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Unified and Exact Framework 
for Variance-Based Uncertainty 
Relations
Xiao Zheng1, Shao-Qiang Ma1, Guo-Feng Zhang1*, Heng Fan2,3,4 & Wu-Ming Liu2,3,5

We provide a unified and exact framework for the variance-based uncertainty relations. This unified 
framework not only recovers some well-known previous uncertainty relations, but also fixes the 
deficiencies of them. Utilizing the unified framework, we can construct the new uncertainty relations in 
both product and sum form for two and more incompatible observables with any tightness we require. 
Moreover, one can even construct uncertainty equalities to exactly express the uncertainty relation 
by the unified framework, and the framework is therefore exact in describing the uncertainty relation. 
Some applications have been provided to illustrate the importance of this unified and exact framework. 
Also, we show that the contradiction between uncertainty relation and non-Hermitian operator, i.e., 
most of uncertainty relations will be violated when applied to non-Hermitian operators, can be fixed by 
this unified and exact framework.

Quantum uncertainty relations1–3, expressing the impossibility of the joint sharp preparation of the incompatible 
observables4,5, are the most fundamental differences between quantum and classical mechanics6–9. The uncer-
tainty relation has been widely used in the quantum information science10,11, such as quantum non-cloning 
theorem12,13, quantum cryptography14–17, entanglement detection18–22, quantum spins squeezing23–26, quantum 
metrology27–29, quantum synchronization30,31 and mixedness detection32,33. In general, the improvement in uncer-
tainty relations will greatly promote the development of quantum information science18,28,34–36.

The variance-based uncertainty relations for two incompatible observables A and B can be divided into two 
forms: the product form ΔA2ΔB2 ≥ LBp

2,3,5,37,38 and the sum form ΔA2 + ΔB2 ≥ LBs
39–42, where LBp and LBs rep-

resent the lower bounds of the two forms uncertainty relations, and ΔQ2 is the variance of Q (To make sure that 
the quantity measuring the uncertainty will be a real number, the variance is taken as 〈(Q − 〈Q〉)†(Q − 〈Q〉) 
for non-Hermitian operators. Here the 〈Q〉 represents the expected value of Q). The product form uncertainty 
relation cannot fully capture the concept of the incompatible observables, because it can be trivial; i.e., the lower 
bound LBp can be null even for incompatible observables39,40,43,44. This deficiency is referred to as the trivial-
ity problem of the product form uncertainty relation. In order to fix the triviality problem, Maccone and Pati 
deduced a sum form uncertainty relation with a non-zero lower bound for incompatible observables44, firstly 
showing that the triviality problem can be addressed by the sum form uncertainty relation. Thus, the sum form 
uncertainty relations were considered to be stronger than the product form uncertainty relations, and since then, 
lots of effort has been made to investigate the uncertainty relation in the sum form18,39,45–48. However, most of the 
sum form uncertainty relations depend on the orthogonal state to the state of the system, and thus are difficult to 
apply to a high dimension Hilbert space39. There also exist the uncertainty relations based on the entropy6,7,12,49 
and skew information50, which may not suffer the triviality problem, but they cannot capture the incompatibility 
in terms of the experimentally measured error bars, namely variances9,44.

Here we only focus on the uncertainty relation based on the variance. Despite the significant progress on this 
subject, previous works mainly study the variance-based uncertainty relations, separately. A natural question 
is raised: can these various uncertainty relations be integrated into a unified framework? If so, can the unified 
framework fix the deficiencies in the previous uncertainty relations and provide a more accurate description for 
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quantum uncertainty relation? In other words, can the unified framework provide a stronger theoretical system 
for quantum uncertainty relation?

To provide such a unified framework, we construct an equality in terms of second-order origin moment, and 
introduce a new concept of “auxiliary operator”, which is used to make uncertainty relation be expressed more 
accurately. Utilizing this equality, we mathematically construct several different and inequivalent uncertainty 
relation classes, and each class contains lots of uncertainty relations in both sum form and product form for two 
and more incompatible observables. These uncertainty relations include both well-known previous uncertainty 
relations and new stronger uncertainty relations. In physics, the uncertainty relations in these different classes can 
all be obtained by introducing auxiliary operators, and the reason why these uncertainty relations are classified 
into different classes is that the number of the auxiliary operators introduced is different. That is to say, these 
uncertainty relations can be uniformly deduced, described and classified by the auxiliary operator, and thus we 
provide a unified framework for uncertainty relations, as shown in Fig. 1. Also, we deduce that the uncertainty 
inequality will become uncertainty equality when a suit number of auxiliary operators are introduced, thus the 
unified framework is exact in describing uncertainty relation.

The paper is organized as follows. Sec. 2 is to construct the mathematical foundation of this unified frame-
work, namely the equality based on the second-order origin moment. The uncertainty relation classes in the 
unified framework, so do the uncertainty relations in these classes, can all be mathematically deduced from the 
equality, and we thus refer to the equality as the mathematical foundation of the unified and exact framework. In 
Sec. 3, we construct a unified and exact framework for uncertainty relations. An application in non-Markovianity 
witness has been provided to illustrate the importance of the unified and exact framework in Sec. 4. Sec. 5 is pro-
vided to discuss the applicability of this unified and exact framework to non-Hermitian operators. The conclusion 
and discussion are presented in Sec. 6.

Mathematical Foundation
As mentioned above, the equality based on the second-order origin moment provides a mathematical foundation 
for the unified framework. Thus, before constructing the unified framework, we should firstly introduce this 
equality, which reads (for more detail, please see Appendix A):
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Figure 1.  Illustration of the unified and exact framework. Utilizing Eq. (1), we construct the unified and exact 
framework for uncertainty relations. The uncertainty relations in the framework can be uniformly obtained by 
means of introducing auxiliary operators, and they are divided into different classes according to the number of 
auxiliary operators involved. We denote the class corresponding to m auxiliary operators by Class-Cm. The 
Class-Cm contains lots of uncertainty relations in both product form and sum form for two and more 
incompatible observables, and these uncertainty relations can be uniformly expressed by a general formula, 
namely †

k
m

k1 1 1〈 〉 ≥ ∑ =    with L F O F O O OG G( [ , ] { , } )/4k k k k k k k
2 2 †= |〈 〉| + |〈 〉 |〈 〉| and k  being an arbitrary 

auxiliary operator. Some well-known previous uncertainty relations actually belong to the weakest two classes 
and the deficiencies of them are the common characteristics of the classes they belong to. The deficiencies can 
be completely fixed by uncertainty relations in the stronger classes. The uncertainty relations in the stronger 
class in general possess the tighter lower bound, because they involve more auxiliary operators. The uncertainty 
relation can be exactly expressed by equalities when r auxiliary operators, which satisfy a given condition, are 
introduced, and these equalities constitute the exact Class-Cr. Remarkably, there exists no limitation on the 
choice of the auxiliary operator when the uncertainty relation are not required to be exactly expressed.
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where  and  represent two arbitrary operators, the remainder C C B B 0† †〈 〉〈 〉 ≥  with = − 〈 〉 〈 〉† †/C A B A B B B , 
and †〈 〉   is the second-order origin moment of the operator . [ , ]A B G  and { , }A B G  are the non-Hermitian 
extension of the commutator and anti-commutator, which are therefore named as the generalized commutator 
and generalized anti-commutator, respectively. They are defined as:

† † † †= − = + .[ , ] , { , } (2)A B A B B A A B A B B AG G

The generalized commutator and anti-commutator will reduce to the normal ones when  and  are both 
Hermitian. We say that  and  are generalized incompatible (generalized anti-incompatible) with each other 
hereafter when [ , ] 0A B G ≠  ({ , } 0)≠A B G . Then, Eq. (1) can be interpreted as that the second-order origin 
moments of two generalized incompatible or generalized anti-incompatible operators cannot be arbitrarily small 
at the same time.

