditions or addition of a chemical effector.81,82 SIPS
is possible when the effect of the stimulus on the system leads
to changes in the composition of phases in ATPS or when the
solution is made out of at least one stimuli-responsive material.
Stimuli-responsive materials, such as polymers, respond to
small changes in environmental stimuli with large, sometimes
discontinuous, changes in their physical state or properties.
The phase separation can be triggered by different
physiochemical stimuli, such as temperature,83,84 light,85 and
pH,86 depending on the chemical nature of the responsive
polymer.
Thermally induced phase separation relies on the change in

polymer solubility as a consequence of a change in temper-
ature. This technique is based on the thermodynamic demixing
of a homogeneous polymer−solvent solution into a thermo-
sensitive polymer-rich phase and a thermosensitive polymer-
poor phase in case of one polymer systems. PNIPAM is an
excellent candidate for the fabrication of temperature-induced
phase separating micro- and nanoparticles using microfluidics.
In combination with other aqueous polymer solutions, Janus
particles have been synthesized with a finely tunable internal
architecture.84 This was achieved by the thermally induced
formation of PNIPAM colloidal nanoparticles that, after

formation, phase-separated. This transforms homogeneous
microdroplets consisting of polyacrylamide and PNIPAM to
Janus microparticles, of which one side is composed of
aggregated colloidal nanoparticles, PNIPAM, and the other
side of polyacrylamide hydrogel.
Recently, another technique for the one-step fabrication of

double emulsions based on a thermal phase separation
approach was introduced.87 The researchers do not rely on a
thermoresponsive polymer, but on the temperature-dependent
phase separation. The phase diagram of PEG and dextran was
found to be dependent on temperature. At low temperatures,
the binodal curve shifted up to higher polymer concentrations,
while for higher temperatures, the binodal curve shifted down.
For this thermo-induced approach, both polymer concen-
trations should lie in between the two binodal curves. This
ensures that for low temperatures the composition lies below
the curve and thus forming a homogeneous mixture, while at
higher temperatures the polymer composition lies above the
curve forming a phase separated system. A single emulsion is
generated at low temperatures, the aqueous mixtures of
polymers exists as a single phase, but tends to return to their
thermodynamically preferred phase-separated state at room
temperature when allowed to warm up (Figure 7A). Once
formed, the phase-separation inside the droplets can be
reversibly switched between mixed and phase-separated states
as controlled by the temperature. This system was extended by
incorporating a third aqueous solution to form three phase
Cerberus emulsions.

Figure 7. (A) Generation of double emulsion via temperature-controlled phase separation. Aqueous solutions of miscible hydrophilic polymers
emulsified at low temperature leads to the formation of single-phase emulsion droplets. Upon warming up to room temperature, phase separation
occurs, resulting in the formation of Janus droplets. Scale bar is 50 mm. Reprinted with permission from ref 87. Copyright 2020 Elsevier. (B)
Schematic representation of microfluidics setup and process for the fabrication of UV-induced phase-separated Janus particles. Reproduced with
permission from ref 85. Copyright 2011 Royal Society of Chemistry.
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When light-sensitive polymers are present in the emulsion,
phase separation can be induced by light as well. Lone et al.
presented a simple and efficient method for the preparation of
Janus particles by UV-directed phase separation of a light-
sensitive polymer using a cross-junction PDMS microfluidic
device (Figure 7B).85 A homogeneous w/o emulsion is
generated containing a light-sensitive random copolymer and
a cross-linker. Upon UV exposure the light-sensitive polymer
forms zwitterionic moieties which leads to inter- and intrachain
ionic interactions. These interactions lead to water-expulsion
and thus phase separation. This is a reversible reaction and
over time the emulsion will form a homogeneous emulsion
again. To maintain the induced asymmetry, a cross-linker was
dissolved in the aqueous phase and a UV-initiator in the oil
phase. Upon UV exposure phase separation of the light-
sensitive polymer is induced, at the same time the initiator is
activated generating radicals which react with the cross-linker
to form a polymer shell at the emulsion interface. The resulting
Janus microparticles consist of a smooth, hollow body and a
protruded head composed of the light-sensitive polymer.

■ CONCLUSION AND FUTURE PROSPECTS
In this Perspective we highlighted various interesting studies to
show different methods to generate increasingly complex APS
emulsions. APS has evolved from a biocompatible extraction
method to one of the most studied and interesting topics
today. What started with the immiscibility of gelatin and agar
has grown to be a phenomenon related to many different
polymers, salts, and other water-soluble compounds. Its
popularity lies in its biocompatibility and its versatility,
something that was underestimated for years and only recently
rediscovered upon increasing interest in membraneless
compartmentalization. The rise of microfluidic techniques,
with their main advantage being to generate monodisperse
droplets, opened up new possibilities to generate emulsions of
different morphologies and compositions. The spontaneous
liquid−liquid phase separation together with the aqueous
nature of APS makes it an interesting choice to use in
combination with microfluidics to study confinement and
compartmentalization, as well as utilize it as a precursor to
fabricate microparticles.
Many exciting possibilities in combining APS and micro-

fluidics still remain to be investigated, more specifically, in the
field of SIPS and its applications. SIPS can boost the
applicability of APS by enhancing phase separation and
increasing selectivity toward the desired purpose. The design
and use of new, smart polymers would allow the generation of
induced, dynamic phase-separating systems. Some examples
from the nonaqueous polymer field show us what might be
possible in the future, such as reversible in situ SIPS upon light
exposure to induce different morphologies.88−91 Other
interesting studies are the accumulation of different cargoes
in different phases of complex emulsions for drug delivery
purposes or incorporation of different catalysts for reaction
cascades.92

Probably one of the most challenging and exciting
applications is LLPS as mimic of the cell. The existence of
membraneless liquid-like organelles was discovered only
recently and since then attracted the interest of many
scientists.93 Since membraneless organelles, formed through
associative liquid−liquid phase separation were found to play
an important role in the cell’s spatial organization, a lot of
research went into this specific type of LLPS. Complex

coacervates were recognized to resemble these membraneless
organelles and serve as cell model systems94,95 and were
proposed as protocells for the origin of life.96,97 Since then,
many interesting studies showed coacervates dynamic
assembly and disassembly upon different stimuli98,99 and
their assembly into more complex, multiphase systems.98,100,101

However, using complex coacervates, a polymer-rich phase is
generated, as well as a polymer-poor phase. This is not an
accurate representation of the cell. Even though coacervation
occurs in the cell for specific molecules, many other molecules
are present as well that maintain the crowded environment
throughout the whole cell. APS emulsions started as simplistic
models of the cells cytoplasm as a confined, crowded space,
currently, it plays a more crucial role in the design of artificial
cells. APS can induce localization of specific biomolecules in
one or the other compartment while maintaining an overall
crowded environment.102 Furthermore, combining this with
induced phase separation, such as the temperature-dependent
phase separation of PEG and dextran, reversible localization
and delocalization of biomolecules is possible, making it more
dynamic. Recently, Zhao et al. combined both LLPS
phenomena to design a new protocellular system.103 By
combining both APS and coacervation a crowded, dynamic
environment with spatial control over its constituents and
high-order complexity was obtained. It is clear by now that
nature has some remarkable phenomena in store, which are
not yet completely understood or utilized to their full capacity.
We believe that aqueous-phase-separated systems can help
unravel some of these mysteries.
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