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Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative
studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a
single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported.
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Diseases incited by Fusarium pathogens are among the major
biotic constraints on wheat and barley crop production (1).

Furthermore, many cereal-infecting fusaria produce mycotoxins
that are hazardous to humans and animals. Fusarium pathogens
can cause three diseases on cereals (head blight, crown rot, and
root rot), depending on the host developmental stage. Head blight
disease causes enormous losses in northern hemisphere produc-
tion areas, while crown rot is prevalent in arid regions. In Austra-
lia, crown rot is responsible for annual losses of ~$100 million in
the wheat and barley industries (2, 3). In drier wheat-growing
regions, Fusarium pseudograminearum, causing crown rot disease,
predominates (4–6) and is the most commonly identified spe-
cies in Australian wheat fields. The Fusarium incarnatum-F.
equiseti species complex (FIESC) and Fusarium acuminatum
isolates, which are less often associated with major disease ep-
idemics, are regularly identified as co-occurring with the other
pathogens in field surveys (4, 7). To undertake comparative

analyses, six separate genomes covering three Fusarium species
were sequenced.

Isolates from the CSIRO Plant Industry Fusarium collection
(Brisbane, Australia) were selected for sequencing after confirm-
ing species identifications by sequencing the elongation factor 1
alpha gene (8). Four F. pseudograminearum isolates were chosen
(Table 1) from different provenances to augment the already ex-
isting F. pseudograminearum genome (9). Single isolates of
F. acuminatum and a FIESC member (10) confirmed as species 5
(K. O’Donnell, personal communication) were also sequenced
(Table 1). All isolates were tested for virulence on wheat using a
laboratory assay for crown rot infection (9).

Illumina TruSeq DNA sequencing libraries were constructed
from in vitro-grown mycelium-derived DNA. The average insert
size range was 383 to 494 bp. Bar-coded samples were sequenced
with HiSeq 2000 100-bp paired-end reads. In Yabi (11), the read
sequences were assessed for quality with FastQC v0.10.0 (12).

TABLE 1 Isolate provenance, genome assembly, and annotation statistics

Species Isolate Locus

Isolate
provenance
(Australia)

No. of
scaffolds

No. of
N50

a

N50
a

(Mbp)
Maxa

(Mbp)
Sum
(Mbp)

No. of
coding
genes Accession no.

Fusarium sp. FIESC5 CS3069 BN850 Wilga Downs,
Queensland

3,555 321 0.03 0.25 38.02 13,743 CBMI010000000

F. pseudograminearum CS3220 BN846 Liverpool plains,
New South
Wales

191 12 1.07 2.7 37.16 12,615 CBMC010000000

F. pseudograminearum CS3427 BN847 Wilga Downs,
Queensland

182 12 0.93 2.02 37.07 12,577 CBMD010000000

F. pseudograminearum CS3487 BN848 Tamworth,
New South
Wales

364 20 0.62 1.49 37.01 12,749 CBME010000000

F. pseudograminearum CS5834 BN849 Tammin,
Western
Australia

228 12 1.04 2.51 37.48 12,633 CBMF010000000

F. acuminatum CS5907 BN851 Stockdale,
Western
Australia

716 79 0.17 0.61 43.89 15,353 CBMG01000000

a N50 and Max statistics refer to scaffold sequences.
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Poor quality sequence, adaptors, and redundant reads were re-
moved with ConDeTri v2.0 (13) and rmDupPCR.pl (13), respec-
tively. Any contaminating foreign DNA was filtered out using
BWA v0.6.1 (14), samTools v0.1.18 (15), NCBI bacterial genomes,
and International Wheat Genetics Symposium (IWGS) wheat
survey sequences (16). Mitochondrial sequence was filtered from
chromosomal data using BWA alignment to NCBI mitochondrial
genomes. The genome and mitochondria were assembled with
Velvet v1.2.03 (17) at an optimal hash length of 53. Assembly
statistics are given in Table 1. Scaffolds were mapped at a mini-
mum 70 percent identity to the Fusarium graminearum PH-1 ge-
nome (accession no. CM000575.1) (18) using BLAT v34 (19) into
a pseudochromosomal sequence. Low complexity and repeat ele-
ments were masked with the RepeatMasker v3.3.0 (20) fungi re-
peat library and Censor v4.2.28 (21) Fusarium library. Protein-
coding gene predictions were made with GeneMark-ES v2.3e (22)
and Augustus v2.5.5 (23), and F. pseudograminearum CS3096 Il-
lumina RNA-Seq unstranded reads were assembled with TopHat
v1.4.0 (24) and CuffLinks v1.3.0 (25). Noncoding RNAs were pre-
dicted using Aragorn v1.2.33 (26) and RNAmmer v1.2 (27).
Protein-coding genes were annotated with AutoFACT v3.4 (28).
While most of the genomes encoded around 13,000 predicted
proteins, the F. acuminatum genome was predicted to encode
15,353 proteins. This genome was also the largest, at 44 Mbp.
Sequence data, including scaffolds and pseudochromosomal scaf-
folds, have been deposited in EMBL.

Nucleotide sequence accession numbers. The six whole-
genome shotgun projects have been deposited at DDBJ/EMBL/
GenBank under umbrella BioProject no. PRJEB1746. The whole-
genome sequence (WGS) accession numbers can be found in
Table 1. The versions described in this paper are the first versions.
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