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Ocular surface disorders such as Lid Wiper Epitheliopathy (LWE), Superior Epithelial Arcuate Lesion (SEAL), and contact lens-
induced Limbal Stem Cell Deficiency (LSCD) as well as Superior Limbic Keratoconjunctivitis (SLK) affect one’s quality of life.
Hence, it is imperative to investigate the underlying causes of these ocular surface disorders. During blink, the undersurface of the
eyelid tends to interact with the cornea and the conjunctiva.#e presence of a contact lens can add to the biomechanical frictional
changes on these surfaces. To estimate these changes with and without a contact lens, a finite element model (FEM) of the eyelid
wiper, eyeball, and contact lens was developed using COMSOL Multiphysics. Biomechanical properties such as von Mises stress
(VMS) and displacement were calculated. Our study concluded that (a) maximum VMS was observed in the lid wiper in the
absence of contact lens in the eye and (b) maximumVMSwas observed in the superior 1.3mm of the cornea in the presence of the
contact lens in the eye. #us, the development of friction-induced ocular surface disorders such as LWE, SLK, SEAL, and LSCD
could be attributed to increased VMS. FEA is a useful simulation tool that helps us to understand the effect of blink on a normal
eye with and without CL.

1. Introduction

It is estimated that currently there are more than 140 million
contact lens (CL) wearers worldwide [1]. Existing literature
states that about 21%–64% of these CL wearers tend to
discontinue CL use [2–4] as a result of contact lens discomfort
(CLD). CLD is a condition characterized by “episodic or
persistent adverse ocular sensations due to CL wear, either
with or without visual disturbance. It arises from a reduced
compatibility between the CL and the ocular environment

and thus accounts for 50% of patients’ experiencing a reduced
CL-wearing time and/or discontinuation of CL use” [5].
Factors contributing to CLD include CLmaterial, design, lens
care, fit, and tear film stability [6]. Apart from CLD, dry eye
(19.9%) [7], ocular redness (6.8%) [7], cost of CL (6.8%) [7],
and handling issues (6.3%) [7] can also lead to CL dropouts.
Conditions such as age; gender; systemic diseases like auto-
immune diseases; CL solution and care regimen; and design,
material, and modality of the CL account for a smaller
percentage of CL dropouts [1, 8].
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During the blink reflex, the undersurface of the eyelid
interacts with the cornea and the conjunctiva [9]. #is setup
of the human eye can be considered as a complex tribological
system consisting of two sliding surfaces (eyelid and corneo-
conjunctival complex) moving relative to each other, with
the tear film as a lubricant [10]. Deficiency of tear fluid or
excessive evaporation of tears may lead to dry eye disease
[11] which in turn may harm the ocular surface due to
friction [12]. Having a CL in situ results in two sets of sliding
surfaces. While in the anterior aspect, the sliding surfaces are
is formed by the palpebral conjunctiva (which lines the inner
surface of the eyelid) and anterior surface of the contact lens,
in the posterior aspect, it is formed by the posterior surface
of contact lens, anterior surface of the cornea, and bulbar
conjunctiva [13]. #is tribological system is also highly
influenced by various tear film characteristics that may result
from the presence of dry eye disease in CL wearers.

#e cornea and the lid wiper (a portion of the lid margin
of the upper eyelid that wipes the ocular surface during
blinking) [14] are more prone to frictional damage than the
bulbar conjunctiva [15]. Frictional damage to the ocular
surface causes ocular surface disorders such as Lid Wiper
Epitheliopathy (LWE), Superior Limbic Keratoconjuncti-
vitis (SLK) [16], Superior Epithelial Arcuate Lesion (SEAL)
[17], and Limbal Stem Cell Deficiency (LSCD) [18]. #ese
conditions cause a variety of symptoms such as foreign-body
sensation during blink, discomfort, and visual loss, thereby
decreasing the quality of life [16].

