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Abstract: Oxidative stress may be defined as an imbalance between reactive oxygen species (ROS)
and the antioxidant system to counteract or detoxify these potentially damaging molecules. This
phenomenon is a common feature of many human disorders, such as cardiovascular disease. Many of
the risk factors, including smoking, hypertension, hypercholesterolemia, diabetes, and obesity, are as-
sociated with an increased risk of developing cardiovascular disease, involving an elevated oxidative
stress burden (either due to enhanced ROS production or decreased antioxidant protection). There
are many therapeutic options to treat oxidative stress-associated cardiovascular diseases. Numerous
studies have focused on the utility of antioxidant supplementation. However, whether antioxidant
supplementation has any preventive and/or therapeutic value in cardiovascular pathology is still a
matter of debate. In this review, we provide a detailed description of oxidative stress biomarkers in
several cardiovascular risk factors. We also discuss the clinical implications of the supplementation
with several classes of antioxidants, and their potential role for protecting against cardiovascular risk
factors.

Keywords: oxidative stress; cardiovascular disease; antioxidants; risk factors; biomarkers; supple-
mentation

1. Introduction

Oxidative stress has an important role in the onset and in the progression of several
diseases, and in particular, in cardiovascular diseases. Oxidative stress is caused by the
overproduction of reactive oxygen species (ROS), which include both the free radicals and
their non-radical intermediates, such as superoxide anion (O2

•−), hydroxyl ion (OH•), hy-
drogen peroxide (H2O2), and peroxyl radicals (ROO•), alkoxyl (RO•), singlet oxygen (1O2),
and ozone (O3). The burst of ROS is associated with an imbalance between the generated
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ROS and the antioxidant defense systems. Evidence shows that oxidative stress plays an
important role in the progression of various cardiovascular diseases, such as atherosclerosis,
heart failure (HF), cardiac arrhythmia, and myocardial ischemia-reperfusion (I/R) injury. A
lot of work has been devoted to the studies of antioxidants therapies in the prevention and
treatment of these cardiovascular diseases. While some clinical trials have shown positive
results, others are controversial.

This is partly due to the incorrect evaluation of biomarkers of oxidative stress, and in
particular, to the lack of the assessment of key ROS-producing enzymes, such as NADPH
oxidase. Furthermore, the choice of the dosage and type of antioxidant used in the treatment
or prevention of cardiovascular diseases is not accurate and specific for each pathology.

In this review, we will discuss the main biomarkers of oxidative stress used in clin-
ical practice and their therapeutic implications in cardiovascular diseases. We will also
highlight the different antioxidant treatments and their effect on the type of biomarker and
cardiovascular risk factors.

2. Biomarkers of Oxidative Stress in Clinical Practice

Reactive oxygen species (ROS) are key cellular components that play an important role
in various physiological conditions, as well as in the development of several diseases [1].
The ROS play a dual role, both beneficial and toxic to the organism. At moderate or
low levels, ROS have beneficial effects and act on various physiological functions like
immune function (i.e., defense against pathogenic microorganisms), in some number
of intracellular pathways, and in redox regulation. Conversely, high concentrations of
ROS induce oxidative stress, a pathological condition characterized by an overload of
free radicals that are not neutralized, have a toxic effect, and modify the integrity of cell
membranes and other structures, such as organic macromolecules [2]. Oxidative stress is
responsible for numerous chronic and degenerative diseases, such as cancer, autoimmune
disorders, rheumatoid arthritis, aging, neurodegenerative and cardiovascular diseases.
Considering the evidence about the association between oxidative stress with a multitude
of human diseases, the measurement of oxidative stress biomarkers plays a pivotal role in
the evaluation of the health status, as well as the development of oxidative stress-mediated
disorders [3]. Many methods have been developed and used to measure the concentration
and nature of biomarkers of oxidative stress (Table 1).

Table 1. Direct and indirect methods to evaluate biomarkers of oxidative stress.

Type of Biomarkers Direct/Indirect Measurement Method of Detection Type of Sample References

DCFH-DA Direct Flow-cytometer Platelets and
leukocytes [3]

DHR123

Direct Flow-cytometer Leukocytes [3]DAF-2-DA

DAF-FM

D-Rooms Direct Flow-cytometer Serum [4,5]

C11-BODIPY581/591 Direct Flow-cytometer
Platelets,

leukocytes
granulocytes

[6]

4-HNE Indirect: lipid oxidation ELISA Urine and plasma [7,8]

MDA
Indirect: lipid oxidation

HPLC
Urine and plasma [9]

TBARS ELISA

F2-IsoPs Indirect: lipid oxidation
Gas-chromatography

Biological fluids [10,11]
ELISA
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Table 1. Cont.

Type of Biomarkers Direct/Indirect Measurement Method of Detection Type of Sample References

DNPH
Indirect: protein damage Colorimetric Biological fluids [12,13]

AOPP

8-OHdG Indirect: DNA damage ELISA Blood and urine [14,15]

SOD Catalase

Indirect: enzymatic antioxidants

Colorimetric

Biological samples [16,17]
Western blots

GPx
Activity assays

GSTs

Endogenous and nutritional
elements (glutathione,

Vitamins A, C, E)
Indirect: enzymatic antioxidants Colorimetric, HPLC,

Gas-chromatography
Plasma/serum and

tissue samples [18,19]

4HNE = 4-hydroxynonenal; 8-OHdG = 8-Oxo-2′-deoxyguanosine; AOPP = Advanced Oxidation Protein Products; d-ROMS = Reactive
Oxygen Metabolites; DCFH-DA = 2′-7′dichlorofluorescin diacetate; DHR123 = Dihydrorhodamine 123; DAF-2 DA = Diaminofluorescein-
2 diacetate; DAF-FM = Diaminofluorescein-FM diacetate; MDA = Malondialdehyde; SOD = Superoxide dismutase; TBARS = Thiobarbituric
acid reactive substance.

Although many biomarkers can be used to determine oxidative stress, most of these
benchmarks are limited in vivo [20,21]. The precise measurement of ROS in vascular cells
and tissues represents a challenge because of their low levels and transient lifetimes [22].
Indeed, when produced within living cells, the short half-life (seconds) of a certain ROS
limits the distance it can diffuse and thereby its radius of action. This means that the direct
reaction of a short-lived ROS like O2

•− in situ is likely restricted to a small sub-cellular
volume surrounding the site of its generation (“local” ROS), whereas ROS with a longer
half-life like H2O2 might be more suited for global signaling [23]. Moreover, the efficient
systems scavenging ROS require that any detection method must be sensitive enough and
must allow in situ measurements in the tissues of interest.

To evaluate ROS production, we can use several probes, such as (1) dihydrochloroflu-
orescein diacetate (DCFH-DA), which is used to detect H2O2, hydroxyl radicals (OH-),
and peroxyl radicals (ROO-); (2) dihydrorhodamine 123, which is another uncharged
and nonfluorescent ROS probe that can passively permeate across membranes; (3) 4,5-
diaminofluorescein diacetate (DAF-2 DA) and 4-amino-5-methylamino-2′, 7′-difluorofluore-
scein diacetate (DAF-FM DA) highlight nitric oxide radicals. The primary limitations of
these techniques include a great reactivity of ROS and the lack of a standardized ap-
proach [24]—therefore measuring biomarkers based on oxidative stress-induced modifica-
tion (such as for protein, lipid, and DNA damage) becomes a relevant issue.

Among these biomarkers, malondialdehyde (MDA) and thiobarbituric acid reactive
substances (TBARS) are commonly used to evaluate lipid peroxidation products [25,26].
As a result, further benchmarks, such as 4-hydroxy-2-nonenal (4-HNE), conjugated dienes
(CD), lipid hydroperoxides (LOOH), and 8-isoprostaglandin F2α (8-iso-PGF2α), produced
by arachidonic acid peroxidation, were introduced to evaluate lipid peroxidation in bi-
ological fluids samples (e.g., urine and plasma) [27]. Moreover, several methods have
been developed to evaluate protein oxidative modification, such as determining advanced
oxidation protein products (AOPP) [28,29]. Besides lipids and proteins, even DNA double
strands undergo chemical modification that can determine genetic damages on the daugh-
ter strands [14,30,31]. Finally, analysis of oxidative stress has been carried out, estimating
levels and activities of enzymatic and non-enzymatic antioxidants in biological samples,
such as plasma, serum, and tissue samples. More specifically, superoxide dismutase (SOD),
catalase, glutathione peroxidase (GPx) and glutathione S-Transferase (GSTs), H2O2 activity
(HBA) are taken into account in the determination of enzymatic antioxidant status [3,32].

Recently, there is attention to the validation of new biomarkers of oxidative stress,
as they have a potential application in clinical practice. According to the World Health
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Organization, a biomarker is “any substance structure or process that can be measured in
the body or its products and influence or predict the incidence of outcome or disease” [33].