In fact, the remainder 〈 〉〈 〉C C B B† †  in the equality (1) reflects the influence of a specific other operator  on the 
uncertainty relation for  and . Taking this influence into consideration can make uncertainty relation be 
expressed as a equality, which is exact to describe the uncertainty relation. To demonstrate the importance of the 
remainder, an example has been provided in Appendix A to illustrate that the lower bound will be trivial in some 
special cases if we do not consider the remainder. Most importantly, the remainder plays an important role in the 
construction of the unified and exact framework, and the corresponding discussion is presented in the next 
section.

Unified and Exact Framework for Uncertainty Relations
The unified and exact framework is constructed in this section. In addition to provide a unified description for 
uncertainty relations, the unified framework can also be used to construct new and stronger uncertainty relations 
so as to fix deficiencies of previous uncertainty relations and make the uncertainty relation be expressed more 
accurately.

Previous uncertainty relations.  The Schrödinger uncertainty relation (SUR) is the initial as well as the 
most widely used product form uncertainty relation3:

Δ Δ ≥ |〈 〉| + |〈 〉|A B A B A B1
4

[ , ] 1
4

{ , } , (3)
2 2 2 2̌ ̌

where 〈Q〉 represents the expected value of Q, ̌ = − 〈 〉Q Q Q , and ΔQ2 = 〈Q2〉 − 〈Q〉2 stands for the variance 
of the observable Q. [A, B] = AB − BA and = +̌ ̌ ̌ ̌ ̌ ̌A B AB BA{ , }  represent the commutator and anti-commutator, 
respectively. One of the most famous sum form uncertainty relations, which have fixed the triviality problem of 
SUR, takes the form44:

A B A iB i A B[ , ] , (4)2 2 2ψ ψΔ + Δ ≥ |〈 | ± | 〉| ± 〈 〉⊥

where |ψ⊥〉 is the state orthogonal to the state of the system |ψ〉.
The triviality problem of SUR occurs when the state of the system happens to be the eigenstate of A or B39,44. 

For instance, one has A B A B A B[ , ] /2i { , } /2 02 2 2 2̌ ̌|〈 〉 | + |〈 〉 | ≡ Δ Δ ≡  in the finite-dimension Hilbert space when 
ΔA2 = 0 or ΔB2 = 0. Different from ΔA2ΔB2, the sum of the variances ΔA2 + ΔB2 will never be equal to zero for 
incompatible observables even when the state of the system is an eigenstate of A or B. Thus, the sum form has the 
mathematical advantage in expressing the uncertainty relation. However, the lower bounds of the most sum form 
uncertainty relations rely on the state |ψ⊥〉, making them difficult to apply to a high dimension Hilbert space39. 
That is to say, previous uncertainty relations in both sum form and product form have deficiencies.

Uncertainty relation class-C0.  The triviality problem can be fixed by the sum form uncertainty relation, 
but not all sum form uncertainty relations can be used to fix triviality problem. For instance, the product form 
SUR can also be reformed as a sum form uncertainty relation:

̌ ̌Δ + Δ ≥ |〈 〉| + |〈 〉|A B A B A B[ , ] { , } , (5)2 2 2 2

where the inequality ΔA2 + ΔB2 ≥ 2ΔAΔB has been used. The lower bound (5) turns into zero when ΔA = 0 
or ΔB = 0, and the sum form uncertainty relation (5) therefore has triviality problem. That is to say, the trivial-
ity problem cannot be fixed even when SUR is reformed as the sum form. Thus, in addition to the difference in 
mathematical form, there exists other more essential difference between the product form SUR and the sum form 
uncertainty relation (4). It is due to this essential difference that the stronger uncertainty relation (4) can fix the 
triviality problem of SUR. To investigate this difference more clearly, we firstly study SUR.

SUR was initially derived from the Cauchy-Schwarz inequality, and can only be used to describe the uncer-
tainty relation for two incompatible obervables. Since then, lots of work has been done along the way of 
Schrödinger regime51–55, and most of them mainly focused on extending SUR to uncertainty relations for more 
incompatible observables56. We refer to these uncertainty relations as the Schrödinger’s spirit, and these uncer-
tainty relations can be uniformly derived as follows. Assume ̌= ∑ = x Am

N
m m1 1 , where Am stands for an arbitrary 

observable, N is the number of the observables and xm ∈ C represents a random complex number (Without loss of 
generality, we generally took ̌ e Am

N i
m1 1

m= ∑ θ
= ). Using the non-negativity of the second-order origin moment of 

1 56:
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〈 〉 ≥ † 0, (6)1 1

one can obtain:

: 0, (7)≥

where  is a N × N dimension matrix with the elements ̌ ̌†
= 〈 〉 m n A A( , ) m n  and  : ≥ 0 means that  is a pos-

itive semidefinite matrix. As for the positive semidefinite matrix , we have (i) Det() ≥ 0 with Det() being the 
determinant value of , and (ii) † X X 0. . ≥  with X ∈ CN being a random column vector. In fact, utilizing the 
positive semidefinite matrix , one can construct the uncertainty relations in both product form and sum form, 
i.e., Det() ≥ 0 turns into the product form uncertainty relation and †X X 0. . ≥  becomes the sum form uncer-
tainty relation. For instance, taking N = 2 and X = {1,eiθ}T with 0 ≤ θ ≤ 2π, one can obtain that (i) Det() ≥ 0 is the 
SUR and (ii) X X 0† . . ≥  is the sum form uncertainty relation (5).

Using the method described above, one can deduce lots of uncertainty relations in both product form and sum 
form for two and more incompatible observables, and we denote the set of these uncertainty relations as the 
Class-C0. These two forms uncertainty relations in Class-C0 can both be interpreted as the fundamental inequal-
ity † 01 1〈 〉 ≥  , and all of them have the triviality problem in expressing the uncertainty relation (for more detail, 
please see Appendix B). The essential reason for this phenomenon is that the quantum properties of the operator 

1 , in most cases, cannot be fully expressed by † 01 1〈 〉 ≥  , because the non-negativity of the second-order origin 
moment 01 1 †〈 〉 ≥  cannot provide any information of 1 in the quantum level. Thus, to fix the triviality prob-
lem, a stronger uncertainty relation class should be constructed.