Friction is usually quantified using Coefficient of Friction
(CoF) which is the ratio between the frictional force and the
normal force. #e most commonly used in vitro methods to
measure CoF are through the use of an instrument calledmicro
tribometer [19, 20] and atomic force microscopy [21, 22]. In
case of CL, CoF can vary depending on its material properties,
thickness, and modulus of elasticity. However, in general, a CL
having low CoF reduces friction and improves comfort
[10, 20, 23–25]. #e CoF values range from 0.011 to 0.562
across various studies [19, 20, 26]. #is wide variation noted is
due to the difference in the material used to measure the CoF.
For example, instead of cornea and eyelid, studies have used
borosilicate glass slab [20] and mucin coated glass slab [19]
where only the curvature is considered. #e exact material
properties such as modulus, Poisson’s ratio, and density of the
ocular structures were not considered. An in vivo experiment
done on animal models using micro tribometer has led to
epithelial damage because of the rubbing of the cantilever
against the cornea while estimating CoF [27].

Since in vitro studies are not producing reliable results
and performing in vivo experiments could lead to tissue
damage, Finite Element Analysis (FEA) has been used in this
study as a tool to analyze the biomechanical changes [16].
FEA is the simulation of any given physical phenomenon
using the numerical technique called Finite Element Method
(FEM). Using FEA, Kataoka et al. have estimated the de-
formation and shearing stress between the eyelid and the
corneo-conjunctival complex, while considering the ocular
surface to be a flat surface [16].

When compared to in vitro studies done using micro
tribometer, atomic force microscope, etc., FEA is a superior

technique for understanding the biomechanical changes
(deformation, displacement, and stress) which take place
during the blink reflex. However, there are very limited
studies [16] that estimate the biomechanical parameters
during blinking while considering the actual anatomy and
material properties of the eye.

Hence, our study aims to develop a finite element model
(FEM) consisting of the lid wiper, eyeball, and contact lens,
in order to estimate the biomechanical changes in the cornea
and the lid wiper, during a blink, in the presence as well as
absence of CL.

2. Methods

FEA is a popular method to analyze complex systems. #e
benefit of using an FEA on complex problems is that ge-
ometry can be precisely defined [28]. It is very sensitive such
that it can measure even a subtle change in geometry, which
is otherwise difficult to pick up with the current instruments
such as Optical Coherence Tomography (OCT) and Ante-
rior Segment OCT [29]. Since FEA uses the static equilib-
rium and theories of elasticity, it is possible to assess a
physical system subjected to multiple external forces with
regard to stresses, deformation, and strain [30]. Hence, FEA
is chosen as the analytical tool.

A computer with 2.80GHz CPU and 8GB RAM is used
for this experimental study. COMSOLMultiphysics, an FEA
tool, is used for the construction and analysis of the human
eye model. #e COMSOL Multiphysics is used for the FEA
because of its ability to provide accurate FE simulation
results. #e flow of procedure for the FEA includes the
following:

(i) Modeling the geometry.
(ii) Assigning the material properties.
(iii) Meshing.
(iv) Setting boundary conditions.
(v) Parametric sweep analysis.
(vi) Postprocessing the results.

Ocular parameters of various structures and their ma-
terial properties were obtained from previous works of
literature done on Indian eyes. Linear static analysis was
carried out ignoring gravity.

2.1. Modeling. It is unrealistic to consider a single eye ge-
ometry since the dimensions of the human eye vary from
person to person. Here, we have used the average value of
each of the ocular parameters of the Indian eyes obtained
through a thorough literature search.

#e Indian eye model, which closely resembles the di-
mensions of the actual human eye, is constructed in 2D
(Figure 1(a)) and is converted into a solid 3D model
(Figure 1(b)). For simplicity, the human eye is assumed to be
rotationally symmetrical along the optic axis. #e eye model
comprises the following structures: lid wiper, cornea, an-
terior chamber, vitreous cavity, sclera, optic nerve, and optic
nerve head. #e anteroposterior (transverse) diameter of the
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eye model is approximately 24mm, and the vertical (sagittal)
diameter is approximately 23mm [31].