Among the biomarkers of oxidative stress used in the clinical practice, we can find:

2.1. Advanced Glycation End Products (AGEs)

AGEs are a class of heterogeneous molecules that are the result of a series of non-
enzymatic reactions (Maillard reaction) between reducing sugars and proteins amino
groups [34]. AGEs are normally present in the organism, but in oxidative stress conditions,
their concentration is higher [35]. When this happens, they interact with a specific receptor
on endothelial cells (EC), called RAGE, and promote changes in EC and pericytes typical
of diabetes complications, for example. AGEs exercise growth inhibitory and toxic actions
on pericytes; RAGE also promotes leukocyte adhesion to EC and monocyte migrations. All
these effects cause inflammation, which can aggravate diabetes vascular complications [36].
Furthermore, elevated levels of AGEs have been associated with numerous conditions,
including aging [37], neurodegenerative diseases [38], obesity, diabetes mellitus, human
immunodeficiency virus (HIV), anemia, and hepatocellular carcinoma [39].

2.2. Oxidized Low-Density Lipoprotein (oxLDL)

The measurement of oxLDL as a biomarker of oxidative stress has its origin in the
oxidative modification hypothesis of atherosclerosis [40]. Many studies demonstrated that
ox-LDL induces inflammatory reactions by activating many types of cells in the vascular
wall, including macrophages, smooth muscle cells, and endothelial cells, which suggests
that they are a strong factor in the progression and formation of the atherosclerotic lesion.
The systemic oxLDL serum levels could represent a biomarker of oxidative stress for early
diagnosis and faster initiation of treatment in CVDs.

2.3. Protein Oxidation Is Advanced Oxidation Protein Products (AOPP)

AOPP levels are a measure of highly oxidized proteins, especially albumin, and its
plasma levels correlate with plasma concentrations of AGE [41]. Furthermore, plasma
levels of AOPP were elevated in a different pathological setting like coronary artery disease
(CAD) [42], and diabetes [43].

2.4. Lipid Oxidation Products

Polyunsaturated fatty acids (PUFAs), in particular linoleic and arachidonic acid (AA),
are the main targets of lipid peroxidation. The reaction of ROS with these molecules
initiates the autocatalytic reaction of lipid peroxidation, during secondary products are
formed, such as Isoprostanes (IsoPs), malondialdehyde (MDA), and trans-4-hydroxy-2-
nonenal (4-HNE) [44]. IsoPs, and in particular F2-IsoPs, are considered one of the best
oxidative stress biomarkers [45]. High levels of F2-IsoP are associated with CVD, and
particularly correlated with the degree of diseases and predict the outcome [46]. MDA
and HNE are extensively utilized biomarkers, used in both in vivo and in vitro studies to
predict the onset of many diseases, such as diabetes, hypertension, cancer, heart failure, and
atherosclerosis [47]. Frequently, MDA levels were measured as thiobarbituric acid reactive
substances (TBARS). The TBARS assay has been applied as an indicator of oxidative
stress in association with the measurement of MDA in several cardiovascular disease
models. In fact, serum levels of TBARS were elevated in the serum of cigarette smokers [48]
and in patients with documented CAD [49]. Thus, levels of TBARS could predict major
cardiovascular events and carotid atherosclerotic plaque progression [50].

2.5. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)

8-OHdG derived from a modification due hydroxyl radical attack of deoxyguanosine
residues. It has been commonly chosen as a biomarker most representative product of
oxidative modifications of DNA, and it is the best non-invasive biomarker of oxidative
damage to DNA. High levels of 8-OHdG in blood and urine are significantly associated



Antioxidants 2021, 10, 146 5 of 38

with both coronary artery disease and other types of atherosclerotic processes, such as
stroke, peripheral artery disease, and carotid atherosclerosis [51,52].

2.6. Hydrogen Peroxide (H2O2)

H2O2 is the main redox metabolite with important physiological roles in cellular
processes like membrane signal transduction, gene expression, cell differentiation, insulin
metabolism, cell shape determination, and growth factor-induced signaling cascades. How-
ever, when produced in excess, cellular H2O2 plays an important role in the atherothrom-
botic process, as it can induce the formation of oxidized low-density lipoproteins (oxLDL)
and to stimulate platelet activation [32].

2.7. NOX2 Activity (sNOX2-dp)

The production of H2O2 is closely associated with the activity of the enzyme NADPH
oxidase, the body’s major producer of ROS. As previously demonstrated, NADPH oxidase,
and in particular, its isoform NADPH oxidase 2 (NOX2), after stimulation, produces ROS
and releases a small peptide, defined as soluble NOX2-derived peptide (sNOX2-dp) [53].
NOX2-derived peptide (sNOX2-dp) is detected by ELISA method [54,55]. Specifically, the
higher sNOX2dp levels are associated with a significantly increased cumulative incidence
of cardiovascular events and deaths in patients with atrial fibrillation [56].

The large diversity in biomarkers of oxidative stress in different diseases and patho-
logical conditions makes it essential to choose the best biomarkers of oxidative stress in
each specific disease. Particular attention should be paid to biomarkers that evaluate the
activity of ROS-generating enzymes, such as NADPH oxidase. Experimental and clinical
studies have shown that NOX2 activity, an isoform of NADPH oxidase, is implicated in
the main mechanisms of cardiovascular pathology, which is clotting system and platelet
activation; therefore, NOX2 inhibition may reduce thrombosis-related vascular disease.
It has been demonstrated that NOX2 activity is significantly associated with platelet ac-
tivation in vivo. In particular, platelet activation was reduced in subjects with different
low rates of NOX2 activity, namely, X-linked chronic granulomatous disease (X-CGD, low
rate) patients and X-CGD carriers (medium rate) compared to obese patients (high rate
of NOX2 activity). These results suggest that upstream inhibition of oxidative stress by
targeting precise cellular oxidant pathways, such as NOX2 or other pro-oxidant enzymatic
pathways, may represent an alternative option not only to inhibit platelet activation, but
also to retard atherosclerotic progression.

3. Antioxidants Supplementations: Which Are the Most Effective in Clinical Practice?

The term “antioxidants” defines chemical substances that slow down the damage
caused by oxygen to organisms. Antioxidants are one of the mechanisms that the body
uses to fight against oxidative stress with the role to balance the negative effects of oxidant
agents and protect cells from oxidative damage [2]. We can identify two macro groups of
antioxidants: Those who are produced by the body itself (i.e., endogenous antioxidants)
and those that derive from dietary sources (i.e., exogenous antioxidants). Endogenous
antioxidants can be divided into two classes: Enzymatic and non-enzymatic antioxidants.
Some enzymatic antioxidants are catalase (CAT) that degrades hydrogen peroxide (H2O2)
to water and oxygen, glutathione reductase (GRx), glutathione peroxidase (GPx) that
catalyzes the reduction of H2O2 by the reduced form of glutathione (GSH), creating a
glutathione bridge with another glutathione molecule (GSSG), and superoxide dismutase
(SOD) that catalyzes the dismutation of superoxide anion radical (O2

−) into H2O2 and
oxygen (O2) [57].

The non-enzymatic antioxidants include nutrients that are not produced by the body,
and thus need, to be included through the diet. Nutrient antioxidants are found in fruits,
vegetables, and fish, and are extremely important because each one of them has a role
in oxidative stress neutralization [58,59]. According to their role in reducing oxidative
stress-mediated cardiovascular risk, these exogenous molecules can represent a useful
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tool in clinical practice [60]. Specifically, natural extracts, such as polyphenols, exert an
antioxidant activity that includes suppression of ROS formation by either inhibition of
enzymes involved in their production, like NOX2 [61], scavenging of ROS [62], or up-
regulation or protection of antioxidant defenses [63].

The most widely used antioxidants include:

3.1. Vitamins E and C

Vitamin E is a strong antioxidant, is dissoluble in fat, and presents eight stereoiso-
mers. Just one, α-tocopherol, is bioactive in humans. The main function of vitamin E
is to protect the body against lipid peroxidation. It has been shown that high-dosages
(≥400 IU/day or more for at least 1 year) can be dangerous and can increase the risk of
death. Moreover, a dose-response analysis showed a statistically significant relationship
between vitamin E dosage and all-cause mortality, with an increased risk of dosages greater
than 150 IU/day [64]. The effect of Vitamin E supplementation in the prevention of cardio-
vascular diseases is controversial. The analyses of sixteen randomized controlled trials of
vitamin E treatment showed that, compared to controls, vitamin E given alone significantly
decreased myocardial infarction (R.R.: 0.82; 95% C.I., 0.70–0.96; p = 0.01) [65]. Supplements
containing vitamin E significantly reduced cardiovascular mortality risk (RR: 0.88; 95% CI:
0.80, 0.96) [66]. However, the analyses of 15 trials reporting data on 188,209 participants
showed that antioxidant vitamin supplementation (vitamin E, β-carotene, and vitamin C)
has no effect on the incidence of major cardiovascular events, myocardial infarction, stroke,
total death, and cardiac death [67].

Vitamin C, or ascorbic acid, is a water-soluble antioxidant with a fundamental role
in quenching various ROS and reactive nitrogen species (RNS). The antioxidant activity
of vitamin C supplementation resulted in positive effects when administrated in concen-
trations that ranged from 500 to 2.000 mg/day. In the case of high consumption, vitamin
C and its metabolites, such as dehydroascorbic acid, 2,3-diketogulonic acid, and oxalic
acid, are excreted via the kidneys in humans. Vitamin C is generally non-toxic, but at high
doses (2–6 g/day) it can cause gastrointestinal disturbances or diarrhea. However, these
side effects are generally not serious and can be easily reversed by reducing its intake [68].
Several lines of evidence suggest that Vitamin C may be associated with a favorable im-
pact on the risk of cardiovascular disease. Vitamin C dose greater than 500 mg/day was
associated with beneficial effects on endothelial function with stronger effects in those at
higher cardiovascular disease risk, such as in atherosclerotic, diabetic, and heart failure
patients [69].

