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Abstract

Airway hyper-reactivity is a characteristic feature of many inflammatory lung diseases and is
defined as an exaggerated degree of airway narrowing. Chemokines and their receptors are
involved in several pathological processes that are believed to contribute to airway hyper-
responsiveness, including recruitment and activation of inflammatory cells, collagen deposition
and airway wall remodeling. These proteins are therefore thought to represent important
therapeutic targets in the treatment of airway hyper-responsiveness. This review highlights the
processes thought to be involved in airway hyper-responsiveness in allergic asthma, and the
role of chemokines in these processes. Overall, the application of chemokines to the prevention
or treatment of airway hyper-reactivity has tremendous potential.
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AHR = airway hyper-responsiveness; BALF = bronchoalveolar lavage fluid; CCR = CC chemokine receptor; CXCR = CXC chemokine receptor;
FEV1 = forced expiratory volume over 1 s; IL = interleukin; LTC4 = leukotriene C4; MCP = macrophage chemoattractant protein; MIP = macrophage
inflammatory protein; PC20 = provocative concentration; PD20 = provocative dose; Th cells, T helper cells.
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Introduction
One of the key features of pulmonary diseases such as
allergic asthma, cystic fibrosis and chronic obstructive pul-
monary disease is the development of airway hyper-
responsiveness (AHR) [1–3]. The factors involved in the
development of AHR seem to differ between diseases, so
for clarity this review will focus on the development of
AHR during allergic asthmatic disease. In the context of
asthma, AHR equates to an exaggerated bronchoconstric-
tor response, not only to allergens to which the subjects
are sensitized, but also to a range of non-specific stimuli,
including agents as diverse as cold air and methacholine.

Under normal conditions, airway reactivity, the ability to
alter the size of the airways reversibly in response to
stimuli, is an essential component of homeostasis. For
example, when there is a need to move large volumes of
air, such as with exercise, bronchial dilation occurs. Con-
versely, when it is important to limit or decrease the
volume of air inspired, such as with exposure to irritating
gases, the lung defends itself with coughing and bronchial
narrowing. When this response is excessive, it is referred
to as airway or bronchial hyper-reactivity or hyper-respon-
siveness (AHR) and manifests itself as an exaggerated
bronchoconstrictor response to various provocative
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agents. Measurements of AHR have traditionally been
used to identify individuals who are at risk of developing
asthma or related illnesses. The essential feature to these
tests is to provide stimuli of varying intensity, such as
methacholine, to the airways of the individual and record
the decrease in lung function that develops. The resulting
stimulus–response curve that develops is then analyzed to
determine the quantity of agent required to produce a
given degree of obstruction as measured by various spiro-
metric or plethysmographic variables. Such changes are
usually expressed as a percentage decrease in forced
expiratory volume over 1 s (FEV1). The three variables that
are most often examined in quantifying the magnitude of
the response are the concentration of an agonist that
induces a fixed decrease in lung function (ie a 20%
decrease in FEV1), the slope of the dose–response curve,
and the dose at which a plateau can be produced. Typi-
cally, the response is expressed as either a provocative
dose (PD20) or a provocative concentration (PC20).

How this hyper-responsive state is acquired is poorly
understood; however, in general, as the disease process
becomes more severe the airways become more respon-
sive. At present it is believed that AHR can result from the
coordination of several mechanisms, some or all of which
might be operative in individual asthmatics. In asthma a
relationship seems to exist between the inflammatory state
of the airways and the severity of hyper-responsiveness. In
addition, airway remodeling, including smooth muscle
hyperplasia/hypertrophy, collagen deposition and sub-
epithelial fibrosis, might contribute to the development of
AHR [4–6]. Because recent work in the field of chemokine

biology has highlighted a role for these proteins in many of
these inflammatory processes, chemokines might be inti-
mately involved in the initiation and maintenance of AHR.
In this regard, chemokines could be attractive therapeutic
targets for the treatment of pulmonary disease with an
AHR component, in particular asthma.

Introduction to chemokines
During the past decade, our understanding of the mecha-
nisms involved in the initiation and maintenance of pul-
monary disease has been greatly aided by advances in the
field of chemokine biology. Chemokines comprise four
supergene families, classified into groups on the basis of
the number and arrangement of conserved amino acid
sequences at the N terminus. Two of these families (the CC
and CXC chemokine groups) contain over 50 identified
ligands and at least 14 individual receptors (Table 1). Two
additional chemokine families (C and CX3C chemokines)
are small and contain, respectively, lymphotactin and
fractalkine as their members. Recent knowledge of this
superfamily has grown significantly as a result of the avail-
ability of large databases of expressed sequence tags and
bioinformatics [7]. Furthermore, characterization of these
chemokines in vivo has identified multiple roles within
inflammation, including the regulation of leukocyte traffick-
ing, the immunomodulation of leukocyte activation, fibrosis,
angiogenesis, hematopoiesis and organogenesis [8].