#e asymmetrical nature of the optic nerve is ignored.
#e dimensions used in the construction of each structure of
the human eye are as shown in Table 1.

#e prolate nature of the cornea is not considered. A
cornea of uniform thickness is assumed for the construction.
For the ease of modeling, the scleral thickness and corneal
diameter are considered to be uniform throughout the re-
spective structures.

Since eyelid conforms to the curvature of the ocular
surface while blinking, we have assumed the curvature of the
inner lid wiper to be the curvature of the anterior cornea.
#e thickness of the lid wiper (y-direction, Figure 1(c)) is
considered to be 0.8mmwith reference to the literature [32].
#e contact width between the lid wiper and cornea (the
width of the lid wiper which was in contact with the cornea
in the x-direction) is 1mm [37]. #e entire simulated model
consisting of the eyeball and the lid wiper can be seen in
Figure 1(c).

Different soft CL geometries have been explored in
previous research [38–40]. CL parameters such as center
thickness, base curve, and diameter are available in the
literature [41]. In general, a CL is thicker at the center
than in the periphery, and this ranges from 0.05 to
0.9 mm. #e radius of curvature of the back surface of the

lens, i.e., the base curve, generally ranges from 7 to 9mm,
and also the diameter of the CL ranges from 13.00 to
14.50 mm.

In this study, based on the eye geometry, the contact lens
of 15mm diameter (2-3mm greater than corneal diameter)
and 8.6mm base curve (0.8–1.0mm flatter than corneal
curvature) is fitted in the eye (Figure 1(d)). #e peripheral
curve radius of soft contact lens (radius of the curve which
connects the front and back surface of contact lens) is not
available in the literature. Hence, in this study, it is assumed
to be 0.5mm. Contact lens parameters used in this study can
be found in Table 1.

(a) (b)

Sclera

Cornea

Lid
wiper

x

y
z

(c)

Cornea

Soft
contact
lens

(d)

Figure 1: Two-dimensional (a) and three-dimensional model of the eyeball (b). #ree-dimensional model of the eyeball with lid wiper
(black arrow represents the direction of movement of the lid wiper on the cornea) (c). Cross section of the eyeball with soft contact lens (d).
#e model was constructed using COMSOLMultiphysics v5.2 (https://www.comsol.com) and the collage of the exported images was made
using Microsoft PowerPoint 2019 (https://www.microsoft.com/en-in/microsoft-365/get-started-with-office-2019).

Table 1: Dimensions of ocular structures and contact lens used in
the finite element modeling.

Part of the eye Value (mm)
Lid wiper thickness [32] 0.8
Corneal thickness [33] 0.5
Corneal diameter [34] 12
Anterior corneal curvature [34] 7.8
Posterior corneal curvature [34] 6.5
Scleral thickness [35] 0.5
Scleral radius [36] 11.5
Diameter of the contact lens chosen 15
Base curve of the contact lens chosen 8.6
#ickness of the contact lens chosen 0.08
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Young’s modulus, Poisson’s ratio, and density are the
important material properties considered. Human ocular
tissues are generally viscoelastic and exhibit nonlinear
material properties [42]. #is nonlinear material property of
the human eye ranges widely due to its complex nature.
#ese viscoelastic properties of the structures of the eyeball
are not yet investigated properly. Hence, the material
properties are assumed to be homogenous, isotropic, and
linearly elastic. As shown in Table 2, the material properties
of the ocular structures are obtained from the previous
works of literature. Young’s modulus of the human eyelid
has not yet been investigated [43]. Hence, a value of
0.42MPa, which is Young’s modulus of the human skin, is
assumed [43, 44]. Poisson’s ratio of the aqueous humor,
vitreous humor, retina, zonules, and optic nerve has not yet
been investigated. Since soft biological tissues hold more
amount of moisture, Poisson’s ratio is set to be less than 0.5
for these ocular structures [42, 45].

