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Ca2+-regulated contractility is a key determinant of the quality of muscles. The sarcomeric 
myofilament proteins are essential players in the contraction of striated muscles. The 
troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of 
muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding 
subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin 
I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament 
anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific 
isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated 
during development and aging, and in adaptation to exercise or disuse. TnT also evolved 
with various alternative splice forms as an added capacity of muscle functional diversity. 
Mutations of troponin subunits cause myopathies. Owing to their physiological and 
pathological importance, troponin variants can be used as specific markers to define 
muscle quality. In this focused review, we will explore the use of troponin variants as 
markers for the fiber contents, developmental and differentiation states, contractile 
functions, and physiological or pathophysiological adaptations of skeletal muscle. As 
protein structure defines function, profile of troponin variants illustrates how changes at 
the myofilament level confer functional qualities at the fiber level. Moreover, understanding 
of the role of troponin modifications and mutants in determining muscle contractility in 
age-related decline of muscle function and in myopathies informs an approach to improve 
human health.
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INTRODUCTION

The sarcomere is the functional unit of striated muscles, and the sarcomeric myofilament 
proteins are key players in muscle functions. A sarcomere of vertebrate skeletal muscle contains 
myosin thick filaments, actin thin filaments, and titin and nebulin filaments, as well as accessary 
proteins such as myosin binding protein C and the troponin-tropomyosin (Tm) regulatory 
complex. Skeletal muscle contraction is initiated by an influx of Ca2+ or physical interactions 
of the dihydropyridine receptor with the ryanodine receptor Ca2+ ion channel, mediating the 
release of more Ca2+ from the sarcoplasmic reticulum, and Ca2+ binding to troponin will 
induce a series of conformational changes in the myofilaments to activate myosin ATPase and 
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FIGURE 1 | Evolutionary lineage of TnI and TnT isoforms. Phylogenetic studies revealed that TnI and TnT genes were likely emerged from a TnI-like 
ancestor via gene duplication. The first linked gene pair was fast TnI (fTnI)-like and fast TnT (fTnT)-like. Subsequent gene duplication events during vertebrate 
evolution added a slow TnI (sTnI)-like and cardiac TnT (cTnT)-like pair that further duplicated to add the cardiac TnI (cTnI) and slow TnT (sTnT) pair of genes 
(Chong and Jin, 2009).

myosin-actin cross-bridge cycling, initiating power strokes that 
shorten the sarcomere (Gordon et  al., 2000; Petegem, 2012).

Vertebrate skeletal muscles are categorized as fast-twitch 
anaerobic and slow-twitch aerobic muscles by fiber type contents, 
e.g., type 1 (slow), type 2A (oxidative fast), and type 2B 
(glycolytic fast) fibers in humans (Schiaffino and Reggiani, 
2011). Based on types of myosin isoenzymes with different 
ATPase activity, muscle fiber types are further delineated into 
type 1, type 2A, type 2B, and type 2X (Schiaffino, 2018), 
where muscles may contain “pure” fibers expressing a single 
myosin heavy chain (MHC) isoform and, more frequently, 
“hybrid” fibers express multiple MHC isoforms (Pette and 
Staron, 2000). Humans express three MHC isoforms in adult 
skeletal muscle, MHC I, MHC IIa, and MHC IIx/d encoded 
by MYH7, MYH2, and MYH1 genes, respectively, as well as 
embryonic and neonatal isoforms encoded by MYH3 and MYH8 
genes (Galler et  al., 1997; Schiaffino and Reggiani, 2011). 
Commonly studied small mammals such as mice, rats, and 
rabbits express a fourth isoform MHC IIb encoded by the 
Myh4 gene (Scott et al., 2001). Heterogenic fibers are commonly 
found in mammalian skeletal muscles (Talbot and Maves, 2016).

Muscles playing a role in body posture are composed of 
more slow type I  fatigue resistant fibers whereas muscles 
important for movement are composed of a higher percentage 
of fast type II fibers. Many muscles perform both roles and 
are heterogenic with regard to fiber type (Johnson et al., 1973). 
Muscles that perform specialized functions can have a rather 
pure fiber content, such as the tongue and esophageal muscles 

which have almost entirely fast fibers (Prigozy et  al., 1997; 
Zhao and Dhoot, 2000) whereas the masticatory and extraocular 
muscles are mixed fiber types and show significant variability 
between individuals (Wasicky et  al., 2000; Rowlerson et  al., 
2005; Bicer et  al., 2011). Significant heterogeneity exists when 
classifying muscle fibers based on myosin composition (Salviati 
et  al., 1982) and MHC isoform alone is not sufficient to fully 
characterize a muscle fiber (Terry et  al., 2018).

Ca2+-regulation is essential for muscle contraction and 
relaxation (Metzger and Moss, 1990). Troponin is the key 
calcium-dependent regulator of striated muscles (Greaser and 
Gergely, 1971). The troponin complex is a heterotrimer composed 
of troponin C (TnC), the Ca2+-binding subunit, troponin I (TnI), 
the inhibitory subunit, and troponin T (TnT), the Tm-binding 
subunit. The troponin subunits are encoded by separate genes 
that have evolved into muscle fiber-type-specific isoforms. 
Whereas TnC has only two isoforms, one in fast skeletal muscle 
and the other in cardiac and slow skeletal muscles, TnI and 
TnT were evolved from a TnI-like ancestor and each has three 
isoforms for cardiac, slow skeletal, and fast skeletal muscles 
(Figure 1; Chong and Jin, 2009; Sheng and Jin, 2014). Polyploid 
vertebrate skeletal muscle cells can express a single class of 
troponin isoforms in a highly fiber-type-specific manner with 
coupled expression of slow TnI and slow TnT in pure  
slow fibers and fast TnI and fast TnT in pure fast fibers  
(Brotto et  al., 2006).