The biological effects of chemokines are mediated by the
interaction of these soluble proteins with specific receptors,
which belong to the superfamily of seven-transmembrane
G-protein-coupled receptors. So far, 11 CC chemokine

Table 1

Chemokine receptors and their ligands

CXC chemokine receptors CC chemokine receptors

CXCR1: IL-8, GCP-2 CCR1: MIP-1α, RANTES, MCP-3, MIP-δ

CXCR2: IL-8, GCP-2, GROα,β,γ, ENA-78 CCR2: MCP-1 to MCP-5

CXCR3: IP-10, MIG, ITAC CCR3: Eotaxin, MCP-3,4, RANTES

CXCR4: SDF-1 CCR4: TARC, MDC

CXCR5: BCA CCR5: MIP-1α, RANTES, MIP-1β

CCR6: LARC, MIP-3α

CCR7: SLC, MIP-3β

CCR8: I-309, TARC, MIP-1β

CCR9: MIP-1α,β, MCP-1, MCP-5

CCR10: SLC, LARC, BLC-1, ESkine

CCR11: MCP-1 to MCP-5, eotaxin

GCP-2, granulocyte chemotactic protein-2; GRO, growth-related oncogene; IP-10, γ-interferon-inducible protein 10; MIG, monokine-induced by
γ-interferon; TARC = T cell and activation-related chemokine; SLC = secondary lymphoid tissue chemokine; SDF-1, stromal cell-derived factor;
BCA, B-cell chemoattractant; ENA, epithelial cell-derived neutrophil-activating factor; RANTES, regulated upon activation normal T cell expressed
and secreted; ITAC, interferon-inducible T cell α chemoattractant.
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receptors, five CXC chemokine receptors, one CX3C
chemokine receptor and one C chemokine receptor have
been characterized [7,9]. Chemokine receptors exhibit mul-
tiple ligand specificity, although the chemokine–ligand
promiscuity does not usually cross the boundaries between
CC and CXC, except for the promiscuous duffy antigen
receptor complex that is believed to act as a sink for
unbound chemokines. Chemokine receptor distribution on
leukocytes confers selective chemoattractant activities for
leukocyte subsets, making them ideal candidates for a role
in leukocyte subset trafficking at sites of inflammation; that
is, getting the correct subpopulation of cells to migrate into
the tissue. Whereas CXC chemokines such as interleukin-8
(IL-8) activate predominantly neutrophils, CC chemokines
such as RANTES and eotaxin target a variety of cell types
including macrophages, eosinophils and basophils.
However, controversial results have been published regard-
ing this distinct chemokine receptor profile on leukocytes,
particularly in allergic diseases. It has been shown recently
that, after the appropriate stimuli, the CC chemokine recep-
tors CCR1 and CCR3 can be expressed on neutrophils,
indicating a wider role for CC chemokines than mononu-
clear cell activation and recruitment [10,11]. Furthermore,
both the CXC chemokine receptors CXCR1 and CXCR2
have been identified on eosinophils in addition to neu-
trophils [12]. However, chemokine receptor expression is
not limited to inflammatory cells. It is interesting to note that
structural cells such as epithelial cells, endothelial cells,
smooth muscle cells and fibroblasts also express
chemokine receptors and are able to produce chemokines;
they are therefore capable of contributing to a wide range of
biological functions [13–15].

Once chemokines are released, they can have profound
and longlasting biological effects both in the microenviron-
ment of their release and at distant sites. These effects,
including leukocyte recruitment and activation, smooth
muscle proliferation, regulation of collagen deposition and
coordination of fibrosis, might have key individual roles in
the establishment and maintenance of AHR [4,5].

Chemokines and leukocyte recruitment in AHR
Studies in both animals and humans have demonstrated a
positive correlation between the inflammatory state of the
airways and the severity of AHR. However, because the
type and cause of this inflammation, as well as the extent
and consequences of the inflammatory process, vary
between different diseases exhibiting AHR (Table 2), the
direct contribution of individual cell types or chemokines
to AHR is not yet clearly understood. As discussed above,
the distinct pattern of chemokine receptors on leukocytes
means that chemokines can exert effects on particular
leukocyte subsets. Therefore, the selective recruitment of
leukocytes to sites of inflammation in these diseases is
strongly influenced by the temporal pattern of chemokine
expression.