Uncertainty relation class-C1.  In this subsection, we introduce the concept of “auxiliary operator”. 
Utilizing this new concept, we construct a stronger uncertainty relation class, which can fix the triviality problem 
of the Class-C0.

Considering an arbitrary operator 1, based on Eq. (1), one has:

† †〈 〉 = + 〈 〉 ≥ , (8)1 1 1 2 2 1F F L F F L

where L F O F O O OG G( [ , ] { , } )/41 1 1
2

1 1
2

1 1
†= |〈 〉| + |〈 〉 |〈 〉| and /2 1 1 1 1 1 1

† †F F O F O O O= − 〈 〉 |〈 〉|. In particular, we have 
 > 01  when the operator 1 is generalized incompatible or generalized anti-incompatible with 1. Obviously, the 
introduction of 1 provides a more accurate description for the second-order origin moment 1 1

†〈 〉   that 
†〈 〉 ≥ 01 1   cannot do, and thus we name the operator 1 as auxiliary operator. In order to investigate the quan-

tum uncertainty relation more accurately, the auxiliary operator should be introduced.
Using (8), we have : ≥  1  where 1 is a N × N dimension positive semidefinite matrix with the elements 

 m n A A( , ) /m n1 1 1 1 1   ̌ ̌† † †= 〈 〉〈 〉 |〈 〉| and : ≥  1  means  −  1  is a positive semidefinite matrix. Based on the 
properties of the positive semidefinite matrix  − 1, we can obtain a series of uncertainty relations for N observ-
ables in both product form and sum form. For instance, taking N = 2, ψ ψ= | 〉〈 |⊥1  and X = {1, ∓ i}T, one has (i) 

. − . ≥† D VX X( ) 01  reduces to the sum form uncertainty relation (4) and (ii) Det( −  1) ≥ 0 is the product form 
uncertainty relation A A A A A AG GΔ Δ ≥ |〈 〉 | + |〈 〉 |i[ , ] /2 { , } /21

2
2
2

1 2
2

1 2
2 with A A1 ̌ ψ ψ ψ ψ= − 〈 | | 〉| 〉〈 |⊥ ⊥  and 

B B2
̌ ψ ψ ψ ψ= − 〈 | | 〉| 〉〈 |⊥ ⊥ .

Similar to Class-C0, we denote the set of the uncertainty relations, that can be directly deduced from (8), as the 
Class-C1. In fact, the Class-C1 is the set of uncertainty relations which can be obtained by introducing one aux-
iliary operator and the Class-C0 is the set of the uncertainty relations without considering the auxiliary operator. 
Due to the existence of auxiliary operator, the Class-C1 can provide more accurate description for uncertainty 
relation, and thus the Class-C1 is stronger than the Class-C0. Based on the discussion above, the uncertainty 
relation (4) can be considered as taking the non-Hermitian operator |ψ⊥〉〈ψ| as the auxiliary operator, and the 
uncertainty relation (4) therefore belongs to the stronger Class-C1.

We then show that the triviality problem of Class-C0 can be fixed by the stronger Class-C1. The triviality 
problem of Class-C0 occurs when the state of the system happens to be the eigenstate of one of the incompatible 
observables39,44. For instance, as for SUR in Class-C0, the triviality problem occurs when ΔA2 = 0 or ΔB2 = 0. In 
fact, the physical essence of the triviality problem can be described as that we cannot obtain any information of 
the uncertainty of A(B), when the state of the system happens to be an eigenstate of B(A). Thus, the auxiliary 
operator, which can provide a more accurate description for the uncertainty relation, can be used to fix this trivi-
ality problem. According to (1) and (8), the auxiliary operator 1  will not provide any effective description for 1 
when 01 1 †〈 〉 = , and thus the auxiliary operator introduced to fix the triviality problem should satisfy 
〈 〉 ≠† 01 1   (for more detail, please see Appendix C). In fact, this deduction can be used to explain that why the 
triviality problem is fixed by the uncertainty relation (4). The uncertainty relation (4) can be considered as taking 
|ψ⊥〉〈ψ| as the auxiliary operator. The second-order origin moment of |ψ⊥〉〈ψ| is never equal to zero, and the 
triviality problem can therefore be fixed by the uncertainty relation (4). In addition to uncertainty relation (4), the 
other sum form uncertainty relations in Class-C1, which are obtained by introducing an auxiliary operator with 
non-zero second-order origin moment, can also fix the triviality problem.

However, in Class-C1, the uncertainty relations that can be used to fix the triviality problem of the Class-C0 
generally have other deficiency, and this deficiency is actually the inevitable result for fixing the triviality problem. 
In order to fix the triviality problem, the auxiliary operator usually should be state-dependent so as to guarantee 
its second-order origin moment be not equal to zero for all quantum states. However, such a state-dependent aux-
iliary operator is usually difficult to be obtained for some special quantum states, which leads to the uncertainty 
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relation cannot be well applied to these quantum states. For instance, the uncertainty relation (4) fix the triviality 
problem by taking the state-dependent operator |ψ⊥〉〈ψ| as the auxiliary operator. However, it is due to the exist-
ence of |ψ⊥〉〈ψ| that the uncertainty relation (4) cannot be well applied to a high dimension system. Thus, both 
the Class-C0 and the stronger Class-C1 have deficiencies in expressing uncertainty relation.

Uncertainty relation class-C2.  The uncertainty relation Class-C0 and Class-C1 are the set of the uncer-
tainty relations with zero and one auxiliary operator, respectively. The two classes can recover some well-known 
previous uncertainty relations, but both of them have deficiencies. Then, we wonder that: can we introduce more 
auxiliary operators so as to construct a stronger uncertainty relation class, and if so, can the deficiencies of the 
Class-C0 and Class-C1 be completely fixed by the new stronger class? We denote the uncertainty relations class 
with m auxiliary operators by Class-Cm with m being arbitrary positive integer. In this subsection, we firstly 
introduce the Class-C2, and then show that the deficiencies of the Class-C0 and Class-C1 can be completely fixed 
by the stronger Class-C2.

For the construction of the Class-C1, the remainder 〈 〉 †2 2  in (8) has been ignored. To construct stronger 
uncertainty relation class, this remainder 2 2 †〈 〉 should be considered. Assuming an arbitrary operator 2  and 
taking advantage of Eq. (1), one can obtain:

F F L F F , (9)2 2 2 3 3
† †〈 〉 = + 〈 〉

where L F O F O O OG G= |〈 〉| + |〈 〉 |〈 〉|( [ , ] { , } )/42 2 2
2

2 2
2

2 2
†  and = − 〈 〉 |〈 〉|† †F F O F O O O/3 2 2 2 2 2 2 . Taking (9) into (8), 

one can introduce another auxiliary operator:

〈 〉 = + + 〈 〉 ≥ + , (10)1 1 1 2 3 3 1 2F F L L F F L L† †

using (10), we can construct lots of uncertainty relations in both product form and sum form (The sum form 
uncertainty relations can be obtained by directly taking x Am

N
m m1 1= ∑ =

̌  into Eq. (10). To construct the product 
form uncertainty relations, the auxiliary operators involved should satisfy the conditions that † †   k l k l klδ〈 〉 = 〈 〉  
and  〈 〉 ≠† 0k k . Equation (10) will be reformed as D V: k k1

2≥ ∑ =  when the conditions above are satisfied (see 
Appendix D). Taking advantage of k k1

2D V≥ ∑ = , one can construct the product form uncertainty relations. The 
similar deduction can be easily extended to the case for m ≥ 2, namely Eq. (12). Remarkably, the auxiliary opera-
tors does not need to satisfy conditions above when the uncertainty relations in the Class-Cm are not required to 
writen as product form), and these uncertainty relations, which involve two auxiliary operators, constitute the 
Class-C2.