#e material properties used for the CL are as shown in
Table 2. CL is a rubbery polymer, and it is highly hydrated.
Hence, a Poisson’s ratio of 0.49 was set, which makes it
incompressible. Density of the contact lenses is not directly
available in the literature. However, specific gravity is
available for the contact lenses. Hence, using the following
formula, we have calculated the density of these contact
lenses.

Specific gravity �
Density of the contact lens
Density of the water at 4°C

, (1)

where density of the water at 4°C� 999.97 [55] and specific
gravity of the contact lens� 1.04 [56].

2.2. Mesh Convergence Study. Mesh convergence study was
carried out to analyze the proper number of finite elements.
Figure 2 shows the result when a body load of 0.03N is
applied on the surface of the lid wiper. It can be found that
the VMS barely changes when the length of a side of the
finite element is 0.259mm or more. Hence, the value of
0.259mm is used as the length of a side of the element during
Finite Element Analysis.

Sensitivity analysis has been carried out to study the
effect of material properties (Young’s modulus, Poisson’s
ratio, and density) of the cornea and lid wiper on the
outcome parameters (VMS and displacement). Each
material property was studied individually by keeping the
other two material properties constant. For example,
when Young’s modulus of the lid wiper was varied be-
tween 0.45 and 0.85MPa, by keeping Poisson’s ratio (0.49)
and density (999 kg/m3) of lid wiper constant, the cor-
responding change in VMS in the lid wiper was found to
be between 17.1 and 20.9 kPa. Our sensitivity analysis
results (Figure 3) showed that there was no significant
variation in the outcome parameters when the material
properties of the cornea and lid wiper were changed.
However, there was a slight variation noted in the VMS
when Young’s modulus of the lid wiper was changed. #is
is due to the huge variation in Young’s modulus of the lid
wiper (0.45MPa to 0.85MPa). Since Young’s modulus of

the lid wiper is not available in the literature, the current
study has assumed Young’s modulus of skin to be Young’s
modulus of lid wiper. Young’s modulus of the skin varies
widely across different studies, which explains why there
is a slight variation in the VMS in the lid wiper. Since
conjunctiva is more flexible than cornea, Kataoka et al.
have assumed Young’s modulus of eyelid to be half that of
the cornea. In a similar assumption, we have also con-
sidered Young’s modulus of lid wiper to be between 0.10
and 0.20MPa (half of the cornea), and we have found the
corresponding VMS to be between 16.8 and 16.9 kPa.
Overall, our sensitivity analysis has shown that the VMS
and displacement were not varying significantly based on
a single value of the material properties. #e detailed
values of sensitivity analysis of the material properties of
the cornea and lid wiper in terms of von Mises stress and
displacement are included in Supplementary Tables 1Sa
and 1Sb.

All components of the FEM aremeshed with the physics-
controlled settings in the COMSOL Multiphysics. #e
predefined size of each element is set as “fine.” Figure 4
shows the mesh-divided model of the eyeball with lid wiper
(Figure 4(a)) and the contact lens (Figure 4(b)).

2.3. Analysis. #e outer surface of the sclera is fixed
completely. During blink, the lid wiper is in contact with
the cornea. Hence, a contact pair was created between these
two surfaces.#e dynamic friction coefficient of the contact
surface between the cornea and the lid wiper was set to 0.1
with reference to the previous literature [57]. #e eyelid
itself exerts some amount of force over the cornea during
blink [10]. Hence, a body load of 0.03N was applied at the
surface of the lid wiper [43]. In order to account for the
effect of intraocular pressure (IOP), a boundary load of
15mmHg (normal IOP of human eye ranges between 10
and 21mmHg) was applied at the inner boundary of the
aqueous humor.