Eosinophil recruitment and AHR
Lung eosinophilia is a fundamental trait of allergic asthma,
and infiltration of the airways by eosinophils seems to be
central in the pathogenesis of this disease [16–18].
Eosinophils and their products have been identified in
sputum, bronchoalveolar lavage fluid (BALF) and biopsy
material of the airways of patients with asthma. Further-
more, the number of these cells and the amount of their
products correlate with the severity of airway reactivity
[16,17,19,20].

Eosinophils contribute to the development of AHR
through the activation, degranulation and release of pro-
teins and oxidative products stored in their granules.
These proteins include major basic protein (MBP),
eosinophil cationic protein (ECP), eosinophil-derived neu-
rotoxin (EDN) and eosinophil peroxidase (EPO). In addi-
tion, eosinophils generate oxidative products and lipid
mediators, including platelet-activating factor and
leukotriene C4 (LTC4). The generation of these cytotoxic
products can cause extensive tissue damage and enhance
the accumulation of inflammatory cells. Damage to airway
epithelium appears to correlate with airway hyper-reactivity
because the loss of epithelium leads to the exposure of
‘irritant’ receptors of nerves, which might increase the
response of the airways to various stimuli.

Several chemokines, including macrophage chemoattrac-
tant protein (MCP)-3, macrophage inflammatory protein
(MIP)-1α, MCP-4, RANTES and eotaxin, elicit the migra-
tion of eosinophils [21–23] and can confer some degree
of selectivity on eosinophil recruitment. Specifically,
eotaxin, a potent activator of eosinophils and T helper 2
(Th2) lymphocytes, interacts with CCR3 expressed on
eosinophils [24–28] to cause both degranulation and
chemotaxis of eosinophils [29,30]. Elevated levels of
eotaxin detected in the sputum of asthmatics has been
shown to be correlated with increased eosinophil numbers
and eosinophil cationic protein levels [31]. In several

Table 2

Cellular infiltrate in the airway wall in asthma and chronic
obstructive pulmonary disease

Asthma Chronic obstructive pulmonary disease

T lymphocytes, CD4 T lymphocytes, CD8

CD25 CD25, VLA-1

Eosinophilia Mild eosinophilia

Activated eosinophils Non-activated eosinophils

Mast cells Mast cells

Neutrophils Neutrophils

Macrophages



murine models of asthma, a pronounced lung eosinophilia
was associated with an increase in eotaxin expression; a
neutralizing antibody against eotaxin significantly inhibited
eosinophil infiltration after antigen challenge and
decreased AHR in these animals [28]. Contrasting effects
on eosinophil recruitment and AHR have been demon-
strated in eotaxin gene-deficient mice, possibly owing to
the presence of the other, recently identified, CCR3-spe-
cific ligands eotaxin-2 and eotaxin-3 [32,33]. In addition to
eosinophil chemotaxis and activation, eotaxin, in combina-
tion with IL-5, has been shown to mobilize eosinophils
from the bone marrow, thereby increasing circulating
numbers of eosinophils within the blood [34]. However,
eotaxin is not the only chemokine able to modulate
eosinophil accumulation within the lung. Murine models of
allergic inflammation have shown the movement of
eosinophils during the early stages of asthma to be depen-
dent on RANTES and MIP-1α, whereas eotaxin has been
shown to be necessary for eosinophil accumulation during
chronic stages of the response [35,36]. Therefore, to
target chemokines for therapeutic intervention effectively it
is essential to understand the temporal pattern of
chemokine release.

Chemokine-induced recruitment of Th2 cells
and AHR
In addition to eosinophils, T cells constitute a large propor-
tion of the inflammatory cells within the lungs of asthmat-
ics. Indeed, T-cell-mediated immune responses are
believed to be important contributors to AHR in asthmatic
patients through the release of chemokines and cytokines
that enhance lung inflammation, favor the production of
IgE, activate eosinophils and mast cells, and directly
enhance AHR [37–39]. The observation that T cells have
a role in AHR is supported by findings that the transfer of
T cells from a hyper-responsive mouse strain into a hypo-
reactive strain induces non-specific airway reactivity [40].
Furthermore, a characterization of lymphocyte populations
in asthmatics and non-asthmatics has demonstrated differ-
ences in T cell subtypes in biopsy specimens and BALF
from patients with asthma: in asthmatics, significantly
higher numbers of Th2-type cells were seen than in
control subjects, whereas there was no difference in the
number of Th1-type cells [41]. Th2-type cells can be dis-
tinguished by the profile of cytokines that they produce,
such as IL-4, IL-13 and IL-5, which favor the production of
IgE and the growth and activation of eosinophils and mast
cells, in addition to enhancing AHR in vivo [37–39].

