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Abstract 

Individualized treatment is crucial for epileptic patients with different types of seizures. The differences among 
patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic 
seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the 
clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and mon-
tages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual 
patients’ clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior 
knowledge from patient’s reports into the classifier-building process, mimicking the authentic thinking process of 
experienced neurologist’s when diagnosing seizure using EEG. The keywords from clinical documents are mapped 
to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple 
University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure 
type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and 
Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small 
portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data 
are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and 
zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data 
range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range 
of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classi-
fier to be executed on power-efficient devices for long lasting real-time seizures detection.

Keywords:  Seizure, Electroencephalography, Frequency bands selection, Natural Language Processing, Classification, 
Epileptic seizure
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1  Introduction
Epileptic seizure is one of the most common neurologic 
disorders that affects the population of all age groups 
worldwide [1]. Epilepsy is characterized by unprovoked 
and recurrent seizures and is manifested as a brain spec-
trum disorder [2]. Seizure is the temporal interruption 

of normal electrical brain function with burst alterations 
of neurologic regulation triggered by abnormal electri-
cal neurons discharge [3]. Treatment of seizure includes 
medicines and brain surgeries, but medically intractable 
seizures that severely impact some patients’ quality of life 
still exist.

The diagnosis and monitoring of seizures can be 
analyzed with electroencephalography (EEG). EEG 
is neuro-electrophysiologic signals that represent 
the brain activities acquired from electrodes either 
implanted subdurally (intracranial EEG) or placed 
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along the scalp (scalp EEG). Given the low-cost and 
non-invasive nature of scalp EEG, it is still a widely 
used tool for probing neural functions.

The gold standard to identify seizures is the visual rec-
ognition by a trained neurophysiologist using the EEG 
data where the abnormal electrical morphology is dis-
covered. This manual procedure is labor-intensive as 
well as time-consuming in the clinical setting, it is sub-
ject to electrical signals interference by external noise 
and artifacts, and the subjective nature of such analysis 
can lead to disagreement among neurophysiologists.

Automated seizure detection from EEG recordings 
have been investigated by researchers since 1970s [4]. 
Models are built to distinguish patterns in brain sig-
nals that manifest of epileptic seizures. The models are 
framed in two typical steps: feature engineering and 
classification of the ictal/inter-ictal (during seizure/
in-between seizures) signals. For a real-world seizure 
detection problem, the machine learning classification 
models need to be built with cost-consciousness trying 
to avoid the intermediate steps for feature computa-
tion that have high computational cost. The frequency 
domain features have proved to be more computation-
ally efficient than time domain [5] and time–frequency 
domain features.

Background EEG frequency band (α,β , θ , δ, γ ) oscil-
lations have been intensively studied in brain normal 
function. These frequency bands can be recorded during 
state of wake or sleep: occipital alpha frequency activ-
ity (α) observed with a relax state while eyes are closed, 
frontal and central beta (β) and gamma oscillations (γ ) 
during alert and vigilance mental state, theta frequency 
activity (θ) during sleep or memory tasks, and frontal 
delta rhythm (δ) that was recorded while sleep. Never-
theless, the seemingly normal EEG background bands 
contain clear abnormalities which have been shown as a 
significant prognostic tool [6–9].

The selection of EEG channels/montages is widely 
studied [10] for faster detection and noise removal. The 
EEG montages refers to the electrodes located on scalps 
connecting the patient and recording device. Since 
brain signal conduct in a non-linear and dynamic man-
ner, the recorded electrical voltage is impacted by elec-
trode locations significantly [11]. Neurologists select 
the channels using their prior knowledge and for an effi-
cient approach it is vital to select the montages which 
carry the most discriminative information. It has been 
demonstrated that it is effective to select only a small 
number of montages for seizure detection [12, 13]. For 
computer scientists, the process of selecting montages 
requires additional steps of generation and evaluation 
of certain electrodes. The subset channels are generated 

from whole set using various statistical measures 
[14–16].

In this study, we use a natural language processing 
approach for the efficient selection of frequency bands 
(sub-bands) and scalp EEG electrodes (sub-zones). By 
consolidating each patient’s clinical report, we aim to 
integrate the medics’ prior knowledge into the classifier-
building process. In particular, we classify seizure ictal/
inter-ictal phases with sub-bands and sub-zones selection 
from six designed inputs. The three types of frequency 
band inputs are: the whole frequency range provided 
in data corpus, the background frequency EEG bands 
(α,β , θ , δ, γ ) , and the selected background bands based 
on keywords extracted from patients’ clinical reports by 
Natural Language Processing (NLP). We also introduce 
scalp EEG electrodes reduction by using the electrodes 
keywords (pre-frontal, frontal, temporal, parietal, occipi-
tal, central) extracted from individual’s clinical reports.

The research questions that we aim to answer using out 
novel approach can be synthesized as follows:

•	 RQ1: How do the selection of frequency bands 
(α,β , θ , δ, γ ) influence seizure classification?

•	 RQ2: How do the selection of EEG electrodes (Fp, F, 
T, P, O, C) influence seizure classification?

•	 RQ3: How to integrate prior knowledge from experts 
to build individualized seizure classification models?

In this work, to answer the above stated questions, we (i) 
present the evidence of background EEG in brain func-
tionality during seizures, (ii) illustrate that selective back-
ground frequency bands and EEG electrodes coupling 
can lead to better seizure classification results, and finally 
(iii) build a resource-efficient model targeting for individ-
ualized seizure classification purpose.

In Sect.  2, we provide background knowledge of the 
paper. In Sect. 3, we discuss related works. In Sect. 4, we 
introduce the publicly available dataset used in this work. 
In Sect. 5, we introduce the design thinking process, the 
methods including pre-processing using Short-Time Fou-
rier Transform (STFT) and Natural Language Process-
ing (NLP), and the machine learning algorithms. Sect. 6  
reports the experiment results, discussed in . Finally, in 
Sect. 7, we draw conclusions and propose future works.

2 � Background
In this section, we discuss the medical background of 
the research and different types of seizures. Specifically, 
we introduce the “10-20 system” standardized EEG elec-
trodes placement, the normal and abnormal seizures, and 
the classification of different types of seizures.
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2.1 � EEG electrode reference placement
Electrodes connect the EEG machine to patients for the 
recording of electric inputs generated from brain activi-
ties. The standardized electrode placement is represented 
in Fig. 1. It follows the international “10-20 system” which 
has been originally proposed in 1958 [17]. The name of 
the electrodes consists of two symbols. The first symbol 
is an abbreviation letter precisely pointing to the under-
lying six brain zones. The letters include F (frontal), Fp 
(pre-frontal), P (parietal), C (central sulcus), T (tempo-
ral), and O (occipital). Additional electrodes are placed 
behind the outer ear to record the prominent bone pro-
cess using the letter A. The second symbol is a number 
(when on mid-line it is a letter z) specifying the left or 
right brain cortex: electrodes located on the scalp’s right 
side are assigned even numbers, and odd numbers are 
used for electrodes on the left side. Smaller numbers 
denote positions closer to the mid-line, and larger num-
bers are farther away spots. Note that electrodes P7 and 
P8 are placed over the posterior part of the temporal, not 
the parietal region, and also F7 and F8 electrodes are not 
only close to the frontal cortex but also the pole of the 
temporal lobe.

The commonly used reference schemes of EEG elec-
trodes are categorized into two classes, namely unipolar 
and non-unipolar references [11]. Unipolar references 
construct a neutral record, including Average Reference 
(AR), Linked Ears reference (LE), and Reference Elec-
trode Standardization Technique (REST).

AR assumes that neuroelectricity transmits isotropi-
cally on a perfect layered spherical head, thus using the 
average of a finite number of electrodes as a reference. 

LE reference is based on the assumption that due to the 
sites lack of electrical activity, the average of the poten-
tials recorded is close to zero between two ears. REST is 
based on the fact that the same brain sources generate all 
EEG activities. Non-unipolar references are the poten-
tial differences of electrodes, including the bipolar and 
the Laplacian reference. Bipolar Reference shows the 1st 
derivative of potentials, which is the difference between 
two nearby electrodes’ potential. Laplacian Reference 
show the second derivative of potentials, which is the dif-
ference between each electrode’s potential and its nearest 
four neighbors’ averaged potential.

The advantage of unipolar references is that the 
changes can be observed directly since it is the potential 
of the electrodes. The main disadvantage is that they are 
sensitive to common noise and artifact activity. If one 
electrode is contaminated, interpretation of activity in 
the brain area can be difficult. Non-unipolar references 
are not affected by noise as it is the difference of poten-
tials, but this may attenuate the abnormalities observed 
in the recordings. If the derivation is zero, e.g., caused by 
equal effects of cerebral activity around electrodes, the 
interpretation can be challenging.

2.2 � Normal and abnormal EEG
Normal EEGs are measurable both qualitatively and 
quantitatively. Normal EEG activities appear when peo-
ple are not affected by any disease. Seizure events consist 
of abnormal brain activities, formally known as inter-ictal 
epileptiform discharges (IED). The EEG of IED is charac-
terized by the unusual waveforms that deviate from the 
normal EEG on frequency, amplitude, morphology, local-
ization, and reactivity. Figure 2 shows 10 s of normal and 
seizure EEG.

In Fig. 3,  the five most common normal EEG activity 
frequency bands α,β , θ , δ, γ  are represented. Each band 
may have a different interpretation, that can be described 
as follows: 

(i)	Alpha rhythm (α) : frequency between 8 and 12 Hz. 
It is more prominent in the occipital regions of an 
adult brain and can be observed in amplitude dur-
ing relaxed and eyes-closed wakefulness. When 
eye-open and mental alert, alpha activities decrease 
in amplitude and demonstrate reactivity. Alpha 
variants are the mixture of the alpha rhythm with 
other rhythms, which have distinct morphology 
but, in another way, exhibit the same reactivity and 
localization.

(ii)	 Beta rhythm (β) : frequency between 12 and 30 Hz. 
It is primarily seen in the frontal and central areas 
of the adult brain. It also exhibits a gradual increase Fig. 1  The 10-20 system for EEG electrodes positioning



Page 4 of 31Wang and Mengoni ﻿Brain Informatics            (2022) 9:11 

with age in the frequency for children. Beta activity 
is triggered by alertness and vigilance, suppressed 
by voluntary movements.

(iii)	Theta rhythm (θ) : frequency between 4 and 8 Hz. 
It is prominently seen in the central, parietal, and 
temporal parts of the left side scalp recording. Theta 
rhythm can reflect the abnormal activity in adults 
during wakefulness and is frequently observed in 
adults in sleep state.