The analyses of thirteen trials involving 1956 patients after cardiac surgery showed that
vitamin C significantly reduced the incidence of postoperative atrial fibrillation (RR: 0.68,
95% CI: 0.54, 0.87, p = 0.002) and the risk of adverse events (RR: 0.45, 95% CI: 0.21, 0.96,
p = 0.039) [70].

Finally, the effects of Vitamins E and C are strictly correlated. Indeed, in patients
with coronary artery disease, supplementation with 2 g of vitamin C with 600 mg of
vitamin E orally significantly enhanced endothelium-dependent vasodilatation in the
radial circulation [71].

3.2. Omega-3 and Omega-6 Fatty Acids

These kinds of fatty acids, characterized by a long aliphatic chain, are essential for
human health. They cannot be synthesized, so they must be taken through food. Omega-
3 fatty acids are divided into three different types: Eicosapentaenoic acid (EPA), docosa-
hexaenoic acid (DHA), and alpha-linolenic acid (ALA). The EPA and DHA are present
in fish and can be used by the body without been changed. ALA, which is present in
large quantities in nuts, must be converted to EPA and DHA [72]. Omega-3 fatty acids are
involved as an anti-inflammatory countering the process of chronic diseases. Although
the ideal amount to take is not firmly established, evidence from prospective secondary
prevention studies suggests that intakes of EPA + DHA ranging from 0.5 to 1.8 g per day
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(either as fatty fish or supplements) significantly reduce the number of deaths from heart
disease. Intervention trials with omega-3 fatty acid supplements have reported no serious
adverse reactions at the doses administered. The more common adverse effects of fish
oil preparations, particularly in higher dosages, include nausea, fishy belching, and loose
stools. Moreover, the administration at high doses has been shown to prolong bleeding
time [73].

There are much clinical evidence supporting the beneficial effects of EPA and DHA
supplementation on cardiovascular health. Treatment of patients with acute myocardial
infarction with four 1g capsules per day containing ethyl esters of EPA (465 mg) and DHA
(375 mg) was associated with a reduction of adverse left ventricular remodeling, non-infarct
myocardial fibrosis, and serum biomarkers of systemic inflammation [74]. In patients with
acute coronary syndrome assigned to receive 1800 mg/day of EPA after PCI, death from
a cardiovascular cause were significantly reduced [75]. In adults at high cardiovascular
risk, omega-3 fatty acids (1800 mg/day for 12 weeks) administration improved arterial
stiffness and endothelial function [76]. The supplementation with omega-3 ethyl-ester
(1.86 g of EPA and 1.5 g of DHA daily) to subjects with stable coronary artery disease
attenuates the fibrous plaque progression compared to placebo [77]. The administration
of 2 g twice daily of icosapent ethyl, which is a highly purified and stable EPA ethyl
ester, to patients with established cardiovascular disease or with diabetes and other risk
factors, significantly reduced the risk of ischemic events, including cardiovascular death
compared to placebo [78]. Moreover, in statin-treated patients at increased cardiovascular
risk, icosapent ethyl 4 g/day significantly reduced triglycerides, total cholesterol, oxidized
LDL, hsCRP, and other atherogenic and inflammatory parameters [79]. The analyses of
fourteen randomized controlled trial (71,899 subjects) showed an 8.0% lower risk for cardiac
death in long-chain omega-3 polyunsaturated fatty acids arms versus controls [80].

For ALA, a total intake of 1.5 to 3 g per day seems beneficial, although definitive data
from prospective, randomized clinical trials are still needed [81].

3.3. Polyphenols

Polyphenols are natural compounds synthesized exclusively by plants with chemical
features related to phenolic substances. Epidemiological studies suggest that diets rich in
polyphenols may be associated with reduced incidence of cardiovascular disorders, due to
their antithrombotic, anti-inflammatory, and anti-aggregative properties [82]. Polyphenols
can be simply classified into flavonoids and non-flavonoids.

3.4. Non-Flavonoids

Non-flavonoids include phenolic acids, stilbenes, and lignans. Among non-flavonoids,
resveratrol is a stilbenoid that exhibits a plethora of therapeutic benefits, including anti-
inflammatory and antioxidant properties, anti-platelet, anti-hyperlipidemic, immuno-
modulator, cardioprotective, vasorelaxant, and neuroprotective effects [83]. It has been
shown that doses of resveratrol lower than 0.5 g per person may be sufficient to decrease
blood glucose levels, improve insulin action, and generate cardioprotective effects and
other favorable effects [84]. A review of the research on resveratrol in the last 10 years
showed that a repeated and moderate administration of resveratrol is better than the
administration of a single, higher dose. A safe and efficient dose is 1 g or more per day;
however, resveratrol intake is safe at a dose of up to 5 g [85].

3.5. Flavonoids

Flavonoids, a family of polyphenolic compounds, are potent antioxidants present
in most plants and are classified into seven classes. They can be divided into several
subgroups corresponding to different classes of plants, which have multiple effects on
the human body [86]. There are thousands of flavonoids that can be found in plants in
different amounts and combinations. At this time, the totality of evidence suggests long-
term consumption of flavonoid-rich foods may be associated with a lower risk of fatal and
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non-fatal ischemic heart disease (IHD), cerebrovascular disease, and total CVD [87]. The
toxicity of flavonoids is very low. However, as a precaution, doses less than 1 mg per adult
per day have been recommended for humans [88]. At higher doses, flavonoids may act
as mutagens, pro-oxidants that generate free radicals, and as inhibitors of key enzymes
involved in hormone metabolism [89].

3.6. Carotenoids

β-carotene is a member of the carotenoids, a family of provitamins that can be con-
verted into vitamin A and are naturally found in abundance in vegetables and fruits.
Carotenoids are strong antioxidants as they can scavenge the free oxygen radicals from the
body. Moreover, carotenoids with oxygen in the structure like fucoxanthin and astaxanthin
have proved to suppress the expression of cytokines IL-6, TNF-α, and IL-1β and act like pro
and anti-inflammatory compounds [90]. Several epidemiological reports have shown a cor-
relation between elevated dietary carotenoid intake and the prevention of CVD [91]. A safer
profile for non-provitamin A carotenoids (up to 20 mg/day for lutein and 75 mg/day for
lycopene) and 2–4 mg/day β-carotene has been suggested [92]. However, for β-carotene,
serious adverse effects have been reported in large-scale prospective randomized trials:
Four years of supplementation with 20 to 30 mg β-carotene per day was associated with
increased risk of lung cancer and cardiovascular disease among smokers and workers
exposed to asbestos [93].

3.7. Selenium

Selenium is an essential dietary mineral that can be found in very low concentrations
in seafood, meat, soil, some vegetables, and liver. Selenium is a cofactor of enzymes,
such as glutathione peroxidase (GSH-Px), which is a potent antioxidant enzyme. The
recommended dietary allowance for selenium that is estimated to be sufficient to meet
the nutritional needs of nearly all healthy adults is 55 µg/day. Selenium toxicity can
occur with acute or chronic ingestion of excess selenium. An excess of selenium in the
diet (>400 µg/day) will result in selenosis, i.e., poisoning by selenium. Symptoms of
selenium toxicity include nausea, vomiting, nail discoloration, brittleness, hair loss, fatigue,
irritability [94].

The cardioprotective effect of selenium is still controversial, probably due to the
limited trial evidence that is available to date. In observational studies, a 50% increase in
selenium concentrations was associated with a 24% reduction in coronary heart disease
risk [95]. In a clinical study, patients with congestive heart failure, 200 µg/day of selenium
for 12 weeks had beneficial effects on insulin metabolism, and markers of cardio-metabolic
risk [96]. However, the meta-analyses of twelve trials that included 19,715 participants
randomized to selenium supplementation showed that were no statistically significant
effects of selenium on all-cause mortality, CVD mortality, or all CVD events (fatal and
non-fatal) [97].

3.8. Lipoic Acid

Lipoic acid is an organosulfur component produced from plants, animals, and humans.
It has a dual role in the body as it is an antioxidant and a cofactor for enzymes involved
in the 2-oxoglutarate dehydrogenase complex. It is synthesized by the human at a low
number, but the quantities produced are not enough to fulfill the energy requirement of
the cell. Thus, it is mostly obtained from the diet, especially from meat, vegetables, and
fruits. The lipoic acid in humans, supplemented at the therapeutic range from 200 to
1800 mg/day, has numerous clinically valuable properties. For example, studies supported
the potential use of lipoic acid in diabetes, as the major risk factor for developing several
human diseases, including atherosclerosis, hypertension, heart failure, and myocardial
infarction [98].