Owing to troponin’s central role in controlling the Ca2+-
handing of striated muscles, troponin variants can be  used as 
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muscle-specific markers to assess muscle fiber type and quality. 
In this focused review, we  will address the regulation and 
function of troponin isoforms and alternative splice forms in 
defining skeletal muscle fiber type, developmental and 
differentiation states, contractile function, age-related decline, 
and other physiological and pathophysiological adaptations.

EXPRESSION OF TROPONIN ISOFORMS 
IS FIBER-TYPE SPECIFIC WITH 
FUNCTIONAL SIGNIFICANCE

Troponin emerged ~700 million year ago when animals evolved 
coordinated movement (Cao and Jin, 2020). Complex divergence 
of troponin subunit proteins has evolved in vertebrates with 
functional impacts (Jin et  al., 2008; Sheng and Jin, 2014). Data 
from half century of research on the structure–function 
relationships of troponin subunits provide informative insights 
into the significance of troponin isoform expression in muscle 
health and diseases.

Troponin C
TnC is a member of the calmodulin super family of Ca2+ receptor 
proteins (Wilkinson, 1980; Li and Hwang, 2015). Vertebrate TnC 
has two isoforms encoded by homologous genes in slow skeletal/
cardiac (TNNC1) and fast skeletal (TNNC2) muscles (Figure  2; 
Li and Hwang, 2015). Binding of Ca2+ to the N-terminal domain 
of TnC induces changes in troponin conformation and the 
position of Tm on the actin filament to allow myosin head 
binding to actin and the initiation of contraction. Fast TnC has 
two regulatory Ca2+ binding sites whereas slow/cardiac TnC has 
only one (Van Eerd and Takahashi, 1976; Putkey et  al., 1991). 
While Ca2+ activations of fast skeletal and cardiac muscles show 
differences in length-tension relationship, evidence suggests that 
the TnC isoforms are not a determining factor, consistent with 
the notion that TnC is merely a Ca2+-sensing switch that relays 
Ca2+ signal to the other subunits of troponin, which then function 
to modulate length–tension relationship (Moss et al., 1991; Wang 
and Fuchs, 1994; McDonald et  al., 1995). Nonetheless, single 
fiber studies show that fibers that contain a pure MHC I  or 
MHC II isoform contain the corresponding slow or fast TnC 
isoform, whereas hybrid slow and fast myosin fibers contain 
both slow and fast isoforms of TnC (O’Connell et  al., 2004), 
rendering TnC isoform as a muscle fiber-type-specific marker.

Troponin I
TnI is the inhibitory subunit of troponin and functions to 
inhibit actomyosin ATPase, critical for muscle relaxation when 
cytosolic Ca2+ decreases. In vertebrates, TnI is encoded by 
three distinct isoform genes that are specifically expressed in 
slow skeletal (TNNI1), fast skeletal (TNNI2), and cardiac (TNNI3) 
muscles (Hastings, 1997; Mullen and Barton, 2000). The 
C-terminal and middle regions of the TnI isoforms are conserved 
while cardiac TnI possesses a unique N-terminal extension 
that is not present in the skeletal muscle isoforms (Figure  2; 
Sheng and Jin, 2016).

Fast skeletal muscle TnI is expressed in fast-twitch muscles 
like the extensor digitorum longus and psoas (Hettige et  al., 
2020) corresponding to lower Ca2+ sensitivity than that of slow 
TnI, suggesting the fast skeletal muscle is in a lower state of 
activation compared to cardiac and slow skeletal muscle 
sarcomeres (de Tombe et  al., 2007).

While cardiac TnI is uniquely expressed in the adult vertebrate 
heart, embryonic heart expresses solely slow skeletal muscle 
TnI that confers higher Ca2+-sensitivity and resistance to acidic 
pH, a condition that pre-supposes its resistance to exercise-
induced physiological stress and acidosis in slow skeletal muscle 
(Westfall et  al., 1997). The switch to cardiac TnI occurs in 
developing human hearts around 20 days after birth correlating 
with the cease of hypoxia and acidosis in fetal heart (Hunkeler 
et  al., 1991). The exchangeability between cardiac and slow 
skeletal muscle TnI with functional impacts is consistent with 
the notion that TnI isoform regulation impacts 
muscle contractility.

Troponin T
TnT is the Tm-binding subunit of troponin. It functions to 
anchor the troponin complex onto the thin filament as well 
as transduce calcium-dependent conformational changes in TnC 
to configure the actin thin filament and regulate muscle 
contraction and relaxation (Wei and Jin, 2011). Three genes 
in vertebrates code for three fiber-type-specific TnT genes: 
TNNT1 encodes slow skeletal muscle TnT, TNNT2 encodes 
cardiac muscle TnT, and TNNT3 encodes fast skeletal muscle 
TnT (Wei and Jin, 2016). Whereas the N-terminal region shows 
significant diversity between isoforms, the middle and C-terminal 
regions of TnT are highly conserved (Jin et al., 2008). Alternative 
splicing of multiple exons further adds to the diversity of TnT 
structure and function (Figure  2; Wei and Jin, 2016).

Fast skeletal muscle TnT is specific to fast twitch fibers, 
where it undergoes complex N-terminal alternative splicing 
to produce a high to low molecular weight switch during 
post-natal development (Wei and Jin, 2016). This switch 
imparts a transition from low to high isoelectric point splice 
forms as the result of alternative inclusion of exons encoding 
acidic amino acid-rich N-terminal segments (Wang and Jin, 
1998). Cardiac TnT also undergoes developmental alternate 
splicing that generates a switch from acidic embryonic to 
basic adult splice forms (Jin and Lin, 1989) with the embryonic 
form corresponding to higher myofilament calcium sensitivity 
(Gomes et  al., 2004). Skeletal muscle fibers have higher 
cooperativity than cardiac muscle fibers, and exchanging fast 
skeletal muscle TnT for cardiac TnT in adult transgenic mouse 
hearts results in an increase in cooperativity of Ca2+ activation 
of force (Huang et  al., 1999a), highlighting the functional 
significance of fiber-type-specific TnT expressions. Slow skeletal 
muscle TnT is expressed in slow twitch fibers, where N-terminal 
alternative splicing produces high and low molecular weight 
variants (Jin et  al., 1998a; Krishan et  al., 2000). The two 
high molecular weight splice forms show high expression in 
rat soleus muscle, while the two low molecular weight splice 
forms show nominal expression in fast extensor digitorum 
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longus and tibialis anterior muscles. Studies exchanging fast 
TnT with slow TnT in skinned fibers resulted in an increase 
in sensitivity to Ca2+-activation but a decrease in cooperativity, 
consistent with slow fibers being more sensitive to calcium 
than fast fibers (Kischel et  al., 2005).