(iv)	Delta rhythm (δ) : frequency between 0.5 and 4 Hz. 
It is most predominantly found in adults frontally 
and in children posteriorly. Delta waves are associ-
ated with the deepest levels of the sleep stage and 
have a healing effect on the body and brain.

(v)	 Gamma rhythm (γ ) : frequency between 30 and 
50 Hz. It is seen in the cerebral cortex with cogni-

tive and motor activities. Visual stimulation and 
meditation could increase the amplitude of gamma 
rhythms. It is often observed in the seizures ictal 
phase and prevalent in seizure onset. Altered 
gamma oscillations are regularly detected in brain 
disorders like Alzheimer’s disease besides epilepsy.

Abnormal EEG activity is often prevalent in people 
with neurological or other diseases and absent from 
normal individuals. IED is the abnormal synchronous 
electrical discharge that originates in epileptic focus 
with a group of misfunctioning neurons [18]. Sharps 
and spikes are the prominent abnormal EEG waveforms 
and manifest as pointed peaks, serving as biological 
markers for either focal or generalized epileptogen-
esis. Spike waves are transients often exhibit between 

Fig. 2  Ten seconds EEG sample of: normal EEG (top), seizure EEG (bottom)
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20 and 70 ms. Sharp waves are similar but last longer 
with typical duration of 70–200 ms. Besides duration, 
sharps and spikes can have varying waveforms, like the 
voltage, frequencies, etc. Their occurrence can be single 
or repetitive, and distribution can be focal or general. 
The appearance of sharps and spikes is asymmetric, 
with initial deflection primarily as a sharper slope. The 
observation can be isolated waveforms or can be fol-
lowed by slow waves. The subtypes can be divided by 
multiple ways. For example, by localization, there are 

temporal/centrotemporal/occipital/generalized spikes 
and sharp frontal waves; frequency spikes and sharps 
are associated with various frequency ranges, like 6-Hz 
spike-and-wave, polyspikes, and 14- and 6-Hz posi-
tive bursts, etc. The spike-and-slow-wave complex is 
the occurrence of a spike followed by a longer duration 
slow-wave, with varying frequency and amplitude and 
often distinct from the underlying background. A sharp 
wave can be the initial waveform rather than a spike. A 
sharp- and slow-wave complex is identical to the spike- 
and slow-wave complex, except that a sharp-wave suc-
ceeds the slower and broader wave. In these discharges, 
the slow-wave that follows may symbolize inhibition 
and subsequent hyperpolarization of cortical neurons, 
which accompany the initial synchronous depolariza-
tion [19]. For epilepsy patients, the above abnormali-
ties are routinely observed between seizure periods 
and suggest an underlying propensity toward seizures; 
nevertheless, the abnormalities during a seizure do not 
result in observable clinical behavior for certain.

2.3 � Seizures types
Seizures and epilepsy are classified from International 
League Against Epilepsy (ILAE) using modern era’s ter-
minology and concepts [20]. The two broader types are 
defined as generalized and focal seizures. Generalized 
seizures arise in neuronal networks distributed bilater-
ally, while focal seizures are limited to one hemisphere. 
Seizures may propagate from partial to generalized state, 
when the neuronal network is initially partly altered and 
may became complete dysfunctional at a later stage. 
Table 1 reports a selection of seizure categories, together 
with their symptoms descriptions. For clarity of presenta-
tion, the list is partial as it includes only the seizure types 
included in the dataset used in this work.

2.4 � Seizure classification with EEG
The abnormal EEG recordings of patients who suffer 
from seizures contain four states: pre-ictal, ictal, inter-
ictal, and post-ictal. Pre-ictal and post-ictal are the signal 
portions before the seizure occurs and after the seizure 
diminishes, respectively. Inter-ictal is the abnormal sig-
nal activities between epileptic seizures, and ictal is the 
abnormal signals during an epileptic seizure [21].

The electrographic signature of a seizure is composed 
of spikes and sharps complexes and other abnormal 
activities that can be inspected over a longer duration 
compared to its exhibits during inter-ictal periods. Occa-
sional transient waveforms are the signature of inter-ictal 
activities in EEG. It can exhibit either isolated spikes, 
sharps, or spike-wave complexes. IED generally supports 
the diagnosis of seizure disorders such as: 

Fig. 3  Normal EEG signals with delta, theta, alpha, beta, gamma 
(δ, θ ,α,β , γ ) sub-bands
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	(i)	 Partial seizures: EEG in partial seizures have two or 
more distinct phases, which are metamorphic. The 
common pattern consists of a series of spike- and 
sharp-waves, mixed with rhythmic waves, also with 
amplitude attenuation. The frequency and ampli-
tude change dynamically of the waveforms when 
the seizure spreads in brain regions. At the ends 
of seizures, the frequency of sequential spikes or 
rhythmic waves will diminish to a slow spike-wave 
pattern. Temporal lobe seizure often with initial 
alpha or theta frequency range with a lesser pro-
portion of slower wave occurring. Extra-temporal 
seizures frequently start with the beta band. The 
metamorphic patterns often follow post-ictal slow-
ing delta, suppressing or activating focal spikes. 
Moreover, the electrodecremental events observed 
focally can localize the seizure onset zone. It also 
reflects high-frequency firing or intense neuronal 
depolarization. However, generalized electrodecre-
mental events that are not ictal prior to focal sei-
zures may epitomize cerebral alter that lead to focal 
seizures. Note that simple partial seizures with sen-
sory symptoms rather than motor symptoms may 
not be distinguished in the EEG activities up to 
80% of the time. But using more close-spaced elec-
trodes, the ictal can be recognized.

	(ii)	 Generalized seizures: absence seizures have iso-
morphic and stereotyped features. The frequency 
and amplitude will change with seizure progres-
sion, though. For example, spike-wave discharges 
may start with 3.5 to 4 Hz at onset and diminish to 
2 to 3 Hz, and the spike amplitude will also reduce 
at the subsequent of seizures. Diffuse polyspike 
wave complexes can precede tonic–clonic seizures. 
Ictal signals during the first phase often have gener-
alized attenuation of rhythmic waves and increase 
in voltage gradually, then evolve into polyspikes. 
The second phase often shows slow waves mixed 
with paroxysmal spike activities. Then there is the 

gradual recovery of rhythms following generalized 
attenuation in the post-ictal period. Tonic seizures 
exhibit generalized paroxysmal fast activities or dif-
fuse voltage attenuation with associated sharp and 
slow-wave complexes. Myoclonic seizures often 
companies with 10 to 15 Hz polyspikes and slow 
waves. Generalized atonic seizures may show 2–3 
Hz spike-wave discharges or may not be associated 
with any EEG change.

However, the EEG may not capture all of the ictal activ-
ities because the technique limitations. For example, 
the skull and scalp may filter out some frequency wave-
forms, and the placement of recording electrodes may 
shift the distance and orientation of the seizure focus. 
Despite the limitations, seizures recorded by EEG can 
provide helpful information regarding the seizure type 
and focus.

3 � Related work
The advance in machine learning boost its application 
in biomedical related field. Seizure detection have been 
widely studied from different perspectives and using dif-
ferent features. For seizure detection the discriminative 
features consist of morphological, biological and rhyth-
mical features. Morphology features are used to detect 
and differentiate the components of amplitude and fun-
damental frequency in EEG waveform [4, 22]. Biologi-
cal features, such as synchronization likelihood, help to 
distinguish epileptic seizure activities from non-epileptic 
background activities [23]. Rhythmical characteristics 
include features in time, frequency or combined domain. 
In addition, to fit the non-linear and non-stationary 
nature of brain signals and capture the changes reflected 
in EEG, research has been made to include magnitude 
components of signal in time domain [24], spectral rep-
resentation, magnitude from signals in frequency domain 
[5, 25], and time–frequency domain features [26, 27].

Table 1  Seizure type description

Seizure types Seizure subtypes Description

Generalized seizure (GNSZ) Absence seizure (ABSZ) Short and brief disturbance of consciousness

Myoclonic seizure (MYSZ) Brief and sudden arrhythmical jerks of muscles

Atonic seizure (ATSZ) Sudden loss of muscle tone in limb, neck, and trunk

Tonic seizure (TNSZ) Sudden stiffness of the limbs or trunk

Clonic seizure (CNSZ) Rhythmical jerking/shivering of muscles

Tonic–clonic seizure (TCSZ) Bilateral symmetric convulsive movements of limbs with the impediment of conscious-
ness

Focal seizure (FNSZ) Simple partial seizure (SPSZ) Awareness is retained and patients are able to describe motor/sensory

Complex partial seizure (CPSZ) Consciousness is impaired and patients are not able to respond to tactile/verbal stimuli



Page 7 of 31Wang and Mengoni ﻿Brain Informatics            (2022) 9:11 	

In this section, we first introduce previous works of 
frequency bands’ role related to brain functionality for 
abnormal EEG detection. Later we will present the sei-
zure classification approaches for EEG channel selec-
tion with noise and computational power reduction.

3.1 � Frequency bands selection
Traditional signal processing techniques are being 
applied for extracting the morphology patterns that con-
stitute an epileptic seizure. Epileptic EEG recordings of 
the spike and sharp-wave complexes can be easily distin-
guished by morphological characteristics of waveforms’ 
amplitude, shape, and duration. The grounding idea is 
the geometric difference between spikes and background 
activities such as the slope’s distinctive attributes and 
sharpness, height, and length of waves. In morphologi-
cal analysis, EEG waves are often decomposed to smaller 
physical parts like two opposite half-waves [28–30], and 
structure divergence of background activities and spikes 
complex can be observed.

One of the first automated seizure detection algorithms 
developed by Gotman in 1982 [4] analyzed signals mor-
phologically. Their system first breaks down EEG sig-
nals to half-waves and searches for morphology-based 
features, particularly the epileptiform spike- and sharp-
waves in the recording of 16 bipolar channels. They 
applied frequency thresholds between 3 and 20 Hz and 
relative amplitude with a dynamic baseline of background 
window in time domain features. A seizure is declared 
when the degree of rhythmicity for at least two channels 
exceeds the thresholds and lasts for four seconds. The 
algorithm successfully detected seizures with rhythmic 
activities with a determined threshold, but the algorithm 
fails when seizures consist of a mixture of frequencies 
or amplitude. Moreover, since rhythmic activity can be 
induced by normal or artifact bursts other than patho-
logic, the algorithm’s detection may not be associated 
with seizures. Further studies found that the key to mor-
phological analysis is to select a proper filter, restraining 
the background activities while retaining spikes. Nishida 
et al. [22] presented a detection method using a morpho-
logical filter, with the basic algorithm of open-closing 
morphological operation and structure elements of sec-
ond-order polynomial functions. Pon et al. [31] proposed 
a mathematical morphology approach plus wavelet trans-
form to detect bi-directional spikes with a circle struc-
ture element. Xu et al. [32] improved morphological filter 
with differences of their geometric characteristics to sep-
arate spikes from background activities. EEG enhance-
ment strategies have been introduced in various works 
with the aim to better detect the spikes, to increase the 
candidate spikes, to minimize the missing seizure events, 
and to minimize the false selection [33–36].