As mentioned in the previous subsection, the triviality problem can be fixed when the second-order origin 
moment of the auxiliary operator is not equal to zero. According to Eq. (1), the second-order origin moments of 
two operators will never be zero at the same time when they are generalized incompatible or anti-incompatible 
with each other. Hence, at least one of the two auxiliary operators can be used to fix the triviality problem, when 
we take the two generalized incompatible operators as the auxiliary operators. For instance, assuming two gener-
alized incompatible operators  and  , and taking =1O R, 2O S=  and N = 2, one can obtain:

L LR S GA B A e B{ , } , (11)i2 2 ̌ ̌Δ + Δ ≥ + − 〈 〉θ

where L R R RR L F S F SR G G S S G S GA e B A e B( [( ), ] {( ), } )/(4 ), ( [ , ] { , } )/i i2 2 2 2= | + | + | + | |〈 〉| = | | + | |θ θ̌ ̌ ̌ ̌ †

 |〈 〉|(4 )† , A e B A e B( ) /i iF R R RRS
̌ ̌ ̌ ̌† †= + − 〈 + 〉 |〈 〉|θ θ , and θ should be chosen to maximize the lower bound. 

The triviality problem can be completely fixed by the uncertainty relation (11) for almost any choice of the gener-
alized incompatible operators  and  : choose  and   that can avoid R R Š ̌ ̌ ̌ ̌† † †AB A B A〈 〉 ≡ 〈 〉 ≡ 〈 〉 ≡ 〈 〉≡
〈 〉 ≡̌†B 0  (for more detail, please see Appendix C). Such a choice is always possible, as shown in Fig. 2.

Equation (1) indicates that the second-order origin moments of two generalized incompatible operators can-
not be arbitrarily small at the same time, which constitutes the basic idea for fixing the triviality problem by 
introducing two generalized incompatible auxiliary operators. This physical phenomenon revealed by Eq. (1) 
applies for all quantum states, and does not rely on the state of the system. Thus, the uncertainty relations, which 
fix the triviality problem by introducing two generalized incompatible operators, can be well applied to arbitrary 
quantum state. In particular, the uncertainty relation (11) does not rely on |ψ⊥〉, and it therefore can be well 
applied to a high dimension system. Moreover, the uncertainty relation (11) has a tighter lower bound than the 
uncertainty relation depending on |ψ⊥〉 by limiting the choice of the auxiliary operators, as shown in Fig. 2. Also, 
the inequality (11) will become an equality on the condition that  ̌ ̌λ λ= +A B1 2  with |λ1|2 = |λ2|2 ≠ 0 and 
λ1,λ2 ∈ C. The condition is independent on the state |ψ⊥〉, and can therefore be easily satisfied even for a high 
dimension Hilbert space. Hence, by introducing two generalized incompatible auxiliary operators, the deficien-
cies in the Class-C0 and Class-C1 can be completely fixed by the sum form uncertainty relations in the stronger 
Class-C2.

Uncertainty relation class-Cm.  According to (9) and (10), we can see that the remainder of Eq. (1) plays 
an important role in the construction of the Class-C2, since it can be used to introduce the auxiliary operator 2. 
As shown in (10), a new remainder †〈 〉3 3   appears with the introduction of the auxiliary operator 2 . Similar to 
(9), using the new appeared remainder, we can introduce another auxiliary operator 3. By constantly iterating 
the remainder, one can introduce any number of auxiliary operators we need. Thus, the uncertainty relation 
Class-Cm is constructed:

https://doi.org/10.1038/s41598-019-56803-2
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† †∑ ∑〈 〉 = + 〈 〉 ≥
=

+ +
=

,
(12)k

m

k m m
k

m

k1 1
1

1 1
1

F F L F F L

where †= |〈 〉| + |〈 〉 |〈 〉|( [ , ] { , } )/4k k k k k k k
2 2L F O F O O OG G  and † †/k k k k k k k1 = − 〈 〉 |〈 〉|+F F O F O O O , with k being 

an arbitrary auxiliary operator. Utilizing (12), one can construct lots of uncertainty relations in both product form 
and sum form for two and more incompatible observables (The sum form uncertainty relations can be obtained 
by directly taking  = ∑ =

̌x Am
N

m m1 1  into Eq. (10). To construct the product form uncertainty relations, the auxil-
iary operators involved should satisfy the conditions that † † δ〈 〉 = 〈 〉k l k l kl     and †〈 〉 ≠ 0k k  . Equation (10) will 
be reformed as D V≥ ∑ =: k k1

2  when the conditions above are satisfied (see Appendix D). Taking advantage of 
k k1
2≥ ∑ =D V , one can construct the product form uncertainty relations. The similar deduction can be easily 

extended to the case for m ≥ 2, namely Eq. (12). Remarkably, the auxiliary operators does not need to satisfy con-
ditions above when the uncertainty relations in the Class-Cm are not required to writen as product form.), and 
these uncertainty relations constitute the uncertainty relation Class-Cm. Also, the deficiencies in the Class-C0 
and Class-C1 can be completely fixed by the sum form uncertainty relations in the Class-Cm when there exist two 
generalized incompatible or generalized anti-incompatible operators in the m auxiliary operators.

As we known, tightness is an important index to measure the quality of the uncertainty relation12,40,45,57,58, 
because the uncertainty relation with tighter lower bound generally has wider application. Thus, lots of work 
has been done to improve the tightness of the uncertainty relation39. The tighter lower bound essentially means 
that the lower bound can provide more accurate description for the uncertainty relation. The function of the 
auxiliary operator is to provide more accurate description for the uncertainty relation, and the lower bound there-
fore becomes tighter and tighter with the introduction of auxiliary operators, as shown in Fig. 3. Thus, we can 
construct uncertainty relation with any tightness we need by controlling the number of the auxiliary operators 
introduced.

Exact uncertainty relation class-Cr.  The uncertainty relation is essentially to investigate the relationship 
between the uncertainties of incompatible observables, and this relationship is in general expressed by the ine-
quality, which is not exact. As mentioned above, the uncertainty relation can be expressed more accurately with 
the introduction of the auxiliary operators. We then show that the uncertainty relation can be exactly expressed 
by an equality when r auxiliary operators, which satisfy a given condition, are introduced, as shown in Fig. 3. The 
value of r is equal to the rank of the Metric matrix corresponding to the bilinear operator function +A B (for more 
detail, please see Appendix D). That is to say, we can construct a Class-Cr, which is exact in descripting uncer-
tainty relation.