Concurrent with the developmental exclusion of N-terminal 
embryonic exons, a post-hatching inclusion of alternatively 
spliced exons adds a unique Glu-rich metal binding segment 
in the N-terminal region of adult avian pectoral muscle fast 
TnT which functions in modulating molecular conformation 
and affinity for Tm as well as Ca2+ sensitivity of muscle 
contraction (Ogut and Jin, 1996; Ogut et  al., 1999), potentially 
important for flight activities (Cao and Jin, 2020).

EXPRESSION OF TROPONIN ISOFORMS 
ARE REGULATED DURING 
DEVELOPMENT AND MYOGENESIS

Myogenesis
Troponin subunits are striated muscle-specific proteins with 
significant isoform and splice form regulation during myogenesis. 
Vertebrate skeletal muscle myogenesis begins with stem cells 

differentiating into primary myoblasts that develop into primary 
myofibers in neonates, which form the scaffold upon which 
secondary myoblasts ultimately form secondary myofibers in 
adult vertebrates (Chal and Pourquié, 2017). Evidence indicates 
that primary myoblasts express primarily slow-type myofilament 
proteins and secondary myoblasts express primarily fast-type 
myofilament proteins, though isoform switching among a number 
of myofilament proteins in developing fibers makes this 
assessment more complex (Condon et  al., 1990; Hallauer and 
Hastings, 2002a). Still, such isoform switching demonstrates 
that primary and secondary myoblasts are not confined to a 
specific fate as slow or fast fibers (Guerrero et  al., 2014).

It has been suggested that differentiating primary and 
secondary myoblasts show a common progenitor profile of 
troponin isoforms regardless of fiber type or myosin isoforms, 
and that de novo assembly of sarcomeres occurs prior to 
transition into specific fiber types. This proposed expression 
pattern particularly holds true for TnI, of which the slow 
isoform is predominantly expressed in primary and secondary 
myotubes, and TnC which shows a consistent hybrid expression 
of fast and slow isoform in myotubes, whereas TnT isoform 
expression is highly variable (Sutherland et  al., 1993). There 
is significant co-expression of slow and fast isoforms of TnT 
in developing myotubes prior to the onset of differentiation 

FIGURE 2 | Linear protein maps of troponin subunit isoforms. Linear structures of the two TnC, three TnI and three TnT isoforms are shown with segments 
encoded by individual exons outlined. The adult heart-specific N-terminal extension of cardiac TnI and the alterative splicing-generated variable regions of TnT are 
indicated. The alternatively spliced exons are labeled with the gray boxes.
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programming, with significant restriction of isoform gene 
expression as the myotubes become committed to a fiber type.

Transcriptional Control of Early Myotube 
Differentiation
A number of transcription factors, including MyoD, Six, Sox6, 
Prdm1, Prox1, GTF3, PGC-1ɑ, and Mef2, have been identified 
with impacts on the differentiation of skeletal muscle fibers. 
MyoD has been shown to play a significant role in myogenesis, 
fast skeletal muscle differentiation, and the expression of specific 
TnT isoforms. Skeletal muscle fibers of MyoD knockout (KO) 
mice showed significantly greater variability in Ca2+-activation 
as well as greater variability in TnT isoform expression which 
could affect Ca2+ handling, while TnI and TnC isoforms were 
consistent with those of controls (Metzger et  al., 1995; Muroya 
et  al., 2005; Ekmark et  al., 2007). The Six family of proteins, 
especially Six1 and Six4, also upregulate the expression of fast 
TnT (Niro et  al., 2010).

Sox6 gene is another important player in fast skeletal muscle 
differentiation as Sox6 KO mice show early postnatal lethality 
coinciding with the formation of secondary myotubes. Sox6 
KO results in a decrease in fast skeletal muscle TnI and an 
increase in slow TnC and slow TnI (Hagiwara et  al., 2005). 
Furthermore, Sox6 acts as a transcriptional repressor of slow-
fiber-specific genes in slow skeletal muscle fibers (Hagiwara 
et  al., 2007). Transcription factor Prdm1 is a regulator of slow 
skeletal muscle, where it counteracts Sox6 repression to encourage 
slow skeletal differentiation (von Hofsten et  al., 2008). Prox1 
is another fast skeletal isoform suppressor, and knock-out of 
the gene increases expression of fast TnT and fast TnI (Petchey 
et  al., 2014). Transcription factor GTF3 binds an upstream 
enhancer of slow TnI gene, restricting slow TnI expression to 
slow fibers (Vullhorst and Buonanno, 2003). In addition, PGC-1ɑ 
overexpression has been shown to drive fast-to-slow fiber-type 
switching, and PGC-1a is known to interact with Mef2 to 
upregulate slow TnI and promote slow fiber differentiation 
(Lin et  al., 2002).

Developmental Regulation of Troponin 
Isoforms
The three TnT genes show mixed expression in early embryos 
up until developing neonates, where the expression of fast 
skeletal, slow skeletal, and cardiac isoforms becomes restricted 
to their corresponding muscle types as in adults. Studies in 
mice showed that cardiac TnT is the dominant isoform detected 
in skeletal muscles of developing embryos and fetuses with 
co-expression with the embryonic form of MHC. Cardiac TnT 
is the first detectable TnT isoform in the mesoderm of developing 
mice at around 8 days post coitum (p.c.) while fast TnT and 
slow TnT are detectable around 12 days p.c., coinciding with 
the decrease in cardiac TnT (Wang et  al., 2001). Cardiac TnT 
is down-regulated in neonates around day 15–20 and ceases 
expression in adult skeletal muscles (Toyota and Shimada, 1981; 
Saggin et  al., 1990). Alternative splice forms of fast TnT are 
present at different stages in developing chicken embryo 
correlating with differences in Ca2+ sensitivity of the muscle 

fibers (Reiser et  al., 1992). This was further correlated by the 
N-terminal acidity of the TnT splice forms, where more acidity 
confers higher myofilament Ca2+ sensitivity of chicken fast 
skeletal muscle (Ogut et  al., 1999).