The analysis of abnormal EEG spikes and sharps is 
the gold-standard to diagnose seizures, while the back-
ground activity has been scarcely studied. The main rea-
son is that by applying visual inspection of brain signals 
the abnormalities in background EEG (α,β , θ , δ) cannot 
be distinguished. However, studies have shown that the 
background activities contain vital information about 
function and dysfunction of the brain in human epilepsy 
[7]. The seemingly normal EEG background bands may 
include evident abnormalities that can be used as a sig-
nificant prognostic tool.

Alpha rhythm slowing in epilepsy was observed to be 
associated with mental deterioration [37]. Peak alpha 
frequency variability has been found between epilepsy 
patients and the control group, with a lower alpha fre-
quency in the epilepsy group [38]. When the depend-
encies on antiepileptic drugs are ruled out, the epilepsy 
biomarker was sensitive to alpha rhythm abnormalities 
[39]. Alpha spectral power shifts from high to low in both 
focal and idiopathic generalized epilepsy patients com-
pared to healthy subjects, indicating poorer seizure con-
trol [40]. Alpha oscillations have been used as an index to 
the cortical–subcortical brain network function abnor-
mally in photosensitivity epilepsy patients [41].

Theta signals association with epilepsy has been dem-
onstrated as well. Theta bands have been found to be 
positively related to the number of epileptic seizures in 
patients with brain tumors [42]. When monitoring inter-
ictal activities and theta oscillations in parallel, spatial 
deficits correlated with a decrease of theta power while 
non-significantly related to inter-ictal activities in rats 
model of temporal lobe epilepsy [43].

The delta oscillations have been proved to have a high 
correlation with epilepsy. The asymmetry of the delta 
signals can be used as a biomarker to identify the epilep-
togenic zone [44]. Temporal intermittent rhythmic delta 
oscillations can be a signature of focal epilepsy [45, 46]. 
The delta slow waves are often prevalent in patients with 
uncontrolled seizures [47], and inter-ictal regional delta 
slowing has also been found to correlate positively with 
temporal lobe epilepsy patients’ surgical outcomes [48, 
49].

3.2 � EEG montages selection
The EEG montages refer to the electrodes located on the 
patients’ scalp. Montages are named consistently with the 
locations of brain cerebrum, with abbreviations Fp (pre-
frontal), F (frontal), C (central), P (parietal), T (temporal), 
and O (occipital). A large number of montages (often 
ranging from 19 to over 100) are used when performing 
different tasks such as emotional response analysis, sleep 
recordings and drug effect diagnosis. For efficient analy-
sis, it is vital to pick out the montages which carry the 
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most discriminative information. Neurologist’s selection 
with prior knowledge demonstrates the effectiveness of 
seizure detection with only a small number of montages 
[12, 13]. In computer science, the selection of EEG mon-
tages is widely studied [10] for faster seizure detection 
and noise removal. However, the underlying principles 
guiding the montage’s selection by neurologist and com-
puter scientist is different. Computer scientists generate a 
subset of electrodes from whole set using various statisti-
cal measures like variance and entropy as well as using 
techniques such as power spectral estimation and wavelet 
transform. The selection made by neurologist is directed 
by the experience in diagnosing the particular disease as 
well as by the underlying knowledge of which brain areas 
generated the abnormalities in electric signals.

The montage selection has manifold objectives includ-
ing the reduction of model computational complexity 
and model overfitting. By utilizing the montage that con-
tains significant features, the associated brain areas of the 
montages can be identified. The specific regions of the 
brain contain vital information about the Seizure Onset 
Zone (SOZ) that may reflect where IEDs originate.

Several studies have shown the functional and topo-
logical change of the brain network during the inter-ictal, 
and ictal phase [50–52]. Burns et  al. [53] studied the 
network structure of epilepsy patients’ brains by con-
structing a graph with intracranial electrocorticographic 
(ECoG) recordings. The nodes are electrodes, and edges 
are node pairs with associated frequency bands’ coher-
ence weight. They found that the brain network dynam-
ics can be characterized into a finite set of states, where 
the seizures’ progress can be defined using a consistent 
sequence of the sub-states. Moreover, during the sub-
states, the nodes are separated where a subset of nodes 
are isolated, and this subset of nodes can identify SOZ 
with high sensitivity and specificity. Martinet et  al. [54] 
analyzed the brain dynamics during seizures at micro-
scopic and macroscopic level. Their results indicate that 
the distance is a vital factor: the electrical voltage of activ-
ities decrease with longer distances in spatial scales cou-
pling, and the coherence of waves propagation increase is 
dependent on distance.

With the supporting evidence of seizure related to a 
specific part of the brain cortex, further studies on sei-
zure identification unitized the information of brain 
areas with recording montage references. Using a 
subset of electrodes to distinguish seizures have been 
proved from both vivo experiments [12, 13] and sig-
nal processing by machines [14–16] to be a plausible 
approach. With the ultimate purpose of implementing 
the seizure detection models in wearable or invasive 
devices, machine learning-based automatic channel 
selection is targeted to reduce the computational cost 

of models. The typical procedure in channel selection 
consists of three steps: electrode subset generation, 
subset evaluation and result validation. Subset are first 
generated and then evaluated. Subset generation has 
been explored using complete search, sequential search, 
or experts’ generated. In literature five main approaches 
can be found for subset generation: filtering, wrapping, 
embedded, hybrid, and human-based techniques [10]. 
Truong et  al. [15] select the channels by comparing 
the spectral power and correlation in both frequency 
and time domains between the electrodes pairs. Their 
method outperforms the other methods without chan-
nel selection two times faster and maintaining the same 
level of accuracy as well as area under curve. Ibrahim 
et  al. [16] used a statistical approach in time-domain 
signals for channel selection. They sliced the data by 
using a sliding window to each 10 seconds non-overlap 
segments, then the probability density functions (PDFs) 
of derivatives, local means, local variances, and medi-
ans is calculated for each segments. The resulting mul-
tiple bins PDFs are studied individually and compared 
with the pre-defined thresholds in prediction and false-
alarm probability. After the comparison, the bins are 
selected from certain channel for seizure prediction.

4 � Dataset
In the past, seizure prediction studies using EEG sig-
nals have been limited due to insufficient standardized 
and qualified data [55]. The EEG data have often been 
acquired from Intensive Care Unit (ICU) [56], presurgi-
cal inpatient [57], animals [58], and implantable devices 
[59]. Data usefulness was limited by the relatively short 
recording duration and inter-ictal time sampling of 
patients’ and animal models’ concerns. Furthermore, 
the data were primarily held at the institutions where 
it was acquired and not made available for the commu-
nity to use.

Recently, the opening and sharing of longer-lasting 
and high-quality publicly accessible chronic EEG data-
sets, such as the CHB-MIT Dataset [60], the UPenn 
and Mayo Clinic seizure detection dataset [61], and 
the Temple University Hospital (TUH) Dataset [62], 
has made possible the advance of seizure prediction 
algorithms.

The TUH Seizure Corpus (TUSZ) assembles EEG 
data in clinical settings from archival and ongoing 
records at Temple University Hospital [63]. TUSZ is 
the most extensive open-source corpus both in terms of 
quantity and heterogeneity, with a wide variety of sei-
zure morphology in aspects of frequency, amplitude, 
and onsets. The TUSZ is organized by patient and ses-
sion in a hierarchical file tree structure. Each patient 
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folder is composed of sub-folders corresponding to 
their recording sessions. Each session has EEG sig-
nals stored in a standard European Data Format (EDF) 
and the corresponding clinician reports in text format 
(TXT) collected by certified neurologists.

4.1 � EEG data
TUSZ v1.5.2 released in May 2020 comprises 3050 sei-
zure events. More specifically, the EDF files include the 
following metadata: anonymized patient ID, age (in 
years), gender, recording date, and per-channel infor-
mation (labels, sample frequency, channel physical 
dimension/min/max, prefiltering channel conditions). 
It is also worth noting that the EDF files include a vary-
ing quantity of channels and sampling rate [62], where 
channels consist of EEG-specific channels coupled with 
supplemental channel information such as detected 
bursts and photic stimuli. EEG signals have been sam-
pled at 250 Hz, 256 Hz, 400 Hz, or 512 Hz.

The EEG data of each patient include information 
about: (i) assigned numbering: patient ID, the session 
numbers of each patient, the file numbers of each ses-
sion, filename (consist of electrode reference, patient, 
session, and file IDs); (ii) EEG type and subtypes: Epi-
lepsy Monitoring Unit (EMU), Intensive Care Unit 
(ICU) including eight subtypes (burn unit, cardiac 
intensive care, intensive care unit, neuro-ICU facil-
ity, neural surgical ICU, pediatric intensive care unit, 
respiratory intensive care unit, surgical intensive care 
unit), inpatient but not ICU (Inpatient) including three 
subtypes (emergency room, operating room, Inpatient 
but not ICU or outpatient), routine EEGs (Outpa-
tient), EEG report is not informative (Unknown); (iii) 
EEG label: LTM-or-Routine, Normal-or-Abnormal; (iv) 
description of seizures: number of seizures/file, num-
ber of seizures/session, seizure start time, seizure stop 
time, seizure type.

In this study, we use four selected categories: filename 
for extracting the data, seizure types for clusters, seizure 
start and stop time for ictal/inter-ictal label. TUSZ con-
tains three types of electrode reference, all constructed 
from neutral record listed in Table  2. Here the 03_tcp_
ar_a is 01_tcp_ar without electrode A1, A2 that connect 
to the left ear and right ear. The three types of electrode 
references used to record brain signals in TUSZ have 
fundamental hardware and interpretation differences as 
described in . This variability in referential montages may 
affect the performance of machine learning algorithms 
[64].