Antioxidants 2021, 10, 146 9 of 38

3.9. Coenzyme Q10

Coenzyme Q10 a naturally occurring, lipid-soluble, vitamin-like substance involved
in the mitochondrial electron transport chain, and it is, thus, essential to produce energy
in the body. It is essentially present in the heart and in the liver, and it can be assimilated
through meat, some fruit and vegetable, and soybean [99]. The risk assessment for CoQ10,
based on various clinical trial data, indicates that the safety level is 1200 mg/day/person
suggesting that CoQ10 is highly safe for use as a dietary supplement [100]. Recent data
indicate that Coenzyme Q10 has an impact on the expression of many genes involved in
metabolism, cellular transport, transcription control, and cell signaling, making CoQ10 a
potent gene regulator. Therefore, coenzyme Q10 supplementation is useful in diseases
associated with CoQ10 deficiency, which includes diabetes mellitus, mitochondrial dis-
eases, and cardiovascular disease [101]. Patients with moderate to severe heart failure
randomized to CoQ10 (300 mg daily) in addition to standard therapy, after two years
showed reduced major adverse cardiovascular events, all-cause mortality, cardiovascular
mortality, hospitalization, and improvement of symptoms [102]. The daily dosage of CoQ10
supplement ranged from 60 to 300 mg also resulted in a net increase in ejection fraction of
3.67% (95% CI: 1.60%, 5.74%) in patients with congestive heart failure [103]. The analyses of
eight trials (267 participants) showed that taking CoQ10 by patients with CAD significantly
decreased total-cholesterol and increased HDL-cholesterol levels [104].

The choice of the type of antioxidant supplementation that best affects cardiovascular
disease is still a challenge. The results of several antioxidant supplementations in different
cardiovascular diseases are disparately ranging from possibly beneficial to many futile
to some harmful effects. The different results may be due to several reasons, including
the different concentrations used—also taking into account that high concentrations have
negative effects. Moreover, for some supplements, there are no clinical data or data relating
to small trials, so it is of importance investigating patient-relevant outcomes.

4. Biomarkers of Oxidative Stress in Patients with Cardiovascular Risk Factors

Cardiovascular Disease (CVD) is worldwide known to be a major cause of death
and comorbidity. Atherosclerosis is the key pathophysiological mechanism underlying
the development of CVD [105]. In particular, atherosclerosis, a chronic inflammation that
affects arteries, may remain clinically undetected for many years before an acute event, such
as Ischemic Heart Disease (IHD) or a stroke and Peripheral Vascular Disease (PVD) [106].

CVDs are caused by multiple factors that can be divided into un-modifiable and
modifiable risk factors. Age, gender, family history, and ethnicity are all un-modifiable
because the individual can do nothing to avoid these risk factors.

Though the characteristics of un-modifiable risk are greatly suitable for risk stratifica-
tion, the modifiable factors have the advantage of being a possible target for pharmaceu-
tical intervention to lower cardiovascular risks. Among the main modifiable traditional
cardiovascular risk factors, there are hypertension, diabetes mellitus, obesity, hypercholes-
terolemia, and smoking (Figure 1). Furthermore, these cardiovascular risk factors are
associated with increased production of oxidative stress (Figure 1). Clinical human studies
have supported the association between oxidative stress and cardiovascular events, and
different types of molecular biomarkers provide a powerful approach to the understanding
of cardiovascular risk factors with consequent applications in epidemiology and clini-
cal studies and in the prevention, diagnosis, and management of cardiovascular disease
(Table 2).
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Figure 1. Several cardiovascular risk factors, such as hypertension, obesity, hypercholesterolemia, diabetes, and smoking, 
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Figure 1. Several cardiovascular risk factors, such as hypertension, obesity, hypercholesterolemia, diabetes, and smoking,
are associated with enhanced oxidative stress, which favors the progression of cardiovascular disease.

Table 2. Biomarkers of oxidative stress in patients with cardiovascular risk factors.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

Hypertension

N 86

Plasma, Erythrocytes

TBARS

[107]
Children PH

oxLDL

GPX and GSH activity

N 100
Serum

SOD

[108]

CAT

GSH-Px

MDA

8-iso-PGF2α
Hypertension

N 100
Fresh whole blood TBARS [109]

Pregnant women with hypertension
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Table 2. Cont.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

N 49

Serum

GSH

[110]

GPx

SOD

Plasma CAT

Erythrocytes TBARS
Hypertension

N 402
Plasma

SOD

[111]MDA

Hypertension 4-HNE

N 32
Tracheal aspirate TBARS [112]

Pregnant with hypertension

N 150
Serum

8-epi-PGF2α

[113]TOAC

Pregnant with hypertension FRAP

N 91
Plasma

GPx activity

[114]

TAC

oxLDL

8-epi-PGF2α
Hypertension

N 30
Serum

MDA
[115]

Hypertension TAC

N 25
Plasma

MDA
[116]

Hypertension TAC

N 12
Plasma

MDA

[117]
GSH

Vitamin A and Vitamin E
Hypertension

N 897
Urine 8-epi-PGF2α [118]

Hypertension

N 54
Serum

TOS/TOC

[119]TAS/TAC

Hypertension oxLDL

Diabetes

N 3766
Plasma 8-oxo-2′-dG [120]

T2DM

N 60
Plasma

TAC

[121]GSH

GDM MDA
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Table 2. Cont.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

N 2339 Plasma
F2-isoprostanes

[122]Carotenoid

T2D Serum Tocopherol

N 1381
Urine 8-oxoGuo [123]

T2D

N 275 Red cell hemolysate

TBARS

[124]
GSH

MDA

T2D GSSG

N 95
Plasma

MDA
oxLDL [125]

T2D

N 79
Urine 8-iso-PGF2α [126]

T2D

N 35
Serum oxLDL [127]

IGF

N 121 Urine 8-iso-PGF2α [128]
T2DM Serum sNOX2 dp

N 19
Serum

TOS/TOC

[119]TAS/TAC

Diabetes oxLDL

N 50 Urine
8-iso-PGF2α

[129]sNOX2 dp

T2DM Platelets ROS

Hypercholesterolemia

N 131
Serum

oxLDL

[130]MDA

FH 8-iso-PGF2α

N 43
Serum

TBARS

[131]oxLDL

LDL > 160 mg/dL PON1

N 24
Plasma

ORAC

[132]FRAP

Hypercholesterolemia MDA

N 27
Plasma

ORAC

[133]FRAP

Hypercholesterolemia MDA

N 48
Serum

TBARS

[134]H2O2

Hypercholesterolemia oxLDL
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Table 2. Cont.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

N 61 Plasma SOD
[135]

FH Urine 8-iso-PGF2α

N 39 Serum

ROS

[136]
GSH

SOD

Hypercholesterolemia Plasma CAT

N 125
Serum

sNOX2-dp
[137]

Hypercholesterolemia oxLDL

N 40 Serum
8-iso-PGF2α

[138]sNOX2-dp

Hypercholesterolemia Urine oxLDL

N 30 Serum sNOX2-dp
[139]

Hypercholesterolemia Urine 8-iso-PGF2α

N 153
Plasma

8-iso-PGF2α
[140]

Hypercholesterolemia oxLDL

Obesity

N 10 Plasma

TBARS

[141]

MDA

TAC

CAT

Obese children
Erythrocytes

8-iso-PGF2α
Urine

N 88
Urine

8-iso-PGF2α
[142]

Obese children 8-OHdG

N 30 Plasma

GSH

[143]
GPx

SOD

Obese Adult Erythrocyte lysate TAS

N 20 Plasma FRAP
[144]

Obese Urine Polyphenol content

N 160
Plasma 4-HNE [145]

Obese

N 113
Urine

15-keto-dihydro-PGF2α
[146]

Overweight 8-iso-PGF2α

N 65
Serum

8-OHdG
[147]

Obese TAS

N 20
Plasma

MDA

[148]
SOD

GPx

Overweight and obese adolescents TAC

N 75
Serum

TAC
[149]

Obese ROS
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Table 2. Cont.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

N not applicable
Urine

TBARS
[150]

Obese 8-iso-PGF2α

N 40 Salivary

SOD and CAT

[151]

TAC and TOS

GSH

AGE

MDA

8-OHdG and 4-HNE
Overweight and obese adolescents Plasma

N 62 Serum

TOC and TAC

[152]OSI

Obese oxLDL

N 27
Serum

TAC

[153]TOS

Obese OSI

N 20 Serum
8-iso-PGF2α

[138]sNOX2-dp

Hypercholesterolemia Urine oxLDL

N 35
Urine 8-iso-PGF2α [154]

Obese

Smoke

N 15
Urine 8-iso-PGF2α [155]

Smokers

N 23
Plasma oxLDL [156]

Habitual e-cigarette users

N 33
Serum

LOOH

[157]

TAS

TOS

OSI

PON
Smokers

N 3585
Urine 8-iso-PGF2α [158]

Smokers

N 20
Serum

sNOX2-dp

[159]
8-iso-PGF2α

Vitamin E
Smokers

N 20 Serum
sNOX2-dp

[61]8-iso-PGF2α

Smokers Platelets ROS
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Table 2. Cont.