Troponin I shows significant slow and fast isoform variations 
during development depending on the species and the muscle 
group studied. In the biceps femoris of pigs, fast TnI expression 
was lower in fetus and increased with age while slow TnI 
expression decreased, corresponding to a decrease in slow MHC 
I  and an increase in fast MHC IIb (Xu et  al., 2010). Studies 
in mice supported this notion and found low but detectable 
levels of fast TnI in developing embryos which was suppressed 
over time during postnatal maturation of slow-twitch fibers. 
Significantly higher levels of fast TnI were found in developing 
secondary fibers, supporting the hypothesis that secondary 
fibers largely develop into fast-twitch muscles. This regulation 
also coincided with the pattern of fast MHC isoforms, suggesting 
a collectively orchestrated gene regulation that gives rise to 
fast and slow muscle fibers (Zhu et  al., 1995; Hallauer and 
Hastings, 2002b).

Fast and slow TnI are co-expressed in embryonic muscles, 
and fast TnI is present from the very beginning of myogenesis. 
The expression of fast TnI is parallel with fast-twitch MHC 
IIx in adult mouse muscles (Guerrero et  al., 2014). There is 
a slow-to-cardiac TnI isoform switch during postnatal 
development of vertebrate hearts where the timing is species 
dependent based on not birth but functional demands placed 
on the heart (Hunkeler et  al., 1991; Jin, 1996; Krüger et  al., 
2006). As the functional demands placed on skeletal tissue 
change dramatically as an organism progresses from embryo 
to fetus to adult, regulation of fast and slow TnI isoform 
expressions may also play an adaptive role.

Though studies have indicated that changes in TnC during 
cardiac development confer unique functions (Posterino et  al., 
2011), less is known about the developmental regulation of 
TnC isoforms in skeletal muscles. Fast TnC shows constant 
expression throughout muscle development while slow/cardiac 
TnC may show expression in skeletal muscles of early embryos, 
which becomes undetectable in neonates (Matsuda et al., 1981; 
Toyota and Shimada, 1981).

TROPONIN T SPLICE FORMS ARE 
REGULATED DURING DEVELOPMENT 
AND IN DIFFERENT MUSCLES WITH 
FUNCTIONAL SIGNIFICANCE

N-Terminal Hypervariable Region
By the mid-1970s, it had become apparent that fast skeletal 
muscle TnT had different isoforms in chicken leg and breast 
muscles (Wilkinson, 1978). Monoclonal antibody based studies 
showed that fast TnT isoforms in these muscles changed during 
development. All fast muscles of chicken embryos expressed 
the leg-type isoform. The fast-twitch glycolytic breast muscle 
expresses the leg isoform early during development before 
switching to the breast-type within 1 week after hatching with 
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some single fibers co-expressing both isoforms (Shimizu and 
Shimada, 1985; Nakada et  al., 2000). Later antibody and 
molecular cloning studies found that the multiple isoforms of 
fast TnT are produced by alternative RNA splicing of an 
N-terminal hypervariable region (Wei and Jin, 2016).

Differential expression of the splice forms of TnT leads to 
differences in Ca2+ sensitivity of tension development, with 
higher molecular weight isoforms displaying greater sensitivity 
(Schachat et al., 1987; Greaser et al., 1988; Briggs and Schachat, 
1996). Alternative splicing of exons 4–8 results in different 
contents of acidic residues of the N-terminal variable region 
that may modulate interactions between TnT and TnC (Briggs 
and Schachat, 1989). An embryonic-specific exon encodes an 
N-terminal acidic amino acids-rich segment to produce fetal 
isoforms significantly more acidic than the adult isoforms, and 
its inclusion decreases significantly within 7 days after birth, 
regardless of fiber type (Briggs et  al., 1990). During vertebrate 
development, the high-to-low molecular weight and acidic-to-
basic isoform switch may function to modulate the tolerance 
of muscles to acidosis, as the acidic isoforms retain binding 
affinity for Tm at low pH while Tm-binding affinity of the 
basic isoforms reduced (Ogut and Jin, 1998).

Slow skeletal troponin T shows an alternative splicing of 
exons 5 and 6 which also encodes an N-terminal variable 
region. Two major and one minor slow TnT isoforms are 
detectable in mouse slow-twitch fibers, and the expression of 
these isoforms changes with development (Jin et  al., 1998a). 
In contrast to fast TnT, the regulation and functionality are 
less extensive and no fetal exon is present in the slow TnT 
gene (Huang et  al., 1999b; Yonemura et  al., 2000).

The alternative splicing of the three muscle type TnT isoforms 
is summarized in Table  1 together with the expression of TnC 
and TnI isoform genes.

Mutually Exclusive Exons 16 and 17 
Encoding a C-Terminal Variable Region of 
Fast TnT
Different from the slow and cardiac isoforms, the C-terminal 
region of fast TnT that interacts with TnI and TnC (Wei 
and Jin, 2016) contains a variable segment encoded by a 
pair of mutually exclusive exons, 16 and 17  in vertebrates. 
The C-terminal alternatively spliced variants of fast TnT are 
the ɑ and β isoforms (Medford et  al., 1984). In neonatal 
skeletal muscles, expression is predominantly exon 17, whereas 
in adult skeletal muscle expression shows a mixture of both 
isoforms, except in chicken pectoral muscles where the 
preference is towards mostly exon 16 (Wang and Jin, 1997; 
Ogut and Jin, 1998). It is interesting to note that exon 17 
shows higher sequence similarity to its counterparts in cardiac 
and slow TnT compared to exon 16 (Jin et al., 1998b). Within 
the same fiber, higher levels of the exon 16 product could 
be  detected in the proximal region of 15-day-old chicken 
gastrocnemius and increased with development (Jozaki et  al., 
2002). The ɑ splice form of fast TnT produces higher Ca2+ 
sensitivity and ATPase activity in reconstituted myofilaments 
(Chaudhuri et  al., 2005; Gallon et  al., 2006).