Statistical analysis has been performed to investi-
gate the latent divergence caused by three electrodes 

reference in TUSZ. For selecting the suitable subjects 
that can exclude the variation caused by individual differ-
ence, seizure type, and health state, filters are applied as 
follows: (1) subjects need to have recordings from three 
different electrode references for parallel comparison; (2) 
subjects need to have same EEG type, which means same 
health state; (3) recording files do not contain seizures, as 
seizures alter the recorded signals. Two particular sub-
jects with patient ID 4671 and 6514, both with EEG type 
as ICU, have been selected for this analysis.

The statistical variation is measured in three domains of 
amplitude, time correlation, and frequency correlation with 
mean, standard deviation (STD), minimum, and maximum. 
Before the measurements are taken, data are pre-processed 
by resampling and unit scale normalization. Fast Fourier 
transform (FFT) is applied to transform data in the time 
domain to the time–frequency domain. The correlation in 
time and frequency is calculated by taking eigenvalues on 
the correlation coefficients matrix. The result is provided 
in Table 3. From the table, it is clear that for the three types 
of electrode references, the mean and standard deviation 
greatly deviated in the amplitude domain, but the basic sta-
tistics remain at the same level in time and frequency corre-
lation. The results suggest that the recordings from the three 
types of electrode references have high inter-variability and 
low intra-variability. Thus, the classification is performed 
under each electrode reference, respectively.

Table 2  Electrode reference description and events count by 
seizure type in TUSZ

Electrode reference Seizure types Seizure events

01_tcp_ar GNSZ 428

ABSZ 2

MYSZ 1

TNSZ 62

TCSZ 28

FNSZ 1070

SPSZ 52

CPSZ 138

02_tcp_le GNSZ 87

ABSZ 97

MYSZ 2

TCSZ 16

FNSZ 231

CPSZ 83

03_tcp_ar_a GNSZ 68

TCSZ 4

FNSZ 535

CPSZ 146
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4.2 � Textual data
The clinical reports provided together with the signal file 
in TUSZ are critical for seizure diagnosis. This feature 
renders the TUSZ unique of its kind as no other data-
set provides the information. The clinical reports docu-
ment medics’ knowledge of the patients. The information 
given contains introduction, clinical history, medications, 
record description, and seizure impression. Primary 
exploration and further feature extraction have been 
applied to textual data to utilize the text information 
delivered in the reports. Term Frequency–Inverse Docu-
ment Frequency (TF-IDF) in Natural Language Process-
ing (NLP) has been carried out to calculate pairwise 
similarity among the clinical reports of different seizure 
types, the calculated similarity heatmap is shown Fig. 4.

Moreover, top frequency words by TF-IDF are 
recorded and compared for every seizure type. Full list 
of top 50 keywords can be found in Tables 11 and 12 in 
Appendix. From the list four common observations can 
be made based on the terms with high occurrence: (1) 
general words: seizure, activity, EEG, clinical, record/
recording, etc.; (2) descriptive words of seizures: spike, 

sharp, complex, discharge, etc.; (3) location words: right, 
left, frontal, temporal, hemisphere, posterior, anterior, 
etc.; and (4) background signal frequency words: alpha, 
beta, theta, delta (δ, θ ,α,β).

For observations (1) and (2), it is self-evident these 
words are frequent in clinical reports to describe the 
abnormal brain signals which lead to a seizure event 
and no more information can be derived. Nevertheless, 
the (3) and (4) are the informative terms that carry the 
knowledge of what the medics are inspecting on the 
given EEG signals and how they would ultimately diag-
nose the seizure. For example, some of the descriptions 
of the record from the clinical reports are quoted here: 
“A prominent increase in beta noted at 3 a.m.”, “A status 
epilepticus pattern with prominent epileptiform activity 
from the right occipital and temporal region.”, “There is 
a posterior dominant rhythm of 8 Hz, 30 to 50 V with a 
small amount of low voltage, frontocentral beta activity.”. 
The description reflects the thinking process of experts 
when they examine the EEG data. To mimic the thinking 
flow of medics when dealing with seizures, we designed 
a classification framework that aims to classify the ictal/
inter-ictal state in a similar way. The process is intro-
duced in Sect. 5.

5 � Methodology
This study aims to mimic the reasoning process of med-
ics when they diagnose seizures and integrate the expert’s 
knowledge into the classification process when classify-
ing ictal/inter-ictal signals. Ultimately, the goal is to build 
a personalized seizure classification system. Not all the 
EEG signals are essential when identifying seizures from 
observation and using common sense. In many stud-
ies, the focus is on identifying signs of seizures from the 
seemingly abnormal waveforms like the spike and sharp 
waves. Nevertheless, as discussed in Section , previous 
works have demonstrated how the seemingly normal 
background bands play an important role when diagnos-
ing seizures and how different areas of the brain are acti-
vated when a seizure happens.

Experiments are designed with pre-process of input 
data, including time–frequency data transformation, 
language-signal mapping, inputs selection, and classifier 
evaluation as shown in Fig. 5.

Table 3  Basic statistics of amplitude, time correlation and frequency correlation

Amplitude Time correlation Frequency correlation

Mean STD Min Max Mean STD Min Max Mean STD Min Max

01_tcp_ar − 7.4 219.4 − 5482 5482 − 0.04 0.29 − 0.71 0.68 − 0.05 0.05 − 0.11 0.17

02_tcp_le − 35.2 55.42 − 981 4100 − 0.04 0.22 − 0.53 0.65 − 0.04 0.18 − 0.32 0.77

03_tcp_ar_a 1.31 173.6 − 5482 5482 − 0.04 0.25 − 0.71 0.72 − 0.05 0.11 − 0.21 0.54

Fig. 4  Similarity matrix heatmap of seizure types by clinical reports
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5.1 � Time–frequency transformation
Several methods are available to perform time–frequency 
transformation of signals, such as wavelet transform and 
short-time Fourier transform (STFT). Previous studies 
have shown that STFT should be preferred over wavelet 
transform for determining epileptic seizure activity in 
real-time [65]. STFT is used for spectral analysis of EEG 
signals and it can transform signals between the time and 
frequency domain due to its timeshift invariant. Specifi-
cally, for every chunk of signals in the time domain by 
sliding window, the one-dimensional Fourier transform is 
applied, resulting in a two-dimensional time–frequency 
representation of the signal. Sliding windows are used 
to partition time-series data into a finite number of seg-
ments. The window length is the trade-off between spec-
tral and temporal resolution, where the longer window 
preserves more spectral information and less temporal 
information. The window length is analyzed with sliding 
action in time and the changes of spectral behaviors in 
each block are observed locally. Different sliding window 
lengths are tested and determined to balance time and 
frequency resolution in this study. Finally, fixed-width 
sliding windows of 2 s with 50% overlap are implemented 
in this study. The number of samples per window is 
related to the specific sampling rate (250 Hz, 256 Hz, 400 
Hz, or 512 Hz) of the specific recording file.

5.2 � Natural language mapping of signals
Frequency domain EEG signals are further filtered to 
detect seizures based on knowledge and build a resource-
utilized classifier. More specifically, information from 
the clinical reports is extracted and mapped on the EEG 
signals.

Basic Natural Language Processing (NLP) techniques 
are used. First, the noise like punctuation is removed, 
then sentences are tokenized into a list of words. After 
that, each token was converted to lower case for more 
accurate selection purposes. Finally, two lists of key-
words are targeted: background frequency bands (alpha, 
beta, theta, delta, gamma) and zones of brain areas (pre-
frontal, frontal, temporal, parietal, occipital, central). At 
the end of the NLP pipeline we will produce the two lists 
of words from each patient documents if the above key-
words and their variants are present.

The signals are then mapped using the extracted lists 
of sub-bands and sub-zones for the classification pro-
cess. The band list mapping is guided by the frequency 
range of alpha (8–12 Hz), beta (12–30 Hz), theta (5–8 
Hz), delta (0.1–5 Hz), and gamma (30–50 Hz). The zone 
list is guided by the annotation of the “10-20 system” of 
Fp (pre-frontal), F (frontal), C (central), P (parietal), T 
(temporal), and O (occipital). The mapping is performed 

Fig. 5  Classification process flowchart. Feature extraction can be one of six different modules and may include different levels of sub-zone and/or 
sub-band filters
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at the individual patients’ level, and the correspond-
ing frequency signals can be extracted from individual 
patients’ EDF files. The extracted keywords cluster of 
sub-bands and sub-zones by each seizure type are shown 
in Sect. 6.1.

5.3 � Inputs selection
In order to compare the efficiency and resource utiliza-
tion of the mapped signals, six types of input data were 
tested: 

(1)	 Zoned selected bands: selected electrodes and 
selected frequency bands extracted from clinical 
reports;

(2)	 Selected bands: input selected frequency bands 
extracted from clinical reports;

(3)	 Zoned background bands: selected electrodes and 
background frequency bands;

(4)	 Background bands: input background frequency 
bands;

(5)	 Zoned whole frequency: selected electrodes and 
whole frequency range without any selection.

(6)	 Whole frequency: input whole frequency range 
without any selection.

The “Zoned” feature extraction (approaches n. 1 and 
n. 3) use selected electrodes (Fp, F, C, P, T, O) corre-
sponding to the brain zones (pre-frontal, frontal, cen-
tral, parietal, temporal, occipital). The “Selected Bands” 
feature an extraction (approaches n. 1 and n. 2) use 
selected frequency sub-bands (selection of δ, θ ,α,β , γ ). 
The approaches n. 3 and n. 4 evaluate the role of all 
background band signals (δ, θ ,α,β , γ ) in seizure and 
normal conditions. Approach n. 1 evaluates the classifi-
cation power using the data points as limited as possible. 
Approaches n. 6 use all available data points without fur-
ther selection, including abnormal seizure waveforms like 
spikes and sharps.

5.4 � Classification models
In this work, we apply both traditional machine learning 
and deep learning models for the seizure classification. 
The traditional machine learning models Random For-
est (RF) and Support Vector Machines (SVM) are utilized 
due to their ability of better handle imbalanced datasets, 
the need of fewer resources. The deep learning model 
include a multi-layer perceptron (MLP) artificial neural 
network with various topologies.

Random Forest (RF) [66]: The RF classifier is formed 
by a combination of tree classifiers. Each of the trees is 
formed by a random vector selected separately from the 

input vectors. Each tree appoints a unit vote for one most 
sampled classes to classify an input vector. Because RF 
is a tree-based ensemble where the final classification is 
then made of a majority vote yielded by each ensemble 
of trees, a RF may be defined as a group of Decision Tree 
(DT). Each instance in the dataset is classified by each 
tree. The final classification decision is made by averaging 
the probabilities of class assignment by produced trees. 
An unlabeled instance is evaluated by all DTs created in 
the ensemble, and each DT votes for a class, the most 
voted class will be the final classification decision of the 
instance. The tree’s growth each time towards the maxi-
mum depth using a combination of data features. Thus, 
by growing RF to the set number of trees, the algorithm 
generates trees with high variance and low bias.