Subjects and Healthy Status Type of Sampling Type of Biomarkers References

N 20
Serum

sNOX2-dp

[160]8-iso-PGF2α

Smokers Vitamin E

N 20
Serum

sNOX2-dp

[161]

8-iso-PGF2α

H2O2

HBA

Vitamin E
Smokers

N 25
Serum

TOS/TOC

[119]TAS/TAC

Smokers oxLDL

4-HNE = 4-hydroxynonenal; 8-iso-PGF2α = 8-iso-prostaglandin F2α; 8-oxoGuo = 8-oxo-7, 8-dihydroguanosine; 8-oxo-2′-dG = 8-Oxo-2′-
deoxyguanosine; CAT = catalase; FH = Familial hypercholesterolemia; FRAP = Ferric reducing ability of plasma; GDM = Gestational
diabetes mellitus; GPx = glutathione peroxides; GSH = reduced glutathione; HBA = H2O2 breakdown activity; IFG = Impaired fasting
glucose; LOOH = lipid hydroperoxide; MDA = malondialdehyde; NO = nitric oxide; ORAC = Oxygen radical absorbance capacity;
OSI = oxidative stress index; ox-LDL = oxidized LDL cholesterol; PAH = pulmonary artery hypertension; PH = primary hypertension;
PON = paraoxonase; SOD = superoxide dismutase; T2D= type 2 diabetes (T2D); T2DM = Type 2 diabetes mellitus; TAC = total antioxidant
capacity; TAOC = Total antioxidant capacity; TAS = total antioxidant status; TBARS = Thiobarbituric acid reactive substances; TOS = total
oxidant status.

4.1. Hypertension

Many epidemiological studies, like the Framingham study, report that hypertension
is directly associated with cardiovascular risk and systolic and diastolic blood pressure
is associated with cardiovascular outcomes. Hypertension is one of the most common
cardiovascular risk factors, and oxidative stress is important in the molecular mechanisms
associated with it [162]. Oxidative stress was observed among hypertensive patients
as depicted by the high plasma levels of oxLDL [107,114,119], and reduced enzymatic
antioxidant activity, which is determined by glutathione peroxides (GPx) [110,114], total
antioxidant capacity (TAOC) [113], ferric reducing ability of plasma (FRAP) [113], total
antioxidant capacity (TAC) [115,119]. There are many studies focusing on the comparison of
oxidative stress biomarkers in hypertensive patients. Indeed, the pathology of hypertension
is characterized by decreased levels of GSH, GPx, and SOD-1, and higher levels of TBARS
and MDA [107,109,110,112]. The alteration of these parameters might indicate a condition
of more severe oxidative stress compared to control subjects. Moreover, increased MDA
levels and reduced SOD activities might be considered as prognostic markers of developing
organ damage in patients with hypertension [108]. Moreover, high concentrations of F2-
isoprostanes are associated with hypertension and are used to evaluate oxidative stress
in this disease [108,113,114]. More studies are warranted to explore possible associations
between oxidative damage, antioxidant status and hypertension (Table 2).

4.2. Diabetes

Some studies show that diabetes, a metabolic disorder characterized by a high blood
sugar level over a prolonged period, is correlated with oxidative stress and with a 2- to
3-fold increase in the likelihood of developing CVD [163]. Focusing on concentrations of
oxidative biomarkers, such as F-2 isoprostanes and ox-LDL in plasma samples, it has been
demonstrated that they were positively associated with T2DM [122]. In the same way, in
urine samples of patients with cardiovascular risk, oxidative stress biomarkers, such as
F2-IsoP [118], increased with the increase of CVD risk. Case-control studies suggest that, in
patients with T2MD, serum concentrations of oxidative stress biomarkers, such as MDA,
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GSSG were increased in T2MD patients, conversely, GSH levels were lower compared to
controls [124]. Moreover, in urine samples of diabetic patients with the acute coronary
syndrome (ACS), higher 8-iso-prostaglandin F2α (8-iso-PGF2α) levels were correlated
with increased necrotic plaque components [126]. Moreover, Anderson et al. measured
MDA concentration and TAC levels in plasma samples of women with gestational diabetes
(GDM), and both parameters resulted higher and lower, respectively [121]. Finally, it was
demonstrated that NOX2 can contribute to the formation of 8-iso-PGF2α in both platelets
and urine [128]. These biomarkers were found higher in diabetic versus non-diabetic
patients [129]. This highlights the hypothesis that NOX2 is crucial for the ROS overpro-
duction observed in T2DM [164], and suggests a role for NOX2 in platelet isoprostanes
overproduction in T2DM (Table 2).

4.3. Hypercholesterolemia

Hypercholesterolemia is implicated in complications and increases in cardiovascu-
lar risk. Indeed, there is a direct and positive correlation between total cholesterol and
low-density lipoprotein cholesterol (LDL-C) plasmatic levels and CVD risk. Many epi-
demiological studies highlight total cholesterol could be a useful marker for predicting
CVD [162]. The importance of the relationship between LDL-C level and CVD risk is
confirmed by the efficacy of LDL-C lowering drug therapies that are able to reduce event
and mortality CVD related [165]. Additionally, hypercholesterolemia is a condition closely
correlated with oxidative stress condition. A cross-sectional, observational study involv-
ing 132 patients with familial hypercholesterolemia (FH) reported enhanced oxidative
stress in FH subjects compared to normolipidemic subjects. Indeed, according to the
reference range (>1.24 g/L) for MDA based on the International Federation of Clinical
Chemists (IFCC), MDA concentration is greatly elevated in FH, and this suggests en-
hanced oxidative stress status [130]. High levels of plasma and serum MDA were also
reported by other researchers [132,133]. MDA is a reflection of lipid peroxidation, and
several studies have shown these mechanisms in hypercholesterolemia by measurement of
oxLDL [130,131,134,138,140]. HC showed an increased platelet activation with consequent
thrombus formation [166]. In particular, Barale et al. demonstrated that, in FH, platelet
reactivity is correlated with biomarkers of redox function, including SOD and the in vivo
marker of oxidative stress urinary 8-iso-prostaglandin F2α [167]. In addition, many authors
observed, in FH in parallel to the high levels of LDLc, reduced GSH, SOD, and CAT levels,
and increased ROS production [130,135,136] (Table 2).

4.4. Obesity

Obesity is characterized by an increase in body weight and represents a social problem
worldwide. Obesity is associated with various comorbidities, including CVD, and it is also
characterized by chronic low-grade inflammation associated with increased oxidative stress.
Oxidative stress damage leads to the development of obesity-related complications [168].
The combination of excess production of ROS and inefficient antioxidant capacity generates
oxidative stress, which represents one of the main mechanisms underlying the development
of obesity [141]. Many studies demonstrated enhancement of the antioxidant barrier (SOD,
CAT, GPx, and TAC [141,148,149,151,153]) with a simultaneous decrease of glutathione.
The concentration of the products of oxidative damage to proteins (AGE) [151], lipids
(MDA) [141,148,151], and DNA (8-OHdG) [142,147,151], as well as total oxidative status,
were significantly higher in both saliva and plasma of overweight and obese subjects.
The measure of some markers like catalase and TAC could be used to assess the central
antioxidant status of overweight and obese [151]. In hypercholesterolemic subjects, the
higher level of oxidative stress could be due to a higher concentration of SOD [143,148,151].
Finally, Loffredo et al. analyzed the interplay among oxidative stress, NOX2, the catalytic
core of NADPH oxidase in children with obesity and/or hypercholesterolemia. The results
showed that oxLDL, urinary excretion of 8-iso-PGF2α and NOX2 activity, as assessed by
serum levels of sNOX2-dp, were higher in obese children than in control groups, suggesting
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that NOX2-generating oxidative stress may have a pathogenic role in the functional changes
in obesity and hypercholesterolemia [138] (Table2).

4.5. Smoking

Smoking, according to the statistics, has devastating consequences on individuals and
society. It is estimated that by 2025, there will be 1.6 billion smokers in the world, and
10 million people a year will die from smoking [169,170]. Smoking increases the overall
risk of CVD through different mechanisms, such as endothelial dysfunction, inflammation
leading to atherosclerosis, dyslipidemia, and oxygen demand-supply mismatch in the
myocardium [171,172]. In addition, cigarette smoke can induce the overproduction of
ROS by many of the cellular enzyme systems. Thus, the induction of oxidative stress,
exacerbated by cigarette smoke, decreases protection due to antioxidants systems [173].

There is large evidence linking cigarette smoke with the induction of oxidative stress
and the onset and progression of major smoking-related diseases, such as cardiovascular
disease, cancer, and chronic obstructive pulmonary disease (COPD) [174]. The urinary
metabolite 8-iso-PGF2α is an accepted biomarker of oxidative damage. In fact, many
studies showed that in adult smokers, levels of 8-epiPGF2α were significantly higher than
non-smokers [155,158,159]. Moreover, compared with healthy subjects, smokers showed
enhanced levels of oxidative stress, measured as ROS production, NOX2 activation, and
8-iso-PGF2α formation [61,160,161].

Furthermore, some studies analyzed the antioxidant systems smoking-related by the
analysis of oxidative stress biomarkers, including lipid hydroperoxide (LOOH), total an-
tioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), paraoxonase
(PON). In this regard, young smokers diagnosed with acute myocardial infarction, had
significantly higher OSI and TOS levels and lower TAS and LOOH levels. Moreover, CAD
severity correlated positively with OSI and TOS levels, suggesting that high levels of OSI
and TOS could be considered as indicators of disease severity and heavy smoking-related
vascular damage in early-onset CAD [119,157]. Finally, Frati et al. showed that smokers had
an increase in oxidative stress markers and a worsening of antioxidant systems compared
to non-smoker [161] (Table2).