TROPONIN ISOFORM AND SPLICE 
FORM REGULATION AND MUSCLE 
USAGE

Fatigue Resistance and Exercise
It has been well-established that troponin plays a role in the 
Ca2+-sensitivity of muscle in response to acidosis. Within skeletal 
muscle cells, the response to acidic pH holds implications for 
exercise and fatigue resistance, where work-produced local hypoxia 
and increases in proton production from ATP hydrolysis exceeds 
the bicarbonate buffering capacity of the tissue (Robergs et  al., 
2004). Decreases in Ca2+-sensitivity following acidosis is most 
significant in cardiac muscle, followed by fast skeletal and then 
slow skeletal muscles. While TnC plays the role of Ca2+ receptor, 
slow skeletal and cardiac muscles share the same TnC isoform 
and thus TnC alone cannot account for the marked difference 
in acidosis resistance between cardiac and slow skeletal muscle fibers.

In vivo studies using reconstituted troponin indicate that 
TnI-TnC interactions are pH sensitive (Kawashima et al., 1995; 
Metzger, 1996). Studies in cardiac muscle show that the Ca2+ 
sensitive function of thin filaments decreases at acidic pH, 
while slow skeletal muscle is more resistant to low pH. Replacing 
cardiac TnI with slow TnI in skinned cardiac muscle preparations 
preserves Ca2+-sensitivity with decreased pH, implicating slow 
TnI as a main mediator of the resistance to acidosis in slow 
skeletal muscle function (El-Saleh and Solaro, 1988; 
Wattanapermpool et  al., 1995).

Studies of muscle fibers expressing TnT isoforms or splice 
forms showed that more acidity in the N-terminal segment of 
TnT may also account for acidotic-resistance differences of different 
skeletal muscles (Ogut and Jin, 1998; Nosek et al., 2004). Altogether, 
the role of slow isoforms of TnI and TnT in the resistance to 
acidosis has important functional implications for muscle 
performance by increasing fatigue resistance.

Endurance training induces marked changes in myosin 
isoform composition in the muscle. Longitudinal studies 

TABLE 1 | Isoforms and splice forms of troponin subunits.

Isoform 
gene

Protein product Expression pattern Alternative 
splicing

TNNC1 Cardiac/Slow TnC Cardiac and slow-twitch 
skeletal muscles

N/A

TNNC2 Fast TnC Fast-twitch skeletal muscle N/A
TNNI1 Slow TnI Slow-twitch skeletal 

muscle/Embryonic heart*

N/A

TNNI2 Fast TnI Fast-twitch skeletal muscle N/A
TNNI3 Cardiac TnI Adult cardiac muscle* N/A
TNNT1 Slow TnT Slow-twitch skeletal muscle N-terminal variable 

region
TNNT2 Cardiac TnT Cardiac muscle N-terminal variable 

region*

TNNT3 Fast TnT Fast-twitch skeletal muscle N- and C-terminal 
variable regions*

The genes encoding vertebrate TnC, TnI and TnT isoforms are listed with their 
expression in specific muscle types. All three TnT isoforms have evolved with additional 
diversity via alternative splicing. N/A, not applicable. 
*Developmentally regulated expression.
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showed decreases in type IIb fibers that are offset by increases 
in type I  and type IIa fibers with a corresponding shift to 
slow forms of troponin, indicating an adaptative shift to 
more fatigue-resistant fibers (Baumann et  al., 1987). On 
the other hand, athletes trained for muscle power without 
endurance, such as sprinters or weightlifters, do not show 
significant muscle fiber conversion and display fast-twitch 
fatigable fiber composition similar to that of sedentary 
controls (Jansson et  al., 1978).

Studies on rabbit muscle exposed to chronic stimulation 
mimicking workload showed a fast-to-slow fiber conversion 
with a switch from MHC IIb to MHC IIa and MHC I (Schachat 
et  al., 1988). Three weeks of chronic stimulation also induced 
a shift of splice forms of fast skeletal muscle TnT1f and TnT2f 
to almost entirely TnT3f, which has a lower molecular weight 
and fewer N-terminal acidic residues (identified by gel mobility 
and the N-terminal alternative splicing of fast TnT, Table  1). 
Instead of implicating a decrease in acidosis resistance, the 
authors hypothesized that TnT3f splice form decreases Ca2+-
sensitivity as an intermediate in an adaptive shift of fiber types.

Diet plays an important role in muscle fiber type content 
and growth as well as skeletal muscle glucose homeostasis. 
One study implicated high-fat diets in conferring a down-
regulation of fast TnT and an upregulation in slow TnT in 
soleus muscle. While no changes were seen in type IIa or IIb 
fibers, the increase in slow TnT in slow-twitch fibers led to 
a decrease in force production and relaxation rate, subsequently 
decreasing exercise potential (Ciapaite et  al., 2015).

Microgravity and Muscle Disuse
Hindlimb unloading in rodents is an effective laboratory approach 
to alter the mechanical load that skeletal muscles experience. 
Originally developed to mimic microgravity during spaceflight, 
by suspending the tail of rats or mice and thus preventing 
gravity load on hindlimb muscles the impacts of unloading 
and disuse in conditions such as extended bedrest can 
be  investigated.

In rat and mouse tail suspension models, it is well-
established that hindlimb unloading induces a slow-to-fast 
fiber type transition with increases in the expression of 
MHC IIx and MHC IIb, opposite to the fast-to-slow fiber 
type transition seen following endurance training (Stevens 
et  al., 1999). A concurrent transition during hindlimb 
unloading is a slow-to-fast isoform switch of TnC, TnI, and 
TnT (predominantly TnT2f that corresponds to higher 
cooperativity of muscle).