Taking advantage of Eq. (1), one can obtain (for more detail, please see Appendix D):

∑〈 〉 =
= (13)k

m

k1 1
1

†F F L

where k  is the element of the operator set { , , , }r1 2Θ = …    in which the elements satisfy 
i j i j ij   † † δ〈 〉 = 〈 〉  and †〈 〉 ≠  0k k  with k, i, j ∈ {1,2,…,r}. The set can be obtained by the Schmidt transforma-

tion (please see Appendix E). In general, L F O F O O OG G
†= |〈 〉| + |〈 〉 |〈 〉|( [ , ] { , } )/4k k k k k k k

2 2 . Here, k  can be sim-
plified as F O F O O OG G( [ , ] { , } )/4k k k k1

2
1

2|〈 〉| + |〈 〉| |〈 〉|†  when the auxiliary operators satisfy the conditions 

Figure 2.  The spin-1 system is chosen as the platform to demonstrate the new uncertainty inequality (11). We 
take A = Jx, B = Jz,  = 1, and the state is parameterized by α as ρ = cos2(α)|1〉〈1| + sin2(α)|−1〉〈−1|, with |±1〉 
and |0〉 being the eigenstates of Jz. The green dash-dotted line represents the lower bound of the SUR (denoted 
by LBSUR). It can be seen that the lower bound of the SUR is trivial all the time. According to ref. 44, the 
uncertainty relation (4) turns into ΔA2 + ΔB2 ≥ ∓ i〈[A, B]〉 + 〈(−A ± iB|ψ⊥〉〈ψ⊥|(−A ∓ iB)〉 for the mixed state 
ρ ψ ψ= ∑ | 〉〈 |pmixed j j j , if there exists a state |ψ⊥〉 orthogonal to all states |ψj〉. Obviously, the orthogonal state |ψ⊥〉 
can only be taken as |0〉 for the given state ρ, and the corresponding bound is noted by the purple dashed line 
(denoted by LBort). The 200 red dots (denoted by LBran) stand for the lower bound (11) which are calculated by 
randomly taking 200 sets of α,  and   into (11). The blue solid line is the optimal lower bound of (11) 
(denoted by LBop), which is obtained by taking A B1 2 ̌ ̌λ λ= +  with |λ1|2 = |λ2|2 ≠ 0. We can find that LBop is 
exactly equal to the sum of the uncertainties ΔJx

2 + ΔJz
2.
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mentioned above. Indeed, the value of r is the maximum number of the operators one can find, which satisfy 
δ〈 〉 = 〈 〉i j i j ij   † †  and  〈 〉 ≠ 0k k

† . r only depends on the state of the system. It is worth mentioning that r is less 
than d for the pure state and less than d2 for the mixed state in the d-dimension system, and r will tend to the 
infinity when considering the infinite-dimension system59–64.

In mathematics, the tighter uncertainty relation essentially means that the lower bound of the uncertainty 
relation is “closer” to the left-hand side of the uncertainty relation. The bound of the uncertainty equality is 
exactly equal to the left-hand side of the uncertainty relation, which means the bound of the uncertainty equality 
is “closest” to the left-hand side of the uncertainty relation. Thus, the uncertainty equality can be considered as 
providing the tightest lower bound for the uncertainty relation. In physics, the tighter uncertainty relation means 
the lower bound can provide more accurate description for the uncertainty relation. Thus, we say that the tightest 
lower bound provided by the uncertainty equality, is exact in describing the uncertainty relation. In the next 
section, we will show that, due to possessing the tightest lower bound, the uncertainty equality has more effective 
application than the uncertainty inequality.

Remarkably, the discussion above indicates that the uncertainty relation can be exactly described by an equal-
ity when r auxiliary operators satisfying a given condition are introduced, but it does not mean that at most r 
auxiliary operators can be introduced. We can introduce any number of auxiliary operators we want when the 
auxiliary operators are not required to meet the given conditions.

Application in Non-Markovianity Witness
Uncertainty relation has been widely used in quantum information science, and most of these applications 
require tighter lower bounds. The uncertainty relation becomes tighter and tighter with the introduction of auxil-
iary operators, and thus the uncertainty relations with more auxiliary operators, namely the uncertainty relations 
in the stronger uncertainty relation classes, have more effective application.

In this section, taking the dephasing channel as the illustration, we show that the uncertainty relation with 
more auxiliary operators can be used to witness the non-Markovian dynamics more effectively. Reference 65 
showed that dynamics of a system is non-Markovian when the uncertainty relation for the Choi state correspond-
ing to this system is violated. The uncertainty relation with tighter lower bound is violated more easily than the 
regular uncertainty relation, because the tighter lower bound is “closer” to the left-hand side of the uncertainty 
relation. Thus, the uncertainty relation with more auxiliary operators, which possesses tighter lower bound, is 
more effective to witness the non-Markovian dynamics.

The Lindblad equation for a pure dephasing channel is given by65,66:

d
dt

t( )( ), (14)t z t z tρ γ σ ρ σ ρ= −

where t( )γ  reads:

t tg
g tg tg

( ) 2 sinh( /2)
cosh( /2) sinh( /2)

,
(15)

0γ
λγ

λ
=

+

Figure 3.  Illustration to demonstrate the function of the auxiliary operator is presented. We take  = 1, and assume 
that the state of the spin-1 system is in the pure state |ψ〉 = cos(β)|1〉 + sin(β)|−1〉 with |±1〉 being the eigenstates of 
Jz. By introducing different number of auxiliary operators, we can obtain a series of sum form uncertainty relations: 
Δ + Δ + Δ ≥ = ∑ − 〈 〉 − 〈 〉 − 〈 〉θ θ θ θ θ θ

=J J J LB e J e J e J e J e J e J{ , } { , } { , }x y z m k
m

k
i

x
i

y
i

y
i

z
i

z
i

x
2 2 2

1
1 2 2 3 3 1L G G G  with 

= |〈 + + 〉| + |〈 + + 〉| |〈 〉|θ θ θ θ θ θL O O O OG G
†e J e J e J e J e J e J( [( ), ] {( ), } )/4k

i
x

i
y

i
z k

i
x

i
y

i
z k k k

2 21 2 3 1 2 3 . The auxiliary 
operator k belongs to the set Θ =   { , , }1 2 3 , which is obtained by the Schmidt transformation (see the Schmidt 
transformation process in Appendix E). We can see that the tightness of the uncertainty relation becomes better and 
better with m increasing, and the uncertainty inequality will become an equality when m = 3. The uncertainty 
relation becomes Δ + Δ + Δ ≥ = − 〈 〉 − 〈 〉 − 〈 〉θ θ θ θ θ θ

  J J J LB e J e J e J e J e J e J{ , } { , } { , }x y z
i

x
i

y
i

y
i

z
i

z
i

x
2 2 2

0
1 2 2 3 3 1  when we 

do not take the auxiliary operators into consideration. It is clear that the tightness of LB0 is worse than the other 
uncertainty relations, and LB0 is trivial when β = π/4 and 3π/4.
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with λ γ λ= −g 22
0 . λ and γ0 are two positive constants related to the reservoir66. γ(t) is the time-dependent 

dephasing rate determined by the spectral density of the reservoir67, and the dynamics of the system is 
non-Markovian when γ(t) < 065.