Support Vector Machine (SVM) [67]: The SVM decides 
the separation between two classes by separating obser-
vations with an optimal hyperplane using statistical 
theory. In linear separable classes, the optimal hyper-
plane is the one that gives the widest margin of the two 
types. Margin is measured by the vectors that are clos-
est to the hyperplane. Therefore, the vectors are named 
‘support vectors’ and are have a shorter distance from the 
hyperplane than other vectors in the class. SVM focus on 
maximizing the margin and minimizing the misclassi-
fied vectors. A self-defined tuning parameter in practice 
restrains the trade-off between them. Maximizing the 
margin can be solved using optimization techniques like 
standard Quadratic Programming (QP). In non-linear 
separable classes, the optimal hyperplane is determined 
in a higher-dimensional feature space where the classes 
can be separable linearly. Kernels project functions that 
allow SVM to find optimal hyperplanes in higher-dimen-
sional space without knowing the explicit transformation 
and construction. A Radial-Basis Kernel (RBF) is one 
of the most popular non-linear mapping functions. The 
decision region of an RBF can be the union of several dis-
joint areas. Since the determination of the optimal hyper-
plane in its associated high-dimensional feature space 
yields non-linear decision boundaries that may be neces-
sarily discontinuous.

Multi-Layer Perceptron (MLP) [68]: The MLP is an 
artificial neural network feed-forward model consisting 
of three types of layers: one input layer, one output layer, 
and at least one hidden layer. Each layer is composed 
of simple computational units called neurons. Neu-
rons between layers are interconnected. The input layer 
receives the data and passes the data to the first hidden 
layer. The output layer could be a list of categories or sig-
nals mapped to the input data. The hidden layers mini-
mize the loss of the model by adjusting each neuron’s 
weights and biases and extracting the salient features 
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that have a predictive power of the output. Nonlinear 
and continuously differentiable activation functions are 
applied at each hidden layer to transform the data and 
decide whether the neuron needs to be activated or not. 
Rectifier Linear Unit (ReLU) is now used as a default acti-
vation function. It has a lower running time and reduced 
likelihood of vanishing gradient, which is a problem 
often seen in other activation functions like sigmoid and 
hyperbolic tangent (tanh).

6 � Experiments
In this section we present the experiment results. The 
results include the aggregation of keywords extracted 
with NLP, the seizure classification with six different 
inputs, and the ablation study.

6.1 � Natural language keywords aggregation
Table  4 reports on the sub-band keyword’s aggregation 
for each seizure type. Table  5 reports the electrode ref-
erence brain zones aggregation of keywords. We count 
the binary appearance of keyword in each clinical report 
(e.g., if a keyword occurs more than once in one report 

the count is one). Each seizure type contains a varying 
number of clinical reports that affects the number of 
discovered keywords. A useful additional indicator for 
analysis is the proportion of the keywords of specific sub-
band and electrode reference zones indicated by the rela-
tive percentage in brackets.

From the natural language processing we obtain inter-
esting information about the clinical reports. We can 
find that the GNSZ clinical reports are characterized by 
Theta and Beta frequency bands together with Tempo-
ral (T) and Frontal (F) electrode references. FNSZ clini-
cal reports point to Delta and Theta bands maintaining 
the same Temporal (T) and Frontal (F) brain reference 
zones with varying relative percentages comparing to 
GNSZ. We can also notice that the Gamma frequency 
band is not present in many reports, just a small percent-
age (0.9%) of the big set FNSZ contains this information. 
The brain zone references electrodes are evenly present 
in different reports with the exception of pre-frontal (Fp) 
electrodes that are only found in 0.2% of FNSZ reports.

In the following experiments, a fixed number of elec-
trodes for every patient have been selected as ground-
ing. Electrode references 01_tcp_ar and 02_tcp_le 
contain 21 electrodes in total and five electrodes (A1, 
A2, CZ, C3, C4) have been used as fundamental for all 
the patients. The electrode reference 03_tcp_ar_a con-
tains 19 electrodes in total and three electrodes (CZ, 
C3, C4) have been selected.

6.2 � Seizure classification
6.2.1 � Experimental settings
In the classification experiments presented in this 
work, the “positive class” is the inter-ictal EEG phase 
where no seizure happens, and the “negative class” 
is the ictal EEG signals where seizures are observed. 
Training of the classifiers has been performed using 
fivefold cross-validation, where the dataset is split in 

Table 4  Clusters of frequency bands selected from keywords in 
clinical reports

Seizure type Number of frequency bands (relative %)

Alpha Beta Theta Delta Gamma

GNSZ 35 (14.6) 69 (28.75) 50 (35.8) 86 (20.8) 0

ABSZ 5 (20.0) 5 (20.0) 6 (24.0) 9 (36.0) 0

MYSZ 3 (50) 0 1 (16.7) 2 (33.3) 0

TNSZ 0 28 (73.7) 1 (2.6) 9 (23.7) 0

TCSZ 9 (20.9) 15 (34.9) 11 (25.6) 8 (18.6) 0

FNSZ 254 (15.6) 299 (18.3) 524 (32.1) 538 (33.0) 15 (0.9)

SPSZ 0 5 (33.3) 5 (33.3) 5 (33.3) 0

CPSZ 55 (28.9) 21 (11.1) 73 (38.4) 41 (21.6) 0

Table 5  Clusters of electrode references selected from keywords clinical reports

Seizure type Number of brain zone reference (relative %)

Fp F T P O C

GNSZ 0 48 (27.1) 76 (42.9) 7 (4.0) 21 (11.9) 25 (14.1)

ABSZ 0 31 (47.0) 7 (10.6) 6 (9.1) 10 (15.2) 12 (18.2)

MYSZ 0 2 (100) 0 0 0 0

TNSZ 0 20 (24.4) 27 (32.9) 8 (9.8) 0 27 (32.9)

TCSZ 0 22 (35.5) 19 (30.6) 1 (1.6) 6 (9.7) 14 (22.6)

FNSZ 2 (0.2) 348 (25.6) 397 (29.2) 156 (11.5) 218 (16.1) 237 (17.5)

SPSZ 0 0 1 (14.3) 1 (14.3) 4 (57.1) 1 (14.3)

CPSZ 0 40 (24.1) 48 (28.9) 21 (12.7) 15 (9.0) 42 (25.3)
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5 non-overlapping parts. For each fold four parts are 
used for training of the classifier and one for validation 
of the results. For additional robustness of the results, 
the evaluation metrics are measured with the average 
of each fold.

6.2.2 � Evaluation metrics
Seizure detection is a binary classification problem. The 
experiments’ results have been evaluated using accu-
racy (ACC), area under curve (AUC), sensitivity (TPR), 
and specificity (TNR) scores. Given the basic statistics 
of true positive (TP) that measures when the predicted 
seizure corresponds to a seizure in the dataset, false 
positive (FP) measurement of the predicted seizure is 
non-seizure in the dataset, true negative (TN) measur-
ing the predicted non-seizure that is non-seizure, and 
false negative (FN) that measures when the predicted 
non-seizure is a seizure. The evaluation metrics can be 
calculated using above measures as follows:

•	 Accuracy (ACC): TP+TN

TP+TN+FP+FN
 , the ratio of pre-

dicted seizures and non-seizure to the total number 
of samples;

•	 Sensitivity/true positive rate (TPR): TP

TP+FN
 , the 

ratio of predicted seizures to the total number of 
seizures;

•	 Specificity/true negative rate (TNR): TN

TN+FP
 , the ratio 

of predicted non-seizures to the total number of 
non-seizures samples;

•	 AUC: area under the TP

TP+FN
 and FP

FP+TN
 curve, a prob-

ability value ranging from 0.5 to 1.

6.2.3 � Model performance
After the NLP extraction of textual data and EEG map-
ping of EDF data, seizure signals are classified by using 
the six inputs described in Section .

The model parameters have been tested in multiple 
configurations. For RF, the total number of trees to be 
generated by the model has been set to 100. The model 
was also tested with 50 trees, where the model was 
found to be overfitting, and 150 trees, parameter that 
increased the execution time with minor improvements 
of the results. The minimum split of each tree was eval-
uated at the default value of 2 and with the parameter 
set to 5. However, since the dataset is large, when using 
the parameter set to 2 the model was underfitting, thus 
the minimum split of 5 performs better. To evaluate the 
quality of the split, we select the entropy measure as it 

is more sensitive to impurity and fit the data better than 
GINI index. For SVM, given non-linearly separable data, 
RBF kernel was selected. The regularization parameter 
(lambda) between 500 to 1200 and kernel coefficient 
(gamma) between 1e−10 to 10 were tested using grid-
search. The model performs well with tight margin (high 
lambda value), but overfitting is detected when the influ-
ence of the support vectors have a large radius of the 
area (high gamma value). The regularization parameter 
of 1000 and kernel coefficient of 1e−9 were selected also 
taking in consideration of computational time. For MLP, 
the model was tested with 1 to 3 hidden layers and num-
ber of neurons at each layer from 16 to 1024. When try-
ing to balance the fit of the model, one hidden layer with 
256 neurons was found to perform the best. The other 
parameters were set to the default settings of the scikit-
learn library. We omit the complete results, listing below 
the detailed summary of the model parameters used in 
the experiments:

•	 RF: A random forest classifier with entropy impurity, 
number of trees set to 100 and minimum number of 
sample split set to 5;

•	 SVM: A support vector machine classifier with RBF 
kernel, regularization parameter of 1000 and kernel 
coefficient of 1e−9.

•	 MLP: A multi-layer perceptron classifier with a sin-
gle hidden layer with 256 neurons, ReLU activation 
function, Adam weight optimizer, regularization 
parameter of 1e−4.

The performance of sub-bands selection is listed in 
Table 6. The results of sub-zones selection are listed in 
Table 7. The data sample size and recording time dura-
tion (in seconds) of the six inputs are listed for three 
different electrode references in Table  9. In Table  8, 
the results of both sub-bands and sub-zones with six 
inputs of seizure type GNSZ are present as a represent-
ative sample. In this section, we present the results of 
the four seizure types GNSZ, TCSZ, FNSZ and CPSZ 
that are the most sizeable in the dataset. The results of 
seizure types ABSZ, MYSZ, TNSZ, SPSZ are listed in 
Appendix.