All fiber types in the muscle show atrophy and a reduction 
in average diameter and normalized tension following hindlimb 
unloading (Kischel et  al., 2001; Bastide et  al., 2002; Yu et  al., 
2007). Unloaded fibers also show a significant decrease in 
force production and fatigue resistance. Adding reconstituted 
fast skeletal troponin to unloading-treated fast fibers indicated 
that not the quantity but instead the isoform types of troponin 
determine the Ca2+ sensitivity of force production (Udaka et al., 
2011). The results of these animal models can be  extended to 
humans, where a regimen of resistance and aerobic exercise 

was shown to significantly prevent the slow-to-fast transition 
and the accompanying decrease in maximal force in human 
subjects treated with bedrest (Mounier et  al., 2009).

While adaptive changes in the expression of myofilament 
protein variants begin as early as 3 days after unloading (Yu 
et  al., 2007), the recovery after reloading is a much slower 
process. A study in mice showed that while the expression of 
MHC I, slow TnI and slow TnT and force production resumed 
in 2 weeks, fatigue resistance did not begin to improve until 
at least 30 days after reloading and remained lower than controls 
60 days after reloading (Feng et  al., 2016). It is worth noting 
that significant inflammatory responses are seen during the 
1st week of reloading after long term unloading, indicating 
injury due to overloading of the deconditioned and atrophic 
muscle (Feng et  al., 2016).

TROPONIN ISOFORM AND SPLICE 
FORM REGULATION IN AGING

Loss of Fast Fibers
Age-related decline in skeletal muscle function results in decreases 
in muscle mass and force generation together with a loss of 
motor nerve innervation which is more pronounced in type II 
fast fibers (Moore et al., 2014). The spatial distribution of motor 
units becomes more clustered with age, suggesting a pattern of 
denervation (Wang et  al., 2005; Mitchell et  al., 2012). As the 
loss of muscle mass cannot alone account for the loss of force, 
the loss of motor neuron innervation may have a primary role, 
particular in the loss of fast fibers. Moreover, proteomics studies 
reveal changes in myosin light chain 2 corresponding to a fast-
to-slow transition of protein isoforms, supporting the notion 
that aging in muscle shifts the balance towards aerobic-oxidative 
metabolism in slow twitch fibers (Gannon et  al., 2009).

There is evidence to support a role for troponin isoforms 
in adaptation to aging. Muscles of young and old individuals 
contain different splice forms of fast TnT. As different TnT 
splice forms correspond to differences in Ca2+ sensitivity, this 
could affect muscle function in aging. Aging muscle was 
found to have a decrease in the ɑ splice form relative to 
the β form of fast TnT. The ɑ splice form is known to impart 
higher Ca2+ sensitivity and ATPase activity, thus its decrease 
may contribute to the decrease in muscle performance in 
age (Coble et  al., 2015).

Cardiac TnT that is transiently expressed in developing 
skeletal muscle and following denervation may contribute 
to the pathophysiology of age-related skeletal muscle decline. 
It was reported that the levels of cardiac TnT in mouse 
fast-twitch muscle increased with age and were enriched in 
the region surrounding the neuromuscular junction in aging 
mice. Furthermore, knockdown of cardiac TnT in fast-twitch 
muscle led to an increase in protein kinase A R1ɑ subunit 
that is known to aid in stability of the postsynaptic 
neuromuscular junction, suggesting cardiac TnT may act as 
a regulator of neuromuscular junction function and impact 
motor nerve functions (Martinez-Pena y Valenzuela et al., 2013;  
Xu et  al., 2017).
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Approaches to Counteract Muscle Loss
While diet is clearly important for skeletal muscle function, 
the role of glucose metabolism in skeletal muscle aging is 
multi-faceted and remains incompletely understood. Loss of 
muscle function not only reduces mobility and function in 
older individuals, but as skeletal muscle is a major target for 
glucose uptake, loss of muscle mass may be  implicated in the 
pathogenesis of type 2 diabetes. Exercise training reduces insulin 
resistance in older adults (Evans et  al., 2005; Consitt et  al., 
2019). In a diabetes-like mouse model of G-protein ɑ subunit 
deficiency in skeletal muscle with reduced glucose tolerance 
and low muscle mass, a fast-to-slow fiber type switching occurred 
upon aging. This phenotype may serve as an adaptive response 
of aging muscles to functional overload, where the muscle 
showed better resistance to fatigue despite the overall loss of 
mass (Feng et  al., 2011).

Mounting evidence supports the benefits of exercise 
intervention in improving the health of aging skeletal muscle. 
Studies using resistance training have shown improvements in 
fiber-specific force and power without marked changes in fiber-
type composition or muscle cross sectional area (Mitchell et al., 
2012; Zhang et al., 2014). An upregulation of the high molecular 
weight splice form of slow TnT was found in aging individuals 
who received resistance training over 5 months, implicating a 
role for slow TnT splice forms in muscle adaptation in aging 
(Zhang et al., 2014). Aerobic training also significantly increases 
the number of motor units in older individuals, suggesting 
neuroprotective effects that improve muscle function in old 
age (Power et  al., 2010). However, the benefits of exercise may 
only be  seen after the course of several months (Drummond 
et  al., 2008; Coble et  al., 2015).

TROPONIN MYOPATHIES AND 
ADAPTATIONS IN OTHER MUSCLE 
DISEASES

As troponin plays a central role in Ca2+ regulation of muscle 
contraction, mutations of troponin subunits have been 
demonstrated to be  involved in the pathologies of some 
myopathies. Understanding the pathogenesis and pathophysiology 
of troponin myopathies with specific protein structural 
abnormalities can provide insights into targeted treatment. The 
sensitive changes of troponin isoforms and splice forms as a 
functional adaptation also provide informative markers for the 
pathophysiology of non-troponin mutation muscle diseases.