In order to witness the non-Markovianity by the uncertainty relation, we define the following quantity:

ρ = Δ + Δ −Q A B A B LB( , , ) , (16)Choi s
2 2

where ρChoi is the Choi state corresponding to the system, and LBs represents the lower bound of the sum form 
uncertainty relation ΔA2 + ΔB2 ≥ LBs. Here we should mention that the uncertainty relation is calculated on 
the Choi state ρChoi, and the introduction of the Choi state is presented in Appendix F. According to the dis-
cussion above, we have that the dynmics is non-Markovian when Q(A,B,ρChoi) < 065. The evolutions of γ(t) and 
Q(A,B,ρChoi) are presented in Fig. 4. We can see that the non-Markovianity can be witnessed more effectively with 
the introduction of auxiliary operators.

In particular, the uncertainty inequality becomes the uncertainty equality when r auxiliary operators are intro-
duced. As mentioned above, the uncertainty equality possesses the tightest lower bound, and thus the uncertainty 
equality is more effective than the uncertainty inequality in the non-Markovianity witness, as shown in Fig. 4.

The Applicability of the Unified and Exact Framework to Non-Hermitian Operators
There exist two kinds of operators in quantum mechanics: Hermitian and non-Hermitian operators, but it should 
be paid particular attention that the previous uncertainty relations are contradictory with the non-Hermitian 
operators, i.e., lots of uncertainty relations will be violated when applied to non-Hermitian operators68–70. For 
instance, we have σ σ σ σ σ σ| | + | | ≥ Δ Δ+ − + − + −[ , ] /4 { , } /42 2 2 2 for all qubit systems, where the non-Hermitian 
operator σ + (σ−) is the raising (lowering) operator of the single qubit system. That is to say, different from the 
Hermitian operators, the uncertainties of the non-Hermitian operators are not lower-bounded by the quantities 
related with the commutator and anti-commutator. The essential reason for this phenomenon is that i[ , ]A B  and 
A B{ , } cannot be guaranteed to be Hermitian by the existing definition of commutator and anti-commutator 

when the operator  or  is non-Hermitian. The new definition of the generalized commutator and generalized 
anti-commutator can guarantee that the A B Gi[ , ]  and A B G{ , }  are Hermitian for both Hermitian and 
non-Hermitian operators, and thus the contradiction between the uncertainty relations and the non-Hermitian 
operators is fixed.

As mentioned above, Eq. (1) indicates that the second-order origin moments †〈 〉 and  †〈 〉 cannot be arbi-
trarily small at the same time when  and  are generalized incompatible or generalized anti-incompatible with 
each other. The interpretation of (1) reveals some novel quantum properties that the previous uncertainty relations 

Figure 4.  Evolutions of γ(t) and Q(A,B,ρChoi) with respect to time t are demonstrated in (a) and (b), respectively (A 
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


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). We take λ = γ0, γ0 = 1, and ε = 10−4. Here, the uncertainty relations, 

that are used to detect non-Markovianity, are taken as ΔA2 + ΔB2 ≥ i〈[A, B]〉, Δ + Δ ≥ + 〈 〉A B i A B[ , ]Choi
2 2 (1) , 

A B i A B[ , ]k Choi
k2 2

1
4 ( )Δ + Δ ≥ ∑ + 〈 〉= , and A B i A B[ , ]k

r
Choi
k2 2

1
( )Δ + Δ = ∑ + 〈 〉= , with 

L O OG G= |〈 + 〉| + |〈 + 〉|̌ ˅ ̌ ˅A iB A iB( [( ), ] {( ), } )Choi
k

Choi
k

Choi
k( ) 2 2 † |〈 〉|/4 Choi

k
Choi
k . The auxiliary operator set 

  { , , , }Choi Choi Choi
r1 2  with r = 8 can be obtained by Schmidt transformation. 

= Δ + Δ − ∑ + 〈 〉=Q A B i A B( [ , ] )Cm k
m

Choi
k2 2

1
( )  is the Q(A,B,ρChoi) related to the uncertainty relation 

A B i A B[ , ]k
m

Choi
k2 2

1
( )Δ + Δ ≥ ∑ + 〈 〉= . The uncertainty relation is violated when the corresponding QCm is less 

than zero. The uncertainty relation A B i A B[ , ]k
m

Choi
k2 2

1
( )Δ + Δ ≥ ∑ + 〈 〉=  involves m auxiliary operators, and it 

therefore belongs to the uncertainty relation Class-Cm. We can see that the uncertainty relation involving more 
auxiliary operators can be used to detect the non-Markovianity more effectively. In particular, in t = 4.8, we have 
γ(t) < 0 which means the dynamics is non-Markovian, and we can see that the non-Markovianity around this 
moment can only be witnessed by the uncertainty equality (The uncertainty relation turns into an equality 

Δ + Δ = − 〈 〉θ̌ ˅A B A e B{ , }i2 2  when the second-order origin moment of  is equal to zero. Since ΔA2 + ΔB2 is 
never equal to zero when there does not exist common eigenstate between A and B, the lower bound of uncertainty 
equality is guranteed to be non-trivial).
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cannot do. Such as, applying the Eq. (1) to the annihilation operators a1 and a2 of two continuous variable subsys-
tems, one can deduce that the product of the expected energy of two subsystems † †〈 〉〈 〉a a a a1 1 2 2  is lower-bounded by 

 a a a a[ , ] /4 { , } /41 2
2

1 2
2|〈 〉| + |〈 〉| . In particular, the energy of two subsystems cannot be arbitrarily small at the 

same time, when the annihilation operators of the two systems are generalized incompatible or generalized 
anti-incompatible on the state of the system, which means a a[ , ]1 2〈 〉 or a a{ , }1 2 〈 〉 does not equal or tend to zero.

Discussion
We provide a unified and exact framework for uncertainty relations, and the uncertainty relations in this unified 
framework can be uniformly described and classified by the new concept of auxiliary operator. Some well-known 
previous uncertainty relations can be recovered by the weakest two classes of the unified and exact framework, 
and the deficiencies of them are, in fact, the common characteristics of the classes they belong to. The deficiencies 
can be completely fixed by the stronger classes in the unified framework, which means that the unified framework 
not only recovers the previous uncertainty relations, but also fixes the deficiencies of them. In addition to recover 
previous uncertainty relations, the unified framework can also be used to construct new and stronger uncertainty 
relations: (i) the uncertainty relations in both product form and sum form, (ii) the uncertainty relations for two 
and more incompatible observables, and (iii) the uncertainty relations with any tightness we need, including the 
uncertainty equality, which can be considered as the uncertainty relations possessing tightest lower bound.