6.3 � Ablation study
We performed an ablation study for the pre-defined 
electrodes in the zone list when classifying the seizures. 
More specifically, only five electrodes (A1, A2, CZ, C3, 
C4) are used for 01_tcp_ar and 02_tcp_le, and three 
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electrodes (CZ, C3, C4) are used for 03_tcp_ar_a to 
conduct the experiments. The results of the study are 
shown in Table 10.

The objective for ablation study is threefold. Firstly, to 
evaluate the effectiveness of the zone selection by com-
paring the results with selected zones performance as 
shown in Table 6. Secondly, to assess the classification 
results by the essential zones of seizures as reported 
in previous studies [12, 13]. Thirdly, to provide the 

ground electrodes data for patients recording that does 
not have a specific description of zones in the clinical 
report. The pre-defined electrodes are consistent across 
all seizure types. The results can be compared both hor-
izontally across seizures and vertically within seizures. 
By observing from Table 10, it is clear all four major sei-
zure types have no data in set_zoned_selected_bands. 
Further, for 03_tcp_ar_a, both selected bands and back-
ground bands have no data samples. Distinguishing the 

Table 6  “Selected Bands” performance metrics of seizure types GNSZ, TCSZ, FNSZ, CPSZ

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

GNSZ 01_tcp_ar Selected_bands 0.936 0.972 0.669 0.99 0.933 0.942 0.692 0.982 0.88 0.914 0.757 0.906

Background_bands 0.953 0.985 0.808 0.988 0.921 0.942 0.638 0.989 0.931 0.955 0.801 0.962

Whole_frequency 0.97 0.993 0.894 0.989 0.947 0.969 0.791 0.985 0.951 0.975 0.86 0.973

02_tcp_le Selected_bands 0.937 0.987 0.933 0.94 0.935 0.985 0.915 0.953 0.871 0.923 0.894 0.849

Background_bands 0.954 0.991 0.941 0.965 0.944 0.984 0.932 0.954 0.918 0.967 0.878 0.951

Whole_frequency 0.972 0.996 0.969 0.974 0.955 0.989 0.947 0.962 0.937 0.983 0.923 0.949

03_tcp_ar_a Selected_bands 0.955 0.982 0.667 0.991 0.949 0.947 0.707 0.979 0.944 0.938 0.755 0.967

Background_bands 0.96 0.982 0.672 0.995 0.946 0.939 0.602 0.988 0.937 0.939 0.557 0.983

Whole_frequency 0.977 0.99 0.823 0.995 0.965 0.97 0.742 0.993 0.957 0.957 0.73 0.985

TCSZ 01_tcp_ar Selected_bands 0.955 0.982 0.693 0.995 0.939 0.957 0.67 0.979 0.92 0.887 0.701 0.953

Background_bands 0.961 0.989 0.807 0.99 0.951 0.973 0.779 0.983 0.91 0.948 0.861 0.921

Whole_frequency 0.968 0.991 0.83 0.994 0.964 0.985 0.817 0.992 0.93 0.94 0.81 0.953

02_tcp_le Selected_bands 0.999 1 1 0.95 0.999 1 1 0.96 0.993 0.7 1 0.4

Background_bands 0.983 0.998 0.983 0.984 0.981 0.996 0.983 0.979 0.96 0.969 0.971 0.944

Whole_frequency 0.99 0.999 0.992 0.987 0.987 0.997 0.99 0.981 0.955 0.953 0.996 0.893

03_tcp_ar_a Selected_bands 0.976 0.997 0.8 0.994 0.971 0.986 0.856 0.986 0.958 0.984 0.884 0.966

Background_bands 0.966 0.989 0.751 0.995 0.962 0.981 0.765 0.989 0.948 0.956 0.715 0.981

Whole_frequency 0.99 0.998 0.93 0.999 0.989 0.997 0.937 0.996 0.944 0.982 0.907 0.95

FNSZ 01_tcp_ar Selected_bands 0.858 0.904 0.527 0.973 0.819 0.816 0.383 0.97 0.791 0.708 0.317 0.955

Background_bands 0.893 0.951 0.633 0.981 0.823 0.834 0.368 0.977 0.782 0.696 0.203 0.976

Whole_frequency 0.937 0.982 0.79 0.987 0.869 0.9 0.551 0.975 0.837 0.797 0.466 0.962

02_tcp_le Selected_bands 0.898 0.949 0.561 0.989 0.887 0.913 0.575 0.972 0.84 0.869 0.629 0.897

Background_bands 0.921 0.975 0.774 0.977 0.884 0.929 0.697 0.954 0.861 0.897 0.649 0.941

Whole_frequency 0.956 0.99 0.877 0.986 0.913 0.954 0.773 0.965 0.897 0.941 0.741 0.956

03_tcp_ar_a Selected_bands 0.918 0.955 0.623 0.981 0.887 0.904 0.481 0.973 0.855 0.864 0.266 0.98

Background_bands 0.891 0.949 0.647 0.968 0.848 0.887 0.535 0.948 0.829 0.829 0.405 0.964

Whole_frequency 0.932 0.977 0.797 0.974 0.886 0.929 0.687 0.949 0.874 0.909 0.587 0.964

CPSZ 01_tcp_ar Selected_bands 0.901 0.963 0.869 0.925 0.884 0.945 0.84 0.917 0.811 0.875 0.652 0.928

Background_bands 0.935 0.982 0.88 0.967 0.897 0.954 0.807 0.949 0.878 0.925 0.771 0.94

Whole_frequency 0.961 0.992 0.933 0.977 0.929 0.973 0.878 0.959 0.902 0.953 0.826 0.946

02_tcp_le Selected_bands 0.874 0.946 0.748 0.937 0.871 0.922 0.733 0.94 0.759 0.806 0.613 0.833

Background_bands 0.933 0.982 0.88 0.962 0.919 0.966 0.86 0.952 0.842 0.913 0.818 0.855

Whole_frequency 0.959 0.992 0.927 0.977 0.938 0.978 0.886 0.967 0.9 0.949 0.791 0.96

03_tcp_ar_a Selected_bands 0.871 0.933 0.604 0.97 0.839 0.883 0.61 0.924 0.734 0.753 0.596 0.786

Background_bands 0.926 0.974 0.759 0.982 0.9 0.943 0.714 0.963 0.884 0.918 0.643 0.964

Whole_frequency 0.968 0.993 0.908 0.988 0.944 0.977 0.851 0.975 0.929 0.967 0.803 0.972
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same columns in Table 10 and Table 6, it is possible to 
recognize the potential of selected electrodes besides 
the pre-defined ones. The whole frequency data abla-
tion results are promising, reveal the power of the 
essential electrodes, and confirm the results when com-
pared to previous studies.

7 � Discussion
The classification experiment in the study evaluated 
two main type (sub-bands and sub-zones) with six pre-
defined inputs (Zoned Selected Bands, Selected Bands, 
Zoned Background Bands, Background Bands, Zoned 
Whole Frequency, Whole Frequency) to answer the three 
research questions.

Table 7  “Selected Zones” performance metrics of seizure type GNSZ, TCSZ, FNSZ, CPSZ

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

GNSZ 01_tcp_ar Zoned_selected_bands 0.935 0.97 0.658 0.991 0.927 0.93 0.613 0.991 0.917 0.912 0.655 0.971

Zoned_background_bands 0.948 0.983 0.8 0.984 0.92 0.945 0.65 0.985 0.923 0.949 0.791 0.955

Zoned_whole_frequency 0.968 0.992 0.888 0.987 0.935 0.964 0.732 0.984 0.953 0.975 0.844 0.979

02_tcp_le Zoned_selected_bands 0.948 0.99 0.938 0.956 0.949 0.99 0.932 0.964 0.913 0.962 0.947 0.883

Zoned_background_bands 0.959 0.993 0.955 0.962 0.945 0.985 0.931 0.956 0.93 0.979 0.898 0.956

Zoned_whole_frequency 0.971 0.996 0.969 0.974 0.946 0.985 0.935 0.955 0.948 0.989 0.939 0.955

03_tcp_
ar_a

Zoned_selected_bands 0.958 0.983 0.673 0.994 0.941 0.935 0.632 0.979 0.936 0.919 0.688 0.967

Zoned_background_bands 0.962 0.981 0.694 0.995 0.932 0.916 0.434 0.992 0.941 0.944 0.578 0.985

Zoned_whole_frequency 0.972 0.987 0.802 0.993 0.952 0.954 0.609 0.994 0.962 0.972 0.744 0.988

TCSZ 01_tcp_ar Zoned_selected_bands 0.952 0.98 0.689 0.992 0.938 0.961 0.667 0.979 0.909 0.877 0.705 0.94

Zoned_background_bands 0.961 0.989 0.795 0.992 0.955 0.977 0.794 0.986 0.941 0.93 0.765 0.974

Zoned_whole_frequency 0.967 0.99 0.832 0.992 0.955 0.978 0.766 0.991 0.937 0.944 0.774 0.967

02_tcp_le Zoned_selected_bands 0.999 0.979 1 0.96 0.999 1 1 0.96 0.997 0.979 0.997 0.96

Zoned_background_bands 0.98 0.998 0.979 0.983 0.98 0.996 0.981 0.978 0.961 0.974 0.972 0.944

Zoned_whole_frequency 0.989 0.999 0.99 0.987 0.985 0.998 0.984 0.987 0.98 0.988 0.984 0.974

03_tcp_
ar_a

Zoned_selected_bands 0.978 0.997 0.83 0.995 0.982 0.994 0.931 0.988 0.965 0.952 0.797 0.986

Zoned_background_bands 0.975 0.991 0.829 0.996 0.969 0.976 0.839 0.987 0.937 0.938 0.757 0.962

Zoned_whole_frequency 0.98 0.991 0.865 0.996 0.976 0.985 0.833 0.996 0.935 0.969 0.894 0.94

FNSZ 01_tcp_ar Zoned_selected_bands 0.86 0.908 0.516 0.98 0.799 0.779 0.273 0.982 0.782 0.723 0.231 0.973

Zoned_background_bands 0.893 0.947 0.636 0.979 0.822 0.826 0.360 0.978 0.818 0.783 0.419 0.952

Zoned_whole_frequency 0.925 0.979 0.801 0.980 0.862 0.887 0.530 0.973 0.860 0.862 0.550 0.965

02_tcp_le Zoned_selected_bands 0.912 0.963 0.656 0.982 0.897 0.934 0.652 0.964 0.867 0.876 0.601 0.939

Zoned_background_bands 0.922 0.973 0.784 0.974 0.886 0.931 0.704 0.955 0.88 0.925 0.689 0.952