Although lymphocytes have long been known to accumu-
late at sites of immune and inflammatory reactions, attrac-
tants that induce these responses have been identified
only recently. RANTES, MIP-1α and MIP-1β were the first
chemokines for which lymphocyte-chemotactic activity
was reported. The monocyte-chemotactic proteins (MCP-
1, MCP-2, MCP-3 and MCP-4) are also potent attractants

of T lymphocytes. Gonzalo et al [28], using neutralizing
antibodies directed against MCP-1 or MCP-5, significantly
attenuated the recruitment of both eosinophils and T cells
to the lung in a murine model of ovalbumin-induced airway
inflammation, and drastically reduced AHR. In contrast,
the neutralization of MIP-1α caused only a slight reduction
in eosinophilia and AHR, and had no effect on T cell accu-
mulation [28]. In a separate study by Lukacs et al [42•],
neutralization of MIP-1α or RANTES had no effect on AHR
in a murine model of allergy, although eosinophilia was
reduced significantly.

The expression of chemokine receptors on lymphocytes
and their responsiveness to chemokines vary considerably
between subsets. CCR5 is expressed preferentially in Th1
cells, whereas CCR3 and CCR4 seem to be characteris-
tic of Th2 cells [43,44]. It is therefore not suprising that
chemokines that preferentially recruit Th2-type cells have
recently been identified. A number of chemokines have
been shown to have the ability to recruit Th2-type cells
preferentially, including monocyte-derived chemokine
(MDC) and I-309 [45,46]. T cells recruited to the lung by
these chemokines may regulate the persistence and acti-
vation of other cells such as eosinophils or mast cells in
the airways of patients with asthma via both direct contact
and through the release of other inflammatory mediators
which contribute to enhanced AHR.

Mast cells and AHR
Mast cells that are located in mucosal and peribron-
chovascular areas of the lung are known to be important in
allergic reactions within the lung. These cells have the
capacity to release a variety of mediators that can cause
acute bronchospasm, activate and/or attract other inflam-
matory cells in the lung, and possibly increase AHR [47].
Indeed, there is a strong correlation between amounts of
histamine in the airways of allergic asthmatics and sensi-
tivity of the airways to methacholine [48,49].

MCP-1, a CC chemokine that binds CCR2, has been
shown to induce AHR by the activation of mast cells in the
lung. Activation of mast cells with MCP-1 causes the
release of histamine, leukotrienes, platelet-activating factor
and various proteases that either directly mediate changes
in AHR or further enhance the recruitment of leukocytes to
the lungs [36]. Increased levels of MCP-1, in murine
models of allergic inflammation, have been shown to acti-
vate mast cells directly [36]. In addition, increased levels
of MCP-1 have been detected in BALF and bronchial
tissue from patients with atopic asthma in comparison with
controls [50,51]. With the use of a murine model of cock-
roach antigen-induced allergic airway inflammation, it has
been demonstrated that anti-MCP-1 antibodies inhibit
AHR to methacholine and attenuate histamine release into
the BALF; furthermore, in normal mice, instillation of
MCP-1 induced prolonged airway hyper-reactivity and
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histamine release. In addition, MCP-1 directly induced pul-
monary mast cell degranulation in vitro [36]. In asthmatic
patients, histamine and LTC4 either directly induce AHR or
facilitate the recruitment of leukocytes to the lungs to
induce AHR indirectly [52,53]. Thus, the induction and
evolution of allergic airway inflammation which is depen-
dent on the temporal expression of multiple chemokines
and their ligands have been shown to play a key role in the
establishment of AHR.

The role of airway remodeling and
subepithelial fibrosis in AHR
Although several studies show a direct correlation
between AHR and airway inflammation, the causal rela-
tionship between leukocyte infiltration and AHR has not
been finally settled. There is a discordance in the findings
between investigative groups who have studied the rela-
tionship between airway inflammation, as assessed by cel-
lular infiltration, and AHR. Some groups have shown a
strong relationship between the presence of inflammatory
cells and enhanced airway responsiveness [16,17,19,20],
whereas other groups have failed to establish such a rela-
tionship [18,54–57]. The conflicting evidence might
reflect the reality that other factors in addition to, or dis-
tinct from, airway inflammation may modulate AHR. Of par-
ticular interest is the role that airway remodeling and
subepithelial fibrosis play in AHR.