An application has been provided to illustrate that the uncertainty relations in the stronger class, in particular, 
the exact Class-Cr, can be used to detect the non-Markovianity more effectively. The application indicates that 
the unified and exact framework not only is of fundamental interest, but also has some important applications in 
quantum information science.

The previous uncertainty relations are contradictory with the non-Hermitian operators, because most of 
the uncertainty relations will be violated when applied to the non-Hermitian operators. By the non-Hermitian 
extension of the commutator and anti-commutator, the unified framework can be well applied to non-Hermitian 
operators. Also, the equality based on the second-order origin moments provides a new interpretation of 
the uncertainty relation for the non-Hermitian operators, i.e., the second-order origin moments of the 
non-Hermitian operators cannot be arbitrarily small at the same time when they are generalized incompatible or 
generalized anti-incompatible with each other. The new interpretation reveals some novel quantum properties 
that the traditional uncertainty relation cannot do.

Appendix A: The Equality Based on the Second-Order Origin Moments

Considering two arbitrary operators  and , it is easy to verify that the bilinear operator function A B†〈 〉 has the 
following property63:

A B B A〈 〉 = 〈 〉 .† † ⁎ (S1)

Meanwhile, the operator  can be decomposed as:

A
B A
B B

B A
B A
B B
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(S2)
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.

The coefficient B A B B〈 〉 〈 〉/† †  is considered to be zero hereafter when  †〈 〉 happens to be zero. Taking advan-
tage of Eqs. (S1) and (S2), one has:

AA
A B
B B

A
A B
B B

B A
B A
B B

B†
†

†
†

†

†
†

†

†
(S3)
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.

Multiplying the two sides of Eq. (S3) by  †〈 〉, one can obtain Eq. (1).
Example to demonstrate the importance of the remainder: Assume that the state of a qubit system is:

1/2 1/ 8
1/ 8 1/2 (S4)

ρ =









.

Taking  σ σ= −x x, and  z zσ σ= − , one can obtain that Eq. (1) reduces to:

0 0 1
2

, (S5)x z
2 2σ σΔ Δ = + +

where the remainder becomes 1/2, and the other parts of lower bound (1), which actually constitute the lower 
bound of SUR, turn into 0. σx and σz are incompatible with each other. Based on the uncertainty relation, we have 
the variances of them, namely σΔ x

2 and σΔ z
2, cannot be arbitrarily small at the same time. According to Eq. (S5), 

we can see that the lower bound (1) is trivial in capturing the incompatibility between σx and σz in some cases, if 
we do not consider the remainder.

Appendix
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Appendix B: Triviality Problem of Class-C0

The uncertainty relations in Class-C0 can be deduced from ≥: 0. For N = 2, one has:

A A A A

A A A A
: 0

(S6)

1 1 1 2

2 1 2 2

̌ ̌ ̌ ̌

̌ ̌ ̌ ̌

† †
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≥ .

In the finite-dimension system, assume that the state of the system happens to be an eigenstate of A2, and Eq. 
(S6) turns into:

 A A 0
0 0

: 0
(S7)

1 1=




〈 〉 


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≥ .̌ ̌†

Uncertainty relation indicates that the variances of the incompatible observables A1 and A2 cannot be arbitrar-
ily small at the same time. That is to say, Δ >A 01

2  when the state of the system happens to be the eigenstate of A2, 
namely Δ =A 02

2 . However, this essence of uncertainty relation cannot be fully described by (S6). From (S7), we 
can only deduce that Δ ≥A 01

2 , instead of A 01
2Δ > . Thus, (S6), so are the uncertainty relations directly deduced 

from it, is trivial when Δ =A 02
2 . Similar deduction can be extended to those cases for N > 2.

Appendix C: Triviality Problem can be Fixed by Introducing the Auxiliary Operator 
with Non-Zero Second-Order Origin Moment

Assuming an auxiliary operator , and taking advantage of Eq. (8), then we can obtain a sum form uncertainty 
relation for two incompatible observables:

O O

O O
G G
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(S8)

i i
i2 2

2 2

where θ should be chosen to maximize the lower bound. By adjusting θ, the second term in lower bound (S8), 
namely ̌ ̌

−〈 〉θA e B{ , }i , can be guaranteed to be greater than or equal to 0. Thus, the triviality problem is fixed when 
the first term |〈 + 〉| + |〈 + 〉| |〈 〉|θ θO O O OG G

̌ ̌ ̌ ̌ †A e B A e B( [( ), ] {( ), } )/4i i2 2  is not equal to zero. The numerator of 
A e B A e B( [( ), ] {( ), } )/4i i2 2̌ ̌ ̌ ̌ †|〈 + 〉| + |〈 + 〉| |〈 〉|θ θO O O OG G  can be considered as the lower bound of a SUR-type 

uncertainty relation:

† †AA B B A B A BG Gi1
4

[ , ] 1
4

{ , } , (S9)
2 2〈 〉〈 〉 ≥ |〈 〉| + |〈 〉|

where ̌ ̌= + θ A e Bi  and B O= . The lower bound (S9) will be equal to zero when the second-order origin 
moment of  is zero. That is to say, to ensure that the lower bound (S8) is non-trivial, the auxiliary operator  
should satisfy †〈 〉 ≠ 0  . The uncertainty relation turns into an equality ̌ ̌A B A e B{ , }i2 2

Δ + Δ = − 〈 〉θ  when the 
second-order origin moment of  is equal to zero. Since Δ + ΔA B2 2 is never equal to zero when there does not 
exist common eigenstate between A and B, the lower bound of uncertainty equality is guranteed to be non-trivial. 
Meanwhile, we should mention that the lower bound (S9) is zero in some occasional cases, even when †〈 〉 ≠ 0  
and †〈 〉 ≠ 0  . In order to avoid such an occasional case, we should choose  that does not satisfy the condition 

̌ ̌ ̌ ̌†AB A e B( ) 0i〈 〉 ≡ 〈 + 〉 ≡θ .  Using the arbitrariness of θ ,  the condition can also be written as 
 AB A B 0̌ ̌ ̌ ̌† †〈 〉 ≡ 〈 〉 ≡ 〈 〉 ≡ . To avoid satisfying such a condition is always possible, and the triviality problem 

can be fixed by almost any choice of . The uncertainty relation (S8) turns to (4) when ψ ψ= | 〉〈 |⊥  and 
θ π= ± /2. Correspondingly, the condition AB A e B( ) 0i̌ ̌ ̌ ̌†〈 〉 ≡ 〈 + 〉 ≡θ  becomes ψ ψ〈 | ± | 〉 ≡⊥ A iB 0. That is to 
say, to fix the triviality problem by the uncertainty relation (4), we should choose ψ| 〉⊥  to avoid ψ ψ〈 | ± | 〉 ≡⊥ A iB 0.