Blink is simulated by making the lid wiper move over
the cornea (Figure 1(c)). Parametric sweep analysis is
carried out by displacing the lid wiper for every 10°, i.e.,
from the superior to the inferior portion of the cornea.
Linear static analysis dealing with the contact problem was
carried out. #e whole analysis along with the parametric
sweep required approximately 12 hours to complete. VMS
and displacement were obtained as a result of FEA. VMS is
a scalar value which determines whether a given material
will yield (deform plastically) or fracture when a load is
applied. In this study, the stress experienced by the cornea
as a result of the force exerted by the lid wiper was esti-
mated. Hence, VMS was chosen. In humans, stress rep-
resents the feeling of pain. Displacement is the distance at
which one object has moved from its original location when
an external force is applied. In this study, the displacement
indicated how much cornea has moved from its original
position as a result of force produced by the lid wiper
during blink. #is indicates the amount of biomechanical
response in human tissues [58]. Surface plots were used to
display the results of the analysis.
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3. Results

#e three-dimensional model of the eyeball (Figure 5) was
created using the COMSOL Multiphysics (v5.2, COMSOL
AB, Stockholm, Sweden) tool.

#e biomechanical changes due to the blink were sim-
ulated using the FEM, and the results were obtained as von
Mises stress (VMS) and displacement. Initially, the blink was
simulated by displacing the lid wiper for every 10° (1.3mm)
using the parametric sweep. All the von Mises stress and
displacement values are provided in Supplementary
Table 2S.

3.1.Without Contact Lens. Figure 6 shows the VMS (kPa) of
the lid wiper and cornea at different positions of lid wiper
during blink without CL. Lid wiper underwent maximum
VMS (32 kPa) when it interacted with the superior 1.3mm of
the cornea (Figure 7(a)).#emaximumVMSwas seen in the
central 1.3mmof the cornea (23 kPa) compared to the rest of
the peripheral cornea during blink (Figure 8(a)). #e
maximum VMS was noted in the lid wiper (32 kPa) when
compared to the cornea (23 kPa) during the interaction
between them (Figure 6).

#e displacement of the lid wiper was maximum when
the lid wiper interacted with the central cornea. Displace-
ment caused by the lid wiper on the cornea during blink is
shown in Figure 9(a). It can be seen clearly that the central
1.3mm of the cornea (120 µm) has been displaced more than
the peripheral 2.6mmof the cornea during blink (Figure 10).

3.2.WithContact Lens. Figure 6 shows the VMS (kPa) of the
lid wiper and cornea at different position of lid wiper during
blink with CL. Lid wiper underwent maximum VMS
(10 kPa) when it interacted with the superior 1.3mm of the
cornea (Figure 7(b)). #e maximum VMS was seen in the
superior 1.3mm of the cornea (15 kPa) compared to the
central 1.3mm of the cornea (11 kPa) during blink
(Figure 8(b)). Maximum VMS was noted in the cornea
(15 kPa) compared to the lid wiper (10 kPa) during the in-
teraction between them when CL was in situ (Figure 6).

#e displacement of the lid wiper was maximum when
the lid wiper interacted with the central 1.3mm of the
cornea. Displacement caused by the lid wiper on the cornea
during blink is shown in Figure 9(b). It can be seen clearly
that the central cornea (30 µm) has been displacedmore than
the peripheral cornea during blink (Figure 10).

Table 2: Material properties of the ocular structures and contact lens used in the finite element modeling.

Part of the eye Young’s modulus (MPa) Poisson’s ratio Density (kg/m3)
Lid wiper [44, 46] 0.42 0.49 999
Cornea [30, 47, 48] 0.4 0.42 1400
Aqueous humor [30, 49] 0.037 0.49 999
Vitreous humor [30, 49] 0.042 0.49 999
Retina [45, 50–52] 0.03 0.49 999
Optic nerve [45, 51, 53] 0.03 0.49 999
Comfilcon A contact lens [29, 54] 0.82 0.49 1040
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Figure 2:Mesh convergence study: proper number of finite elements. Graph drawn withMicrosoft Excel 2019 (https://www.microsoft.com/
en-in/microsoft-365/get-started-with-office-2019).
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4. Discussion

A three-dimensional model of the eyeball was created. #e
construction of the three-dimensional model of the eyeball
used retrospective data from FEA studies [42, 59–62].