5. Antioxidant Supplementation in Patients with Cardiovascular Risk Factors

As described in the previous paragraph, oxidative stress characterizes several car-
diovascular patients, such as those with diabetes, obesity, hypercholesterolemia, and
hypertension, but also smokers. In the following chapter, the role of the supplementation
with antioxidants, to counteract oxidative stress and correlated damages, will be discussed.
In particular, we reviewed in human randomized clinical trials published over the past
10 years, the effect of micronutrient supplementation (Table 3).
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Table 3. Main characteristics and main results of supplementation studies with antioxidants in cardiovascular risk factors.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

Hypertension

Vitamin C, Vitamin E
Vs

Placebo
2 g vitamin C and 800IU vitamin E 39 subjects

Hypertension
Double-blind,

placebo-controlled study

Lipid hydroperoxides ↓
Methionine-induced

homocysteinemia EDD↔
[175]

Vitamin C, Vitamin E
Vs

Placebo
1 g/day Vitamin C + 400 IU/day Vitamin E 120 subjects

Hypertension

Double-blind, randomized,
placebo-controlled study

8 weeks

8-iso-PGF2α ↓ Antioxidant
capacity ↑

(Na, K)-ATPase ↑
[176]

(-)-epicatechin 100 mg/day 37
Pre-hypertension

Randomized, controlled study
4 weeks

MGO↔
Advanced glycation end

products↔
[177]

Quercetin 3-glucoside 160 mg/day 37
Pre-hypertension

Randomized, controlled study
4 weeks

MGO ↓
Advanced glycation end

products↔
[177]

Epicatechin
Vs

Placebo
100 mg epicatechin

60 (26 men and 34 female)
Borderline or mild

hypertension

Repeated-dose, double-blind,
placebo-controlled, crossover

study
4 weeks

FMD ↑ [178]

Coenzyme Q10
Vs

Placebo
100 mg/day 60

Mildly hypertension
Randomized, double-blind,

placebo-controlled clinical trial

Adiponectin ↑
hs-CRP ↓

IL6 ↓
[179]

Coenzyme Q10
Vs

Placebo
100 mg twice daily

30
Hypertension and metabolic

syndrome

Randomized, double-blind,
placebo-controlled crossover

trial
12 weeks

Blood pressure↔ [180]

Diabetes

Vitamin C and vitamin E
100 IU of vitamin E, 250 mg of vitamin C or
200 IU of vitamin E, 500 mg of vitamin C or

300 IU of vitamin E, 750 mg of vitamin C

9
T1DM children and

adolescents

Open-label antioxidant
supplementation 6 weeks

TAOC↔
Endothelial function↔ [181]
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Table 3. Cont.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

Vitamin C and vitamin E
Vs

Placebo

500 mg of vitamin C twice daily
400 mg of vitamin E twice daily

500 mg Vitamin C plus 400 mg Vitamin E

40
T2DM

Single-blinded randomized
controlled clinical trial 90 days

Fasting blood sugar ↓
Lipid profile ↓
HOMA-IR ↓

GSH ↑
MDA↔

[182]

Vitamin E
Vs

Placebo
804 mg/day 20 subjects with IGT or T2DM Randomized placebo-controlled

crossover design 4 weeks

Oxyphytosterol↔
oxycholesterol↔

MDA↔
GSH/GSSG↔

uric acid↔

[183]

Vitamin E
Vs

Placebo
400 IU/day 83

T2DM
Double-blind, randomized,

controlled clinical trial

Fasting blood sugar ↓
Insulin ↓

Insulin resistance ↓
Paraoxonase-1 activity ↑

TAS ↑
MDA↔
NOx ↔

[184]

Vitamin C
Vs

GLP1

30 mg/min infusion
Vs

0.4 pmol/kg/min

20
T2DM Randomized study 8-iso-PGF2α ↓ [185]

Resveratrol
Vs

Placebo
500 mg/day 60

T2DM patients

Two-arm randomized,
double-blind,

placebo-controlled clinical trial
3 months

NO ↑
SOD ↑

GSH-Px ↑
CAT ↑
MDA ↓

Insulin ↓
HOMA-IR ↓

[186]

Resveratrol
Vs

Placebo
400 mg/ twice daily 48

T2DM patients

Randomized,
placebo-controlled,

double-blind clinical trial

MDA↔
DCFH-DA ↓

FRAP ↑
HOMA-IR ↓

[187]
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Table 3. Cont.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

Resveratrol
Vs

Placebo
500 mg/day or 40 mg/day 192 T2DM patients Randomized trial

6 months TAS ↑ [188]

Resveratrol
Vs

Placebo
100 mg/day 50

T2DM patients

Double-blind, randomized,
placebo-controlled study

12 weeks

d-ROMs ↓
Cardio-ankle vascular index

↓
[189]

Resveratrol
Vs

Placebo
5 mg twice daily 19 T2DM patients

Randomized,
placebo-controlled,

double-blind clinical trial
4 weeks

Ortho-tyrosine level ↓
HOMA-IR ↓ [190]

Beta-carotene
Vs

Control Food
0.05 g three times a day 51

T2DM

Randomized double-blinded
placebo-controlled crossover

clinical trial
6 weeks

NO ↑
GSH ↑

Insulin ↓
HOMA-IR ↓

[191]

Selenium
Vs

Placebo
200 µg/day 60

Diabetic nephropathy patients
Randomized, double-blind,

placebo-controlled clinical trial

MDA ↓
GSH↔
NO↔

[192]

Selenium
Vs

Placebo
200 µg 60

T2DM

Randomized, double-blind,
placebo-controlled trial

8 weeks

TAC ↑
Insulin ↓

HOMA-IR ↓
[193]

α-lipoic acid
Vs

Placebo
600 mg 105

T2DM
Randomized trial

3 months

SOD ↑
GSH-Px ↑

MDA ↓
Fasting plasma glucose ↓

HbA1c↓
FPI ↓

HOMA-IR ↓

[194]

α-lipoic acid
Vs

Placebo
300, 600, 900 or 1200 mg/day 38

T2DM

Randomized double-blind
placebo-controlled clinical trial

6 months

8-iso-PGF2α ↔
8-OHdG↔
Glucose ↓
HbA1c ↓

[195]
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Table 3. Cont.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

R-lipoic acid
Vs

Placebo
R-lipoic acid 600 mg/day 20 subjects with IGT or T2DM

Randomized placebo-controlled
crossover design

4 weeks

Oxyphytosterol↔
oxycholesterol↔

MDA↔
GSH/GSSG↔

uric acid↔

[183]

α-lipoic acid
Vs

Vitamin C

600 mg injection
Vs

3.0 g Vitamin C injection

90
T2DM

Randomized study
3 weeks

SOD ↑
GSH-Px ↑

MDA ↓
Glucose ↓

HOMA-IA ↓

[196]

Hypercolesterolemia

N-3 fatty acids 2.4 g/day of a mixture of EPA and DHA 23 women
HC

Randomized, controlled,
cross over study

6 weeks

SOD ↓
CAT ↑

Cholesterol ↓
[197]

N-3 fatty acids 1.9 g/day of a mixture of EPA and DHA 32 subjects
HC

Sequential self-controlled trial
23 weeks

Endothelial function↔
Platelet function ↓

STAT-8-Isoprostane↔
[198]

Resveratrol
Vs

Placebo
150 mg/day 18 subjects

HC
Randomized study

4 weeks

TAC↔
Vitamin E ↑

Total cholesterol↔
[199]

Obesity

Vitamin C, Vitamin E,
Selenium

Vs
Placebo

500 mg of Vitamin C, 400 IU of Vitamin E
and 50 µg of selenium 7 d/wk

44 children and adolescents
Overweight or obese

Randomized,
placebo-controlled,

single-masked intervention

8-iso-PGF2α ↓
MDA ↓

Antioxidant status ↑
[200]

Vitamin C 3 g 14 men
Overweight/obese grade I 5 min

Protein carbonylation
TBARS

SOD
[201]

N-6 fatty acids
1000 mg conjugated linoleic acid

supplementation
400 IU vitamin E

38 patients
Obeses NAFLD

Randomized, controlled clinical
trial

8 weeks

MDA ↓
Insulin ↓
HbA1c ↓

[202]
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Table 3. Cont.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

Epigallocatechin-gallate and
resveratrol

Vs
Placebo

282 mg/d EGCG, 80 mg/d resveratrol 25 (15 male and 10 women)
Overweight and obese

Randomized, placebo-controlled
study

Oxidative stress ↓
Inflammation ↓
Adipogenesis ↓

[203]

Resveratrol 1 capsule/day 32
Obeses

Randomized Controlled Trial
28 days

Redox-related genes
modulation [204]

Resveratrol 75 mg 28
Obeses

Double-blind crossover
supplementation trial

6 weeks
FMD ↑ [205]