Zoned_whole_frequency 0.956 0.99 0.887 0.983 0.914 0.96 0.767 0.969 0.931 0.974 0.841 0.965

03_tcp_
ar_a

Zoned_selected_bands 0.912 0.953 0.592 0.98 0.869 0.885 0.37 0.976 0.847 0.781 0.206 0.984

Zoned_background_bands 0.893 0.949 0.663 0.966 0.82 0.862 0.37 0.962 0.798 0.763 0.225 0.979

Zoned_whole_frequency 0.921 0.97 0.783 0.964 0.863 0.913 0.581 0.952 0.892 0.936 0.692 0.956

CPSZ 01_tcp_ar Zoned_selected_bands 0.91 0.97 0.903 0.915 0.888 0.949 0.862 0.907 0.849 0.926 0.747 0.925

Zoned_background_bands 0.927 0.978 0.876 0.956 0.866 0.934 0.757 0.929 0.865 0.924 0.72 0.948

Zoned_whole_frequency 0.955 0.991 0.923 0.974 0.919 0.97 0.845 0.963 0.916 0.967 0.824 0.969

02_tcp_le Zoned_selected_bands 0.914 0.972 0.844 0.949 0.912 0.959 0.823 0.957 0.83 0.878 0.753 0.869

Zoned_background_bands 0.926 0.978 0.877 0.953 0.891 0.951 0.8 0.941 0.839 0.904 0.751 0.888

Zoned_whole_frequency 0.959 0.992 0.929 0.976 0.93 0.973 0.869 0.964 0.897 0.961 0.911 0.89

03_tcp_
ar_a

Zoned_selected_bands 0.901 0.959 0.724 0.967 0.87 0.908 0.655 0.95 0.82 0.772 0.558 0.918

Zoned_background_bands 0.936 0.979 0.813 0.978 0.902 0.938 0.708 0.967 0.9 0.937 0.694 0.968

Zoned_whole_frequency 0.959 0.99 0.889 0.983 0.929 0.964 0.778 0.98 0.935 0.973 0.813 0.976
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Table 8  Performance metrics of GNSZ with “sub-bands” and “sub-zones” selection

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

01_tcp_ar Zoned_selected_bands 0.935 0.97 0.658 0.991 0.927 0.93 0.613 0.991 0.917 0.912 0.655 0.971

Selected_bands 0.936 0.972 0.669 0.99 0.933 0.942 0.692 0.982 0.88 0.914 0.757 0.906

Zoned_background_bands 0.948 0.983 0.8 0.984 0.92 0.945 0.65 0.985 0.923 0.949 0.791 0.955

Background_bands 0.953 0.985 0.808 0.988 0.921 0.942 0.638 0.989 0.931 0.955 0.801 0.962

Zoned_whole_frequency 0.968 0.992 0.888 0.987 0.935 0.964 0.732 0.984 0.953 0.975 0.844 0.979

Whole_frequency 0.97 0.993 0.894 0.989 0.947 0.969 0.791 0.985 0.951 0.975 0.86 0.973

02_tcp_le Zoned_selected_bands 0.948 0.99 0.938 0.956 0.949 0.99 0.932 0.964 0.913 0.962 0.947 0.883

Selected_bands 0.937 0.987 0.933 0.94 0.935 0.985 0.915 0.953 0.871 0.923 0.894 0.849

GNSZ Zoned_background_bands 0.959 0.993 0.955 0.962 0.945 0.985 0.931 0.956 0.93 0.979 0.898 0.956

Background_bands 0.954 0.991 0.941 0.965 0.944 0.984 0.932 0.954 0.918 0.967 0.878 0.951

Zoned_whole_frequency 0.971 0.996 0.969 0.974 0.946 0.985 0.935 0.955 0.948 0.989 0.939 0.955

Whole_frequency 0.972 0.996 0.969 0.974 0.955 0.989 0.947 0.962 0.937 0.983 0.923 0.949

03_tcp_ar_a Zoned_selected_bands 0.958 0.983 0.673 0.994 0.941 0.935 0.632 0.979 0.936 0.919 0.688 0.967

Selected_bands 0.955 0.982 0.667 0.991 0.949 0.947 0.707 0.979 0.944 0.938 0.755 0.967

Zoned_background_bands 0.962 0.981 0.694 0.995 0.932 0.916 0.434 0.992 0.941 0.944 0.578 0.985

Background_bands 0.96 0.982 0.672 0.995 0.946 0.939 0.602 0.988 0.937 0.939 0.557 0.983

Zoned_whole_frequency 0.972 0.987 0.802 0.993 0.952 0.954 0.609 0.994 0.962 0.972 0.744 0.988

Whole_frequency 0.977 0.99 0.823 0.995 0.965 0.97 0.742 0.993 0.957 0.957 0.73 0.985

Table 9  Size and recording time duration of “sub-bands” and “sub-zones” selection of seizure type GNSZ, TCSZ, FNSZ, CPSZ

GNSZ TCSZ FNSZ CPSZ

Size Time Size Time Size Time Size Time

01_tcp_ar Zoned_selected_bands 7148 26079 6632 13923 76560 335837 5560 47925

Selected_bands 12232 26079 9180 13923 179460 335837 17692 47925

Zoned_background_bands 29492 26079 16988 13923 337700 335837 36548 47925

Background_bands 66880 26079 36576 13923 895984 335837 123936 47925

Zoned_whole_frequency 295264 26079 134316 13923 2562332 335837 331404 47925

Whole_frequency 490224 26079 234024 13923 5098632 335837 726264 47925

02_tcp_le Zoned_selected_bands 1000 33004 500 5495 13000 58959 2500 20576

Selected_bands 4500 33004 1000 5495 33500 58959 9500 20576

Zoned_background_bands 21500 33004 3000 5495 50500 58959 14500 20576

Background_bands 56000 33004 10000 5495 120000 58959 44000 20576

Zoned_whole_frequency 125500 33004 18000 5495 309500 58959 99000 20576

Whole_frequency 294000 33004 52500 5495 630000 58959 231000 20576

03_tcp_ar_a Zoned_selected_bands 3712 34970 0 3778 6720 95778 3584 45787

Selected_bands 28320 34970 800 3778 70688 95778 23168 45787

Zoned_background_bands 18912 34970 800 3778 89920 95778 23872 45787

Background_bands 74816 34970 6400 3778 284480 95778 129152 45787

Zoned_whole_frequency 226848 34970 23200 3778 899616 95778 442336 45787

Whole_frequency 559968 34970 60800 3778 2191840 95778 1071296 45787
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The extracted keyword aggregation presented in 
Table 5 shows the importance of the recording EEG sig-
nals in frontal, temporal and central zones of the brain 
cortex. Temporal lobe electrodes often mentioned in 
clinical reports, and the term prevail in seizure type 
GNSZ, TNSZ, CPSZ, CPSZ. Besides temporal lobe, 
electrodes placed at central or frontal are carrying 
significant functions with a large proportion that may 
affect seizure classification performance. Also, the 
occurrence of the keywords in frequency bands are 

listed out in 4. Theta is predominant in GNSZ, FNSZ 
and CPSZ, while beta is often observed and mentioned 
in seizure type TNSZ and TCSZ when compared to 
other frequency bands, delta does not outweigh other 
bands for seizure classification. The two aggregations 
also show that pre-frontal brain cortex and alpha activi-
ties are often neglected in expert’s reports.

Table  6 with inputs 2, 4, and 6 aims to answer RQ1, 
namely, how selection of α,β , θ , δ, γ influence the classi-
fication. Table  7 with inputs 1 3 5 tries to answer RQ2, 

Table 10  Performance metrics of ablation study for seizure types GNSZ, TCSZ, FNSZ, CPSZ

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

GNSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.916 0.961 0.675 0.979 0.89 0.92 0.573 0.972 0.847 0.886 0.772 0.866

Set_zoned_whole_frequency 0.963 0.99 0.865 0.987 0.94 0.961 0.755 0.984 0.948 0.974 0.869 0.968

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.927 0.981 0.906 0.945 0.925 0.974 0.896 0.949 0.901 0.957 0.859 0.934

Set_zoned_whole_frequency 0.959 0.993 0.952 0.966 0.946 0.984 0.94 0.951 0.915 0.973 0.852 0.966

03_tcp_ar_a Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_whole_frequency 0.968 0.987 0.738 0.996 0.949 0.941 0.602 0.992 0.949 0.94 0.636 0.987

TCSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.957 0.987 0.824 0.989 0.958 0.971 0.869 0.98 0.93 0.923 0.835 0.953

Set_zoned_whole_frequency 0.968 0.992 0.847 0.991 0.956 0.98 0.827 0.98 0.916 0.931 0.811 0.935

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.878 0.96 0.805 0.988 0.865 0.94 0.802 0.961 0.832 0.825 0.801 0.873

Set_zoned_whole_frequency 0.986 0.998 0.986 0.986 0.987 0.998 0.989 0.983 0.976 0.988 0.972 0.981

03_tcp_ar_a Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_whole_frequency 0.978 0.993 0.846 0.996 0.976 0.986 0.872 0.99 0.952 0.949 0.724 0.984

FNSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.83 0.887 0.608 0.933 0.792 0.838 0.508 0.924 0.791 0.813 0.56 0.899

Set_zoned_whole_frequency 0.907 0.961 0.686 0.982 0.828 0.847 0.391 0.975 0.797 0.674 0.261 0.977

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.863 0.921 0.602 0.962 0.831 0.882 0.503 0.956 0.8 0.821 0.408 0.948

Set_zoned_whole_frequency 0.927 0.977 0.797 0.977 0.882 0.935 0.669 0.962 0.874 0.925 0.675 0.95

03_tcp_ar_a Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_whole_frequency 0.903 0.959 0.7 0.968 0.851 0.891 0.522 0.955 0.82 0.789 0.406 0.951

CPSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.869 0.941 0.722 0.946 0.835 0.906 0.659 0.927 0.81 0.856 0.566 0.937

Set_zoned_whole_frequency 0.947 0.987 0.912 0.967 0.911 0.961 0.833 0.955 0.876 0.935 0.745 0.952

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.88 0.95 0.769 0.941 0.855 0.92 0.767 0.904 0.728 0.824 0.736 0.729

Set_zoned_whole_frequency 0.937 0.984 0.892 0.963 0.923 0.969 0.857 0.959 0.895 0.949 0.838 0.927

03_tcp_ar_a Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_whole_frequency 0.94 0.981 0.817 0.98 0.901 0.94 0.702 0.967 0.892 0.924 0.675 0.964
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Fig. 6  GNSZ 01_tcp_ar seizure classification with Random Forest using the six data selection methodologies

Fig. 7  GNSZ 02_tcp_le seizure classification with Random Forest using the six data selection methodologies
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how selecting brain zones in addition to frequency bands 
affects the seizure classification.