As for uncertainty relation (11), which is obtained by introducing two generalized incompatible or incompat-
ible auxiliary operators, to avoid the occasional cases mentioned above, we should choose  and  that can avoid 

R R S Š ̌ ̌ ̌ ̌ ̌† † † †〈 〉 ≡ 〈 〉 ≡ 〈 〉 ≡ 〈 〉 ≡ 〈 〉 ≡AB A B A B 0.

Appendix D: Exact Class-Cr

Based on Eq. (12), one has:

∑〈 〉 = + 〈 〉
=

+ +F F L F F ,
(S10)k

m

k m m1 1
1

1 1
† †

where = − ∑ 〈 〉 |〈 〉|+ =F F O F O O O/m k
m

k k k k k1 1 1
† †  and k represents an arbitrary operator, with = .k m1, 2, ,  

The operator k can make up a set   { , , , }m1 2 . In the following, we assume that the elements in the set 
  { , , , }k1 2   satisfy the conditions that    k l k l kl

† † δ〈 〉 = 〈 〉  and 0k k
† 〈 〉 ≠ . The set can be obtained by 

making a Schmidt transformation65 on the basic vectors of the matrix space66 and the calculation process will be 
p r e s e n t e d  i n  A p p e n d i x  E .  T h e n ,  t h e  t e r m  k  i n  E q .  ( S 1 0 )  i s  s i m p l i f i e d  a s 

†|〈 〉| + |〈 〉| |〈 〉|L F O F O O OG G( [ , ] { , } )/4k k k k k1
2

1
2 , and m 1+  turns into = − ∑ 〈 〉 |〈 〉|+ =F F O F O O O† †/m k

m
k k k k1 1 1 1 .
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In the d2-dimension matrix space, an arbitrary matrix can be linearly expressed as a composition of the basic 
vectors M M M{ , , , }d1 2 2  of the matrix space43,65. Assuming that  = ∑ = x Mk j

d
k
j

j1
2

, one has:

〈 〉 = X X , (S11)k l k l † †

where =X x x x( , , , )k k k k
d T1 2 2

 and the Metric matrix  for the bilinear function 〈 〉†A B  is65:



�

�
� � � �

�

=







〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉







† † †

† † †

† † †

M M M M M M

M M M M M M

M M M M M M (S12)

d

d

d d d d

1 1 1 2 1

2 1 2 2 2

1 2

2

2

2 2 2 2

According to (S1), the Metric matrix  is Hermitian, which means that  can be transformed into a diagonal 
matrix by a unitary transformation. Thus the number of k satisfying the conditions that    † † δ〈 〉 = 〈 〉k l k l kl and 
 †〈 〉 ≠ 0k k  is exactly equal to r, where ≤r d2 is the rank of the Metric matrix , and depends only on the state 

of the system. Meanwhile, we have r is less than d for the d-dimension pure state ψ| 〉, because we cannot find an 
operator d 1+  which satisfies         0d d d d d1 1 2 1 3 1 1

† † † †
〈 〉 = 〈 〉 = 〈 〉 = = 〈 〉 =+ + + +  and   0d d1 1〈 〉 ≠+ +

†  
when taking   ψ ψ ψ ψ ψ ψ= | 〉〈 | = | 〉〈 | … = | 〉〈 |⊥

−
⊥, , , d d1 2 1 1  with ψ| 〉⊥

i  being the state orthogonal to ψ| 〉 and 
ψ ψ δ〈 | 〉 =⊥ ⊥

i j ij. It should mention that r will become infinite when considering the infinite-dimensional system.
Based on the analysis above, one can obtain  † 0r r1 1〈 〉 =+ +  when O F O F O F† † †

r r r1 1 2 1 3 1 〈 〉 = 〈 〉 = 〈 〉 = =+ + +
O F†〈 〉 =+ 0r r 1 . Obviously, O F O F O F〈 〉 = 〈 〉 − 〈 〉 =+ 0m r m m m1 1

† † †  with ∈ …m r{1, 2, , }, and thus we can deduce 
 † 0r r1 1〈 〉 =+ + . Then, Eq. (S10) turns into:

(S13)k

r

k1 1
1

† ∑〈 〉 = .
=

F F L

Taking  x Am
N

m m1 1= ∑ =
̌  with xm ∈ C and Am being an arbitrary operator, one can obtain:

† † ∑. . = .









.

=
X X X X,

(S14)k

r

k
1

D V

where  is a N × N dimension matrix with the elements = 〈 〉 m n A A( , ) m n
̌ ̌†

, k is the N × N dimension positive 
semidefinite matrix with the elements    m n A A( , ) /k m k k n k k

̌ ̌† † †= 〈 〉〈 〉 |〈 〉| , and =X x x x{ , , , }N
T

1 2 . Making 
use of the random of X, one can obtain:

∑= .
= (S15)k

r

k
1

D V

The deduction above shows that the Eq. (S13) can be reformed as D Vk
r

k1= ∑ = . Similarly, one can also deduce 
that Eq. (12) can be reformed as D V≥ ∑ =: k

m
k1  when the auxiliary operators satisfy the conditions that 

   † † δ〈 〉 = 〈 〉k l k l kl and  〈 〉 ≠† 0k k .

Appendix E: Schmidt Transformation Process

In order to obtain the set   { , , , }r1 2  that satisfies    k l k l klδ〈 〉 = 〈 〉† †  and  †〈 〉 ≠ 0k k , we can make a 
Schmidt transform on the basic vectors M M M{ , , , }d1 2 2

  of the matrix space65,66:

†

†

†

†

†

†

�

�

M

M M

M M M

,

,

(S16)
d d

d d d

d d
d

1 1

2 2
1 2

1 1
1

1

1 1
1

1

1 1
12 2

2 2 2

2 2
2





 





 




 


′ =

′ = −
〈 ′ 〉

〈 ′ ′ 〉
′

′ = −
〈 ′ 〉

〈 ′ ′ 〉
′ − −

〈 ′ 〉

〈 ′ ′ 〉
′ .−

− −
−

Here we take † †〈 〉 〈 〉 =′ ′ ′  M / 0m n m m  when †M 0m n〈 〉 =′ . Obviously, the set 


′ ′ ′  { , , , }
d1 2 2  satisfies 

δ〈 〉 = 〈 〉′ ′ ′ ′† †   k l k l kl. Dropping out ′k when 0k k †〈 〉 =′ ′ , one can obtain the operator set   { , , , }r1 2 . As 
for the Figs. 1 and 3, the basic vectors of the matrix space is taken as Eij with the elements E m n( , )ij im jnδ δ= .

Here, we should mention that the auxiliary operators involved should satisfy     δ〈 〉 = 〈 〉† †
k l k l kl and  〈 〉 ≠† 0k k  

only in the process to construct uncertainty equality. As for the construction of uncertainty inequalities, such as the 
uncertainty relations in Class-C1, Class-C2, and Class-Cm, the auxiliary operators introduced is unrestricted.

Appendix F: Introduction of Choi State

Consider an arbitrary evolution  ε+t t( , ):

ρ ρ ε→ + →ε+E H Ht t: ( ) ( ), , (S17)t t( , ) 1 1
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