Resveratrol 30, 90 and 270 mg 19 (14 male and 5 female)
Overweight/obese

Double-blind, randomized
crossover study

1 h
FMD ↑ [206]

α-lipoic acid
(+ exercise training) 1.0 g per day 24 (12 male and 12 female)

Obeses
Randomized controlled trial

12 weeks

TOS ↓
TAC ↑

Ox-LDL ↓
[207]

α-lipoic acid 1800 mg/day 8 male
Overweight and obese

Randomized Controlled Trial
2 weeks Insulin resistance↔ [208]

α-lipoic acid 600 mg intravenously once daily 13 obese subjects with IGT
(obese-IGT)

Randomized study
2 weeks

ox-LDL-Chol ↓
MDA ↓

8-iso-PGF2α ↓
[209]

α-lipoic acid, carnosine, and
thiamine

Vs
Placebo

7 mg ALA/kg body weight, 6 mg
carnosine/kg body weight, and 1 mg

thiamine/kg body weight

82 subjects
Obeses type 2 diabetic

Randomized double-blind
placebo-controlled trial

8 weeks

Glucose ↓
HbA1c ↓

HOMA-IR ↑
Hydroperoxide ↓

[210]

Smoke

γ-Tocopherol-rich
supplementation

Vs
Placebo

500 mg/day 16 healthy subjects
Smokers

Randomized, double-blind,
placebo-controlled study

7 days

FMD ↑
MPO ↓ [211]
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Table 3. Cont.

Groups of Supplementation Dose Subjects and Healthy Status Study Design, Duration Markers References

γ-Tocopherol-rich
supplementation

Vs
Placebo

500 mg/day
25 healthy subjects

Healthy male and female cigarette smokers (more than
10 cigarettes/day; more than 1 year)

Randomized, double-blind,
placebo-controlled study

24 h

FMD ↑
8-iso-15(S)-PGF2a ↓ [212]

Vitamin E
Vs

Placebo
400 IU/day 312 male healthy subjects

Current smokers

Randomized placebo-controlled
trial

36 months
8-iso-PGF2α ↓ [213]

Fish-oil-derived omega-3 fatty
acid supplements

80 mg of eicos-
apentenoic acid
and 120 mg of

docosahex-
anoic
acid

54 Healthy subjects
Heavy-smoker males (smoking >20 cigarettes per day)

Double-blind, randomized
clinical trial

3 months

TAS ↑
TOS ↓ [214]

Resveratrol 500 mg resvera-
trol/day,

25 healthy subjects
Smokers

Randomized, double-blind,
crossover trial

30 days

TAS ↑
Triglicerides ↓ [215]

Selenium
Vs

Placebo
200 µg/day 312 male

Current smokers

Randomized placebo-controlled
trial

36 months
8-iso-PGF2α↔ [213]

8-iso-PGF2α = 8-iso-prostaglandin F2α; AGEs = Advanced glycation end products; CAT = catalase; CRP = c-reactive protein; d-ROMs = diacron reactive oxygen metabolites; DCFH-DA = 2′, 7′-Dichlorofluorescin
Diacetate; EDD = endothelium-dependent dilation; FMD = brakial flow-mediated dilation; FPI = fasting plasma insulin; FRAP = Ferric Reducing Antioxidant Power; GSH = glutathione; GSH-Px = glutathione
peroxidase; GSSG = oxidized glutathione; HbA1c = Glycated hemoglobin; HC = Hypercholesterolemic; HOMA-IR = Homeostatic Model Assessment for Insulin Resistance; MDA = Malondialdehyde;
MGO = Methylglyoxal; NO = Nitric oxide; SOD= superoxide dismutase; TAC = Total Antioxidant Capacity; TAOC = Total plasma antioxidant capacity; TAS = Total Antioxidant Status; TBARS = Thiobarbituric
acid reactive substances; TOS = total oxidant status.
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5.1. Hypertension

The pathophysiology of hypertension involves a complex interaction of multiple
vascular effectors, including the activation of the sympathetic nervous system, of the renin-
angiotensin-aldosterone system and the inflammatory mediators. Oxidative stress and
endothelial dysfunction are consistently observed in hypertensive subjects and have a
causal role in the molecular processes leading to hypertension.

Tousoulis et al. evaluated the effect of high-dose vitamin C and vitamin E on en-
dothelial function in hypertensive patients. They found that vitamin pre-treatment failed
to prevent methionine-induced homocysteinemia reduction of endothelium-dependent
dilation despite the reduction of peroxidation induced by vitamins [175]. In another study,
in hypertensive patients, the antioxidant vitamins C and E supplementation resulted in a
reduction in blood pressure, oxidative stress biomarkers, and increased fluidity by PUFA
proportion in the membrane. Reduction of oxidative stress and changes in membrane
fluidity positively modulates (Na, K)-ATPase activity accounting for the blood pressure
reduction [176].

In pre-hypertensive men and women, the effect of quercetin and epicatechin on the
concentrations of methylglyoxal (MGO) and advanced glycation end products (AGEs) was
evaluated. The results showed that quercetin, but not epicatechin decreased the plasma
concentration of MGO, which is a reactive di-carbonyl intermediate and a precursor of
AGEs [177]. On the same line, Saarenhovi et al. found a significant acute improvement
in maximum FMD% after epicatechin supplementation, but not statistically significant
compared to placebo [178].

Few studies evaluated the effect of Coenzyme Q-10 supplementation. In mildly
hypertensive patients, coenzyme Q10 supplementation was effective in decreasing some
pro-inflammatory factors, such as IL6 and hs-CRP. Moreover, coenzyme Q10 increased
adiponectin levels, an adipokine with anti-inflammatory and anti-atherogenic effects [216]
that may be involved in the progression of hypertension [179]. Adjunctive coenzyme
Q10 therapy was not associated with statistically significant reductions in systolic or
diastolic blood pressure or heart rate [180] (Table 3).

5.2. Diabetes

As oxidative stress plays a key role in the development and the progression of diabetes
and its related complications, several antioxidant supplementations were tested.

The supplementation with antioxidant vitamins in diabetic patients exerts beneficial
effects that could improve the clinical condition and attenuate or prevent diabetic patho-
genesis and complications that, secondly to poor glycemic control, could attribute to the
imbalance between the decline in the endogenous antioxidants and increasing production
of the ROS. Indeed, Vitamin C or Vitamin E supplementation improves fasting blood
sugar (FBS), lipid profile, insulin, homeostasis model assessment of insulin resistance
(HOMA-IR) [182,184], and then increases the antioxidant profile and reduces oxidative
biomarkers [182,184,185,217]. However, other studies do not support the beneficial effect
of vitamins supplementation. For example, no differences were seen in the endothelial
function measurement and total plasma antioxidant capacity (TAOC) before and after
combined vitamin C and E therapy [181] or in plasma oxyphytosterol concentrations and
other oxidative biomarkers [183].

The antioxidant effects of resveratrol supplementation in attenuating the increased ox-
idative stress in diabetes mellitus patients have been investigated in several studies [186–190].

In patients supplemented with resveratrol, glycemic indices, such as fasting blood
sugar, HbA1c, insulin levels, and insulin resistance were all significantly decreased in the
resveratrol compared with the placebo group [186,190], and improves arterial stiffness as
indicated by decreased cardio-ankle vascular index, which is a clinical surrogate marker of
atherosclerosis [189]. The mechanisms behind these metabolic effects might be due to a
resveratrol-induced decrease in oxidative stress. Indeed, after the supplementation with
resveratrol, diabetic patients displayed reduced oxidative stress biomarkers as indicated
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by reduced levels of NO, MDA, and superoxide anion. Moreover, a decreased urinary
excretion rate of ortho-tyrosine was observed with resveratrol treatment, indicating a
lowered degree of hydroxyl free radical production in these patients [190]. Parallel to
the reduction in oxidative biomarkers improved antioxidant status was observed with
a significant increase of SOD, GSH-Px, and CAT levels. The antioxidant properties of
resveratrol could result from its direct effects by acting as a free radical scavenger, as well
as from its ability to indirectly activate antioxidant enzymes and other mechanisms. These
indirect effects could be conferred via increased SIRT-1 expression that was associated with
significant H3K56ac content reduction and increased serum antioxidant activity in T2DM
patients [188]. These findings support the notion that resveratrol decreases oxidative stress
through its broad direct and indirect antioxidant effects, and this could be a promising
approach for the prevention and treatment of diabetes mellitus.

Only one study, a double-blind randomized crossover controlled clinical trial, eval-
uated the effect of beta-carotene supplementation. The consumption of beta-carotene
fortified synbiotic food resulted in a significant decrease in insulin, HOMA-IR, and a
significant increase in plasma nitric oxide and glutathione (GSH) [191]. Likewise, sele-
nium supplements to T2DM patients resulted in a significant decrease in insulin and
HOMA-IR contextually to a significant rise in plasma total antioxidant capacity (TAC)
concentrations [193].