4.1. vonMises Stress andDisplacement:WithoutContact Lens.
#e current study aimed at quantifying the biomechanical
changes such as VMS and displacement in the eye during

blink. In this study, the VMS was found to be higher in the
lid wiper than in the cornea. #is large VMS on the lid
wiper could be the reason for LWE seen in many patients
with ocular dryness and discomfort [10, 14, 16, 63]. #is
also suggests that the lid wiper would be the first structure
to get affected in any ocular surface disorder, even before a
change is noticed in the cornea [14, 63]. Hence, the VMS
developed during the rubbing could be the reason behind
the formation of LWE especially in patients with dry eye
disease [10, 64].
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Figure 3: Sensitivity analysis of the material properties of the cornea and lid wiper. Change in Young’s modulus of cornea does not have any
effect on the VMS of the cornea whereas VMS increases slightly with the increase in Young’s modulus of the lid wiper (a). Change in
Poisson’s ratio of cornea does not have any effect on the VMS of the cornea whereas VMS decreases slightly with the increase in Poisson’s
ratio of the lid wiper (b). Change in density does not have any effect on VMS of the cornea and lid wiper (c). Change in Young’s modulus,
Poisson’s ratio, and density does not have any effect on displacement of the cornea (d–f). Graph drawn with Microsoft Excel 2019 (https://
www.microsoft.com/en-in/microsoft-365/get-started-with-office-2019).
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VMS was found to be larger in the central 1.3mm of the
cornea than in the peripheral cornea which makes it sus-
ceptible to injury by the lid wiper [16]. #is is in accordance
with the study done by Ousler et al. where they have reported
that the ocular surface discomfort is more severe in patients
with central corneal damage [65].

Maximum displacement is observed in the central 1.3mm
of the cornea than the peripheral cornea. #is suggests that
the force produced by the eyelid because of its body load (load

that acts throughout the volume of the body) displaces the
cornea by 120 µm posteriorly. #is finding is in good ac-
cordance with the study by Masterton and Ahearne in which
they have found out that during blink, the lid wiper pushes the
cornea backwards, thereby causing thinning of the tear film,
under this compressed area [66]. During blink, the rubbing of
lid wiper may cause shear forces on the cornea. #is com-
bination of shear forces and displacement caused by the eyelid
on the cornea can harm the health of the cornea [66].

Sclera

Cornea

Aqueous
humor

Lamina
cribrosa

Optic nerve

Vitreous humor

Figure 5: #ree-dimensional model of the eyeball depicting the different ocular structures. #e model was constructed using COMSOL
Multiphysics v5.2 (https://www.comsol.com).

(a) (b)

Figure 4: Meshing of the eye (a) and contact lens (b). #e model was constructed using COMSOL Multiphysics v5.2 (https://www.comsol.
com), and the collage of the exported images was made usingMicrosoft PowerPoint 2019 (https://www.microsoft.com/en-in/microsoft-365/
get-started-with-office-2019).
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One of the most accepted theories proposed by Wright is
that the primary factor which causes the development of SLK is
constant friction caused by the lid wiper on the conjunctiva and
cornea due to excessive laxity of the lid wiper [67].#is has also
been proven by onemore study where they have found out that
in cases of SLK there is upregulation of transforming growth