Airway wall thickening, airway smooth muscle
hypertrophy and subepithelial fibrosis in AHR
Histologic studies have reported a marked increase in the
amount of smooth muscle in airways from asthmatic sub-
jects; this abnormality, along with airway inflammation, is
thought to contribute to AHR. It is believed that increased
smooth muscle mass would allow the development of
greater force and enhanced narrowing of the airway lumen
to a given contractile stimulus. It has also been shown that
smooth muscle cells can display different phenotypes
depending on their environment or culture conditions.
Smooth muscle cells have been shown to exhibit a classi-
cal contractile phenotype and also a proliferative–
synthetic phenotype, which are capable of producing pro-
inflammatory cytokines, chemokines and growth factors
that further affect the environment within the lung [58].
Airway smooth muscle cells releasing chemokines such as
eotaxin, RANTES, MCP-1, MCP-2 and MCP-3 [59–61]
augment inflammatory responses within the lung such as
leukocyte recruitment and activation, as discussed previ-
ously, that further exacerbate AHR. Because the increase
in bronchial smooth muscle mass in asthma is due to cell
hypertrophy in addition to hyperplasia [62], the potential
relevance of phenotype plasticity and its possible relation-
ship to altered function of smooth muscle in disease
states has been suggested. Allergic sensitization and
exposure to certain cytokines elicit significant functional
changes [39,63,64] that can alter both contractile and

secretory functions; however, it remains to be seen how
chemokines can alter this phenotype.

Although fibrosis is an essential component of tissue
healing and wound repair, clinical studies have demon-
strated that the degree of subepithelial fibrosis is corre-
lated with augmented AHR to methacholine [4]. Indeed, a
buildup of interstitial collagen beneath the airway base-
ment membrane and subepithelial fibrosis are present in
the airways of allergic asthmatics [6]. Infiltrating inflamma-
tory cells such as macrophages, lymphocytes, neutrophils
and eosinophils participate in the pathogenesis of lung
fibrosis, through the activation of fibroblasts via the
release of inflammatory mediators or direct contact
[65,66]. Recent evidence has shown that MCP-1
enhances collagen deposition by fibroblasts [67]; there-
fore, increased expression of this chemokine in the lungs
of asthmatics might be responsible for the airway remodel-
ling that can exacerbate AHR.

Chemokine expression in allergic asthma and
their therapeutic use
So far, most of the results indicating a role for chemokines
in AHR have been obtained through murine models
employing chemokine neutralization, transgenic methods
or gene knockout methods. The question therefore arises
as to why chemokines would be beneficial targets for the
therapeutic treatment of AHR in humans. Clinical studies
have shown elevated levels of the chemokines and
chemokine receptors that have been identified in murine
models and in BALF, bronchial biopsies and sputum from
allergic asthmatics (Table 3). Eotaxin, CCR3, mRNA and
protein have been found to be significantly elevated in
bronchial mucosal biopsies from atopic asthmatics in
comparison with normal controls [68]. Furthermore, an
inverse correlation was made in this study between the
expression of eotaxin mRNA and the histamine provoca-
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Table 3

Elevated chemokines in allergic asthmatic lungs shown in vivo
to participate in AHR

In vivo evidence for 
Chemokine elevated involvement in 
in allergic asthmatics AHR so far

Eotaxin Yes

Eotaxin-2 No

RANTES Yes

MCP-3 No

MCP-1 Yes

MIP-1α Yes

CCR3 Yes



tive concentration causing a 20% decrease in FEV1 [68].
Significant correlations with clinical parameters of AHR
were also found with MCP-1 levels in BALF from patients
with allergic asthma [69]. A comprehensive study by Ying
et al [70••] measured elevated levels of mRNA for eotaxin,
eotaxin-2, RANTES, MCP-3, MCP-4 and CCR3 in the
bronchial mucosa from allergic asthmatics [67]. In addi-
tion, levels of RANTES, MIP-1α and MCP-1 in BALF have
been shown to be significantly increased 4 h after chal-
lenge with endobronchial allergen in allergic asthmatics
compared with levels before the allergen challenge [71].
Therefore the chemokines that have been shown to have a
role in AHR in murine models are elevated in human
disease and might be potential targets for the develop-
ment of therapeutic interventions.

Conclusions
Taken together, both experimental evidence from murine
models and clinical evidence of elevated chemokine and
chemokine receptor levels in the allergic asthmatic lung
suggest that chemokines, and their receptors, seem to be
effective targets for the development of therapeutic inter-
ventions to be used in addition to current therapy for the
treatment of AHR. However, it remains to be seen whether
the first clinical trials bear out this promise.
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