Several studies evaluated the effect of a supplement containing lipoic acid on glyco-
metabolic control and oxidative stress markers. Derosa et al. found that food supplement
containing α-lipoic acid reduces fasting plasma glucose, glycated hemoglobin (HbA1c),
and fasting plasma insulin with an improvement of lipid profile. The antioxidant effect
resulted in an increase of SOD, and GSH-Px, and a decrease of MDA [194]. Similarly,
Zhao et al. found that α-lipoic acid was safe and effective in treating aged T2DM as blood
glucose, lipids, and HOMA-IA of the experiment group decreased significantly. Oxidative
stress was affected by supplementation as an increase in plasma SOD and GSH-Px levels,
and a decrease in MDA was found [196]. The effectiveness of oral supplementation of
alpha-lipoic acid on glycemic status was also confirmed by another study, but with slight
efficiency on oxidative stress-related biomarkers [195]. Finally, lipoic acid supplementation
did not reduce plasma oxyphytosterol and oxycholesterol concentrations [183] (Table 3).

5.3. Hypercholesterolemia

The interaction of the combination of statins with n-3 fatty acids on oxidative stress
was evaluated in hypercholesterolemic women receiving a mixture of EPA and DHA.
Results showed that statins and n-3 fatty acids increased oxidative stress as a result of in-
creased plasma malondialdehyde, whereas SOD activity reduced catalase expression [197].
Accordingly, administration of N-3 fatty acids to patients treated with statins has no effect
on oxidative stress parameter, which is STAT-8-Isoprostane, and on endothelial function.
However, combination of statins and N-3 fatty acid inhibits platelet aggregation, alters
inflammatory status, and positively affects daytime blood pressure [198].

Only one study evaluated the effect of resveratrol in hypercholesterolemic patients.
In these patients, with a higher demand for antioxidant activity, due to higher cholesterol
levels, resveratrol consumption significantly increased Vitamin E levels without changes in
TAC or in total cholesterol levels [199] (Table 3).

5.4. Obesity

The effect of antioxidant supplementation on biomarkers of oxidative stress, inflam-
mation, and liver function was evaluated in overweight or obese children and adoles-
cents randomized to intervention with daily antioxidants, namely, vitamin E, vitamin C,
and selenium or placebo. Results showed that antioxidant supplementation improved
antioxidant-oxidant balance by increasing antioxidant status and reducing oxidative stress
biomarkers, namely, F(2)-isoprostanes and F(2)-isoprostane metabolites, but did not affect
the inflammatory markers measured [200]. Vitamin C intravenous infusions in overweight
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or obese grade I subjects reduced protein carbonylation, one of the most harmful irre-
versible oxidative protein modifications, and a major hallmark of oxidative stress-related
disorders [201]. Conjugated linoleic acid supplementation plus vitamin E improved insulin
resistance, lipid disturbances, oxidative stress as total antioxidant capacity increased, and
MDA significantly decreased in obese patients with NAFLD [202].

Several studies evaluated the effect of resveratrol. Combined polyphenols epigallocate-
chin-gallate and resveratrol supplemented to obese subjects significantly decreased ex-
pression of pathways related to energy metabolism, oxidative stress, inflammation [203].
Accordingly, De Groote et al. demonstrated that resveratrol triphosphate supplementation
could contribute to a significant reduction of oxidative stress gene expression. More-
over, daily, chronic resveratrol supplementation maintains healthy circulatory function in
obese function as indicated by a 23% increase in FMD compared to placebo [205]. Finally,
Wong et al. confirmed the positive effect of resveratrol on vascular function by demonstrat-
ing that resveratrol increased FMD in a dose-related manner [206].

Among antioxidant supplementation, several studies focused on lipoic acid effects.
Short-term treatment α-lipoic acid supplementation, in obese subjects with impaired
glucose tolerance (IGT), improves insulin sensitivity and plasma lipid profile. At the same
time, plasma oxidative products, such as MDA and 8-iso-prostaglandin, and inflammatory
markers, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), remarkably
decreased while adiponectin increased [209]. A beneficial effect was also achieved by a
combined supplementation of α-lipoic acid, carnosine, and thiamine that was able to reduce
glucose and HbA1c levels and a significant reduction in serum hydroperoxide levels [210].
However, McNeilly et al. found that, in obese subjects with IGT, although total oxidant
status was lower, α-lipoic acid ingestion may increase the atherogenicity of LDL. When
α-lipoic acid is combined with exercise, this atherogenic effect is abolished [207]. Finally,
α-lipoic acid administered orally did not protect against lipid-induced insulin resistance in
overweight and obese humans. Indeed, after infusion of intralipid plus heparin to raise
plasma free fatty acids, insulin sensitivity was impaired even in the case of α-lipoic acid
pre-treatment [208] (Table 3).

5.5. Smoke

It has been demonstrated that cigarette smoke-induced oxidative stress is responsible
for endothelium activation through the expression of adhesion molecules and the activation
of macrophages and platelets contributing to endothelial dysfunction. The direct effect of
smoke compounds is the ROS overproduction that induces endothelial cell loss through
apoptosis or necrosis processes.

The effect of Vitamin E was evaluated in healthy smokers who quit smoking for
seven days. The short-term γ-T-rich supplementation, in combination with smoking
cessation, improved vascular endothelial function—as indicated by increased brachial
artery flow-mediated dilation (FMD) by 1.3%. Moreover, the pro-inflammatory levels of
mediators, such as TNF-α and myeloperoxidase, decreased after γ-T-rich supplements,
and these were inversely related to FMD. However, the supplementation doesn’t affect
plasma oxidized LDL and urinary F2-isoprostanes [211]. In healthy smokers who received
nicotine replacement therapy, oral administration of a γ-T-rich mixture of tocopherols
increased FMD without affecting plasma nitrate/nitrite. Oxidative stress, as assessed
by urinary 8-iso-15(S)-PGF2α, decreased in smokers receiving γ-T-rich mixture and was
inversely correlated to FMD [212]. Finally, long-term supplementation with vitamin E
(36 months) lowered oxidative stress in smokers, as measured by urine 8-iso-prostaglandin
F2- α (8-iso-PGF2α) by 21% [213]. In the same patients that smoke, no evidence for an effect
was observed for combined vitamin E and selenium or selenium alone intervention [213].

As smoking-induced oxidative stress is thought to contribute to lower levels of omega-
3 fatty acids in plasma, Sadeghi-Ardekani et al. evaluated the effects of omega-3 fatty
acid supplementation on oxidative stress index in heavy-smoker males. They found that
high-dose of omega-3 fatty acid supplements (180 mg of eicosapentaenoic acid and 120 mg
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of docosahexaenoic acid) for three months decrease total oxidant status and oxidative stress
index [214].

One randomized, double-blind, crossover trial was performed to test the hypothesis
that resveratrol induces a decrease in the levels of the inflammatory and oxidative mediators
that characterize the low-grade systemic inflammatory state and the oxidant-antioxidant
imbalance in smokers. The results confirm that oral supplementation of resveratrol for
30 days significantly reduced C-reactive protein (CRP) and triglyceride concentrations, and
increased Total Antioxidant Status (TAS) values [215] (Table 3).

6. Conclusions

To date, the role of oxidative stress in the onset and progression of atherosclerosis
and its impact on the development of cardiovascular events has been widely described.
Several studies demonstrated an increase of biomarkers of oxidative stress in the setting
of cardiovascular disease and outcome. Even if the suppression of oxidative stress us-
ing antioxidants is beneficial, as reported by many clinical studies, the effectiveness of
antioxidant therapies is controversial for several reasons. First of all, in different stages
of diseases, oxidative stress may have different roles according to the oxidative stress
levels. Thus, it is crucial to verify oxidative stress biomarkers levels to give the antioxidant
treatments at the appropriate time. For example, researchers or clinicians should focus on
the antioxidant power of a patient rather than looking for a particular antioxidant. Among
the methods that evaluate this power, HBA is a promising new method that is able to
evaluate the ability of each individual to neutralize H2O2, a cell-permeable ROS generated
by cellular metabolism involved in intracellular signaling, which exerts a strong impact
on cardiovascular pathophysiology. Indeed, in patients with atrial fibrillation, a reduced
ability to scavenge H2O2, as indicated by reduced serum HBA, predicted cardiovascular
events [32].

Moreover, oxidative stress should be assessed with methods that evaluate more the
activity of the enzymes involved in the production of ROS than molecules produced by
oxidative stress. Among these methods, the evaluation of NOX2 activity seems to correlate
well with the severity of cardiovascular diseases and also with cardiovascular events.

Second, not all antioxidants are effective in modifying the outcome of cardiovascu-
lar risk factors, and the dosing strategies in clinical trials are different, even in the same
pathology. Finally, not all biomarkers of oxidative stress are useful for monitoring the
clinical outcome of cardiovascular risk factors. Taken together, this information highlighted
that antioxidant therapy must be considered to all intents and purposes a pharmacolog-
ical therapy, and therefore, it is extremely important to monitor the dosage and time of
administration, as suggested in Figure 2.
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Figure 2. The measurement and monitoring of biomarkers of oxidative stress and antioxidant
status associated with cardiovascular risk factors (hypertension, obesity, hypercholesterolemia,
diabetes, and smoking) can help (1) to assess the patient’s health status, and (2) to consider an
appropriate supplementation of antioxidants if altered oxidative stress/or antioxidant status is
recorded. Moreover, antioxidant therapy must be monitored to adjust the dosage and the time of
administration based on the biomarker values verified.
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