TNNT1 Myopathies
The most documented troponin-related skeletal myopathies are 
caused by various mutations in TNNT1 gene encoding slow 
skeletal muscle TnT (Mondal and Jin, 2016). The first TNNT1 
myopathy identified was Amish nemaline myopathy (ANM), 
a lethal recessive nemaline myopathy affecting approximately 
1  in 500 births in the Amish communities in Pennsylvania 
and Ohio (Fox et  al., 2018). ANM is caused by a nonsense 
mutation in exon 11 of TNNT1 gene resulting in a premature 

truncation of slow TnT at Glu180. Although fast TnT expression 
remains unchanged, patients with ANM exhibit severe muscle 
weakness, atrophy of type I  fibers, hypotonia and tremors, 
ultimately resulting in death by age 2–4 from failure of respiratory 
muscle function. Muscle biopsies from patients with ANM 
reveal that neither truncated nor intact slow TnT is present, 
indicating the truncated slow TnT is unable to incorporate 
into myofilaments (Jin et al., 2003). Normal fetal skeletal muscle 
expresses predominantly fast TnT and cardiac TnT. When cardiac 
TnT is down-regulated around birth, slow TnT expression is 
upregulated. Consistently, patients with ANM present with 
apparently normal muscle phenotype at birth with myopathy 
developing postnatally concurrent with the lack of slow TnT 
expression (Jin et  al., 2003; Mondal and Jin, 2016).

A TNNT1 gene KO mouse model partially reproduced the 
pathophysiology of ANM. TNNT1 KO mice do not show 
premature lethality but have severe type I  fiber atrophy and 
reduction of MHC I, along with decreased force development 
and resistance to fatigue (Wei et  al., 2014). To investigate why 
the loss of only one isoform of TnT results in severe myopathy 
despite the abundance of fast TnT, further studies found that 
slow TnT plays a critical role in the function of the intrafusal 
fibers of muscle spindles. The loss of slow TnT in intrafusal 
fibers was partially compensated by an increase in cardiac 
TnT, resulting in a potential hypersensitivity to Ca2+ which 
may explain the tremors and clonus seen in patients with 
ANM (Oki et  al., 2019).

The characterization of ANM called for TNNT1 genetic 
testing in the diagnosis of myopathies, and numerous other 
mutations have been reported in TNNT1 gene to cause recessive 
or conditionally dominant myopathies with progressive muscle 
deteriorations. Among those reported include a nonsense 
mutation in exon 9 causing premature truncation at Ser108, 
splicing site mutations causing truncation at Leu203 or E221, 
and internal deletion of exon 8, exon 9, or both (Marra et  al., 
2015; Abdulhaq et al., 2016; Amarasinghe et al., 2016; D’Amico 
et al., 2019; Géraud et al., 2020). Protein binding studies showed 
lower Tm binding affinity of Ser108 truncated and exon 8 deleted 
slow TnT. The Leu203 truncation mutant retains Tm-binding 
capacity but lacks TnI and TnC binding sites to also result 
in complete loss of function (Amarasinghe et  al., 2016). Slow 
TnT mutations that cause deletion of the C-terminal 14 amino 
acids have been reported to cause ANM-like myopathies in 
compound heterozygotes with some of the above mutations 
(van der Pol et  al., 2014; Petrucci et  al., 2021), confirming 
the functional importance of the C-terminal end segment of 
TnT (Lopez Davila et  al., 2020).

Myotonic Dystrophy
Myotonic dystrophies (DM) encompass a group of autosomal 
dominant inheritance disorders leading to skeletal muscle 
weakness, wasting, and hyperexcitability, as well as insulin 
resistance and cardiac dysfunction, affecting approximately 
1  in 8,000–20,000 people. The disorder can be  traced back 
to the expansion of CTG repeats in the 3'-untranslated region 
of the DMPK gene, which encodes for a kinase that is a 
known regulator of muscle function and may be  implicated 
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in many different pathways. A number of genes involved in 
muscle functions are affected, and among these are TNNT3 
encoding fast TnT and TNNT2 encoding cardiac TnT. Aberrant 
splicing of TNNT3 and TNNT2 in patients with DM results 
in altered Ca2+-sensitivity of myofilaments (López-Martínez 
et  al., 2020). Differences in fast TnT alternative splicing are 
seen among patients with distinct forms of DM, indicating 
TNNT3 splice forms could be  a useful marker for differential 
diagnosis (Vihola et al., 2010). The splicing abnormality results 
in shifts to high molecular weight forms of fast TnT. Such 
splicing shift is also seen in slow TnT, which may also have 
a causal effect (Salvatori et  al., 2009).

Facioscapulohumeral Muscular Dystrophy
Facioscapulohumeral muscular dystrophy is one of the more 
common forms of muscular dystrophy, affecting approximately 
1  in 15,000–20,000 people worldwide. This autosomal dominant 
inheritance disorder is characterized by a distinctive muscle 
weakness and reduced resistance to fatigue in the face, neck, 
shoulders and upper trunk with onset typically in a patient’s 
teens or 20s (Tawil, 2018). The disorder occurs as a result of 
the loss of microsatellite repeats in chromosome 4q35 resulting 
in hypomethylation of chromatin, with possible targets including 
genes DUX4 and FRG1. Aberrant slicing of fast TnT has been 
implicated as a possible cause of the disorder, as FRG1 has been 
shown to bind to the TnT transcript, and mice overexpressing 
FRG1 display a shift towards an anomalous acidic fast TnT isoform 
and an overall switch from a fast-to-slow fiber type. Muscle fibers 
from FRG1-overexpressing mice show reduced Ca2+-sensitive force 
generation, consistent with the role of fast TnT in modulating 
myofilament Ca2+-sensitivity (Sancisi et  al., 2014).