factor-beta 2 (TGF-β2) and tenascin 13. #ese are the factors
that are induced by mechanical trauma, thereby proving that
mechanical trauma is one of the crucial factors in the devel-
opment of SLK [52]. #us, we can attribute the formation of
SLK to the large amount of friction caused by the lid wiper on
the superior 1.3mm of the cornea during blink [68].
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Figure 7: Contour plot of the von Mises stress in the lid wiper during blink without CL (a) and with CL (b) when the lid wiper is moved at
superior (10°) and central position (40°) of the cornea (value of the legend shows von Mises stress; unit: kPa). #e plots were exported as
images from COMSOL Multiphysics v5.2 (https://www.comsol.com), and image collage was made using Microsoft PowerPoint 2019
(https://www.microsoft.com/en-in/microsoft-365/get-started-with-office-2019).
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4.2. von Mises Stress and Displacement: With Contact Lens.
Studies [10, 66] have proven that the introduction of contact
lenses in the eye may disrupt the tear film, thereby dividing
the tear film into pre- and post-lens tear film [69]. In some
cases, the long-term use of the contact lens can result in the
meibomian gland blockage and reduced tear film thickness,
thereby causing more friction [70, 71]. #is may also lead to
the damage of the ocular surface, in some patients [10, 43].
#e current study has found that the VMS is larger in the
superior 1.3mm of the cornea than in the central cornea
when the CL is in situ. #us, we can attribute the formation
of contact lens-induced SEAL and LSCD to the friction
caused by the lid wiper on the superior cornea during blink.
In some cases, the inadequate lens flexure creates an area of
misalignment in the superior epithelial cornea where
pressure from the lid forces the lens against the cornea
[72–73]. #is produces greater frictional forces on the
cornea in the superior region [17, 75]. #is is how SEAL
occurs in the cornea due to the friction caused by the CL
wear [17]. It is reported that about 15.3% of the total LSCD
cases are due to CL wear [76]. Mechanical trauma caused by
the rubbing of the CL plays a central role in the etiology of
CL-induced LSCD [18, 77, 78]. #is rubbing is induced by
the movement of the soft CL during blink [79]. LSCD due to
CL wear is often asymptomatic [80] which makes it is
necessary to suspect LSCD in CL wearers.

#is study explores the possible mechanism behind the
occurrence of certain ocular surface disorders such as SLK,
LWE, SEAL, and LSCD in lens wearers and non-lens
wearers using FEA. However, there are few limitations in
our study. Since the cornea and bulbar conjunctiva follow
different curvature, it is difficult to simulate complete blink.
Hence, the effect of blink on the bulbar conjunctiva was not
considered in this study. Biological systems are quite

complex to model and simulate. With the current com-
puting power and modeling and simulation tools available,
there are limitations on the exact replication of biological
systems, more so when they involve complex tribological
aspects. During blink, the pressure exerted by the eyelid on
the corneo-conjunctival complex varies depending upon
the downward or upward motion of the eyelid. In this
study, only the downward motion of the blink process was
studied considering challenges with computational re-
sources. Studying the upward phase of the eyelid would
give a complete picture of the blinking process. Various
theories have been proposed by researchers with regard to
the tribological behavior of the human eye with and
without contact lens [81]. Researchers say that the behavior
is hydrodynamic when a thick tear film is present, and
when there is no tear film, the lubrication behavior could be
from boundary to mixed regime. Even when there is a tear
film present, the tribological behavior could be in the
elasto-hydrodynamic regime. In this study, the various
regimes of lubrication are not considered, except maybe
boundary, wherein there is almost no tear present. In
future, studies involving the effect of the tear film and
bulbar conjunctiva could give us further insights into the
effect of the blink on the ocular surface.

5. Conclusion

In this study, we have found that, during blink, the lid wiper
has displaced the cornea posteriorly by 30 µm. With the CL
in situ, during blink, the lid wiper pushes the CL against the
ocular surface, which effectively moves the tears away,
causing the surface to dry, thereby creating friction [17].
Hence during blink, the CL slides over the high-pressure
areas, i.e., the superior cornea and superior limbus. On long-
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term use of CL, this can induce significant trauma to the
ocular surface [18, 78, 82–85]. We also noted in our study
that, during the blink reflex, the lid wiper pressure is less as it
approaches the inferior cornea. #is is why the CL induces
less mechanical trauma at the inferior cornea and limbus
[18]. Hence, the occurrence of CL-induced LSCD is also
uncommon in the inferior areas. Overall, FEA is a useful
simulation tool that helps us to understand the effect of blink
on a normal eye with and without CL. #is can be extended
to other wider areas of research including simulation of
surgery and trauma.
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