Distal Arthrogryposis
Distal arthrogryposis (DA) is a rare autosomal dominant disorder 
affecting joints and reducing function of the distal portions 
of the limbs without any associated muscle weakness. The 
disorder is delineated into the more severe form DA1, DA2A 
(Freeman-Sheldon syndrome), and DA2B (Sheldon-Hall 
syndrome). Depending on the classification, patients typically 
present with variable contractures affecting major joints including 
the hands and feet, while patients with DA2A and DA2B in 
addition are characterized by facial anomalies including deep-set 
eyes and small mouth, short stature, and scoliosis. Patients 
with DA show increased variability of muscle fiber size, largely 
confined to type II fibers. In some patients with DA, an in-frame 
internal deletion in TNNI2 gene results in a deletion of Lys176 
from fast TnI. Lys176 is a highly conserved residue and mutation 
of the corresponding residue in cardiac TnI causes hypertrophic 
cardiomyopathy. Loss of this Lys in cardiac TnI results in an 
increase in Ca2+ sensitivity and a similar mechanism may be at 
play in DA skeletal muscles. Patients with DA with mutations 
of the TNNT3 gene that alter Ca2+ sensitivity may have a 
similar mechanism of pathogenesis (Kimber et al., 2006; Toydemir 
and Bamshad, 2009), and TNNT3 mutations may lead 
concomitantly to DA and nemaline myopathy of fast twitch 
fibers (Sandaradura et  al., 2018).

Adaptive Changes of Troponin in Other 
Myopathies
Charcot–Marie–Tooth disease (CMT) is a hereditary disorder 
affecting the peripheral nerves. CMT type 1 is classified by 
peripheral axon demyelination, resulting in reduced motor 
nerve conductive velocity, while CMT type 2 is classified by 
axonal degeneration. Patients with both CMT type 1 and type 
2 experience weakening of muscles in the periphery limbs, 
including weakness and muscle atrophy of the feet and hands 
(Miniou and Fontes, 2021). In biopsies of patients with CMT 
type 1 slow fibers showed a significant up-regulation of the 
low molecular weight splice form of slow TnT, while no changes 
in troponin were observed in patients with CMT type 2. This 
difference may suggest that the change in the quality of neuronal 
inputs, such as that from axon demyelination in CMT type 
1 vs. that from axon loss in CMT type 2, triggers an adaptation 
in sarcomeric contractile apparatus via alternative splicing of 
TnT to alter the thin filament regulation. The increase in low 
molecular splice forms of slow TnT in CMT type 1 muscle 
may have the effect of increasing force production as the less 
acidic slow TnT splice form confers increased Ca2+-activated 
tension (Larsson et  al., 2008).

Abnormal splicing regulation of the mutually exclusive exons 
16 and 17 of fast TnT gene TNNT3 was found in oculopharyngeal 
muscular dystrophy, resulting in changes in Ca2+ sensitivity 
(Klein et  al., 2016). Biallelic TNNT3 mutations were further 
found to be  associated with a severe recessive congenital 
myopathy in patients presenting with or without nemaline rods 
and DA (Calame et  al., 2021).

There are recently reported cases of TnC causing skeletal 
muscle myopathies. Inherited fast TnC (TNNC2) missense 
mutations led to scoliosis and respiratory weakness at birth 
among members of two families studied, though the condition 
appears to improve over time and suggests a compensatory 
effect of cardiac/slow TnC with increased reliance on slow 
twitch fibers with age. Unlike mutations in slow TnT, the 
reported TnC mutations do not appear to cause nemaline 
rods or dramatically alter the myofibrillar structure and 
solely act through decreasing Ca2+-sensitive force generation 
of the fibers (van de Locht et  al., 2021).

In contrast, some myopathies, such as TP3 myopathy, acute 
quadriplegic myopathy, and neurogenic muscle atrophy, show 
changes in troponin subunits corresponding to atrophy of slow 
and/or fast fibers but appear to display no unique or abnormal 
loss or alteration of troponin (Furukawa and Peter, 1972; 
Matsumoto et  al., 2000; Yuen et  al., 2015).

Other Applications of Troponin Biomarker 
for the Treatment of Human Diseases
Muscle regeneration, either through grafts, stem cells, or satellite 
cells, has been a key goal for improving human health. As 
technologies develop, tissue engineering will continue to be  a 
key approach in researchers’ toolbox, though difficulties with 
innervation, vascularization, and inflammatory reactions remain 
(Liu et  al., 2018; Alarcin et  al., 2021). Engineered tissues are 
also a means to study muscle function in vitro without the need 
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of biopsies and open the possibility to induce disease-related 
proteins to study function (Abdul-Hussein et al., 2012; Khodabukus 
and Baar, 2015). Myofilament protein expression is directly 
informative to delineating myogenesis and muscle tissue engineering 
as it reflects contractile functions. Expression of adult forms of 
troponin subunits represent key markers for the differentiation 
of stem cells into functioning myocytes and the maturity of 
regenerated or engineered muscles (Wheelwright et  al., 2020).

CONCLUSION

Myofilament Ca2+-regulation is a key determinant of skeletal 
muscle function, and troponin is the crucial regulator of Ca2+-
dependent contraction and relaxation. While the expression 
pattern of MHC is complex and often involves co-expression 
of multiple isoforms within the same fiber, most fibers express 
only one isoform of TnI, TnT, and TnC. As fast and slow 
skeletal fibers differ markedly in their sensitivity to Ca2+, 
troponin plays a key role in defining fiber-specific functions. 
Thus, troponin isoforms may present a specific marker for 
classification of fast and slow skeletal fiber types as well as 
evaluation of developmental and differentiation states.

The importance of delineating fiber types can be  seen in 
a number of muscle wasting and weakness disorders such as 
ANM and DM, where troponin mutations or dysfunctional 
aberrant splicing acts with precision on one specific fiber type. 
With data from models of age-related muscle decline, disuse, 
or exercise training, we are presented with a means to understand 

changes in troponin isoform expression for use in positively 
impacting human health by improving the Ca2+-handling ability 
and specific force generation of skeletal muscles. A clear 
understanding of protein structure–function relationship informs 
how changes at the myofilament level confer functions at the 
fiber level, and the troponin subunit proteins present attractive 
markers for understanding muscle fiber-type-specific functions, 
growth and regeneration, age-related decline, myopathies, and 
compensatory adaptations.
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