With certain frequency filtered out the performance 
metrics drops in almost all the experiments, as it may be 
expected, with the exception of some minor points where 
it improved. However, for seizure classification problem, 
the measurement of accuracy and specificity does not 
play a vital role. On the other hand, important measures 
are the sensitivity refers to the model’s ability to detect 
the real seizure as positive, and AUC indicates the mod-
el’s ability to distinguish of ictal/inter-ictal. In general, the 
results of the Random Forest classifier outperforms all the 
other classification algorithms here considered. Although 
the sensitivity and AUC in sub-bands selection deviate 
from using whole frequency, the deviation of background 
frequency bands selection are acceptable given that the 
time of execution is reduced. This proved the effective-
ness of selecting background frequency bands as a poten-
tial classification approach. Channel selection results are 
more consistent, bringing to a considerately more plausi-
ble approach. Comparing the three groups of sub-bands 
(input 1 & 2, input 3 & 4, input 5 & 6), with specific elec-
trodes filtered out, the results achieve better results than 
using all the channels.

The results are more comprehensive when looking at 
both sub-bands and sub-zones selection together. The 
performance metrics of GNSZ, taken as a representa-
tive sample, are shown in Table 8 with the size of the six 
inputs listed in Table 9. The RF results are visualized in 
Fig. 6 for the reference electrodes 01_tcp_ar, in Fig. 7 for 
reference electrodes 02_tcp_le, and in Fig.  8 for refer-
ence electrodes 03_tcp_ar_a. From the charts is visually 
evident that the quantity of data is reduced significantly 
with each input configuration filters out information. 
The performance matrix for Zoned Whole Frequency 
and Whole Frequency only deviated around 0.01 for all 
the measures. The Zoned Whole Frequency approach 
achieves excellent classification results using nearly half 
of the quantity of data when compared to the Whole Fre-
quency. The results can be replicated for other seizure 
types with similar performances. Additional information 
is reported in the results table and, for seizure CPSZ, is 
visually represented in Figs. 9, 10, and 11.

8 � Conclusions and future works
In this work, we introduced a novel natural language pro-
cessing approach to predict seizure using EEG data. The 
approach is based on the efficient selection of frequency 

Fig. 8  GNSZ 03_tcp_ar_a seizure classification with Random Forest using the six data selection methodologies
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Fig. 9  CPSZ 01_tcp_ar seizure classification with Random Forest using the six data selection methodologies

Fig. 10  CPSZ 02_tcp_le seizure classification with Random Forest using the six data selection methodologies
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bands and scalp EEG electrodes to reduce the computa-
tional time and quantity of data needed for the seizure 
classification.

By analyzing the patients’ clinical reports, we inte-
grated the prior knowledge into the classifier-building 
process, mimicking the authentic thinking process of 
experts’ opinion for seizure diagnosis with EEG data. 
In particular, we classify seizure ictal/inter-ictal phases 
with three types of frequency band inputs: 1) the whole 
frequency range provided in data corpus; 2) the back-
ground frequency EEG bands (α,β , θ , δ, γ ) , and 3) the 
selected background bands based on individual’s clinical 
reports extracted by Natural Language Processing (NLP). 
Together with the frequency band selection, we addi-
tionally used the scalp EEG electrodes reduction by NLP 
analysis.

The experiment results show that by integrating prior 
knowledge from experts to build individualized seizure 
classification models, interesting results can be achieved. 
Using prior knowledge for the selection of EEG elec-
trodes and frequency bands influence the quantity of data 
that the classification model analyzed. This led to a more 

efficient classification of the input data, achieving excel-
lent results with the selection of electrodes. Mixed results 
have been achieved when selecting the frequency bands.

Using the proposed approach, we introduced a novel 
methodology for patient-specific seizure detection 
method using frequency bands and selected electrodes. 
The algorithm is computationally efficient, compared to 
the whole band classification. Results show that using the 
proposed approach may lead to more efficient implemen-
tations of the seizure classifier to be executed on power-
efficient devices for long-lasting real-time detection of 
seizures.

In future works, we will further explore the classifica-
tion of EEG using more advanced NLP techniques on 
clinical reports, to extract additional information on the 
thinking process of medics when analyzing EEG data.

Appendix
Tables  11 and 12 report the top 50 keywords extracted 
from clinical report using the Natural Language Process-
ing techniques described in narrative.

Fig. 11  CPSZ 03_tcp_ar_a seizure classification with Random Forest using the six data selection methodologies
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Table 14  Performance metric of selected bands of seizure type ABSZ, MYSZ, TNSZ, SPSZ

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

ABSZ 01_tcp_ar Selected_bands 0.995 0.994 0.593 1 0.998 0.999 0.883 0.999 0.996 0.973 0.843 0.998

Background_bands 0.998 0.999 0.883 1 0.999 0.999 0.933 1 0.998 0.974 0.909 0.999

Whole_frequency 0.997 0.965 0.833 0.999 0.998 0.999 0.833 1 0.996 0.998 0.843 0.998

02_tcp_le Selected_bands 0.994 0.997 0.92 0.996 0.994 0.996 0.923 0.996 0.988 0.958 0.895 0.992

Background_bands 0.992 0.994 0.889 0.996 0.991 0.985 0.866 0.996 0.982 0.951 0.848 0.987

Whole_frequency 0.993 0.995 0.898 0.997 0.993 0.988 0.896 0.997 0.99 0.959 0.832 0.996

MYSZ 01_tcp_ar Selected_bands 0.991 0.995 0.419 1 0.992 0.992 0.593 0.998 0.991 0.97 0.673 0.996

Background_bands 0.993 0.998 0.616 0.999 0.995 0.998 0.773 0.999 0.993 0.964 0.606 0.998

Whole_frequency 0.993 0.998 0.733 0.997 0.997 0.999 0.893 0.999 0.995 0.999 0.736 0.998

02_tcp_le Selected_bands 0.997 0.925 1 0.766 0.997 0.893 0.999 0.866 0.993 0.932 0.996 0.766

Background_bands 0.997 0.999 1 0.766 0.996 0.998 0.998 0.866 0.984 0.596 0.993 0.2

Whole_frequency 0.997 0.999 1 0.766 0.997 1 1 0.766 0.993 0.75 1 0.5

TNSZ 01_tcp_ar Selected_bands 0.942 0.876 0.279 0.996 0.938 0.838 0.313 0.989 0.887 0.753 0.395 0.928

Background_bands 0.944 0.894 0.305 0.997 0.944 0.885 0.312 0.996 0.892 0.826 0.501 0.924

Whole_frequency 0.948 0.912 0.343 0.998 0.956 0.913 0.484 0.995 0.866 0.79 0.489 0.897

SPSZ 01_tcp_ar Selected_bands 0.912 0.948 0.618 0.988 0.878 0.898 0.579 0.955 0.865 0.878 0.651 0.92

Background_bands 0.946 0.98 0.782 0.988 0.925 0.955 0.776 0.964 0.907 0.919 0.637 0.975

Whole_frequency 0.956 0.987 0.823 0.991 0.928 0.964 0.747 0.975 0.904 0.956 0.819 0.928

Table 15  Size and recording time duration of “sub-bands” and “sub-zones” selection of seizure type ABSZ, MYSZ, TNSZ, SPSZ

ABSZ MYSZ TNSZ SPSZ

Size Time Size Time Size Time Size Time

01_tcp_ar zoned_selected_bands 0 1530 0 1465 14324 15833 512 3977

Selected_bands 500 1530 500 1465 14324 15833 2560 3977

Zoned_background_bands 500 1530 500 1465 28136 15833 3072 3977

Background_bands 2000 1530 2000 1465 57296 15833 10240 3977

Zoned_whole_frequency 4000 1530 4000 1465 183688 15833 19968 3977

Whole_frequency 10500 1530 10500 1465 300804 15833 53760 3977

02_tcp_le zoned_selected_bands 3000 22537 0 1305 0 0 0 0

Selected_bands 4500 22537 1000 1305 0 0 0 0

Zoned_background_bands 15500 22537 0 1305 0 0 0 0

Background_bands 38000 22537 4000 1305 0 0 0 0

Zoned_whole_frequency 96000 22537 3000 1305 0 0 0 0

Whole_frequency 199500 22537 21000 1305 0 0 0 0

Table 14 shows the performance metrics of selected bands for seizure type ABSZ, MYSZ, TNSZ, SPSZ.

Table 15 shows data sample size and recording time duration in seconds of seizure type ABSZ, MYSZ, TNSZ, SPSZ.
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Table 16 shows performance metric of ablation study for seizure type ABSZ, MYSZ, TNSZ, SPSZ.

Table 16  Performance metric of ablation study of seizure type ABSZ, MYSZ, TNSZ, SPSZ

RF SVM MLP

ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR ACC​ AUC​ TPR TNR

ABSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.997 0.996 0.816 0.999 0.998 0.998 0.883 1 0.998 0.973 0.883 0.999

Set_zoned_whole_frequency 0.997 0.999 0.833 0.999 0.998 0.999 0.883 0.999 0.998 0.998 0.933 0.998

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.991 0.993 0.873 0.996 0.99 0.978 0.846 0.995 0.98 0.929 0.834 0.985

Set_zoned_whole_frequency 0.991 0.993 0.862 0.996 0.991 0.982 0.851 0.997 0.985 0.903 0.66 0.997

MYSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.993 0.998 0.55 1 0.994 0.998 0.916 0.995 0.994 0.997 0.85 0.997

Set_zoned_whole_frequency 0.995 0.999 0.666 1 0.997 1 0.966 0.998 0.994 0.997 0.766 0.997

02_tcp_le Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.997 0.945 1 0.766 0.996 0.995 0.999 0.766 0.985 0.712 0.993 0.4

Set_zoned_whole_frequency 0.997 0.999 1 0.766 0.998 0.999 1 0.866 0.997 0.883 1 0.766

TNSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0.983 0.966 0.694 0.996 0.983 0.92 0.724 0.994 0.95 0.54 0.123 0.982

Set_zoned_whole_frequency 0.949 0.926 0.364 0.997 0.948 0.908 0.389 0.994 0.909 0.808 0.401 0.95

SPSZ 01_tcp_ar Set_zoned_selected_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_background_bands 0 0 0 0 0 0 0 0 0 0 0 0

Set_zoned_whole_frequency 0.945 0.985 0.767 0.99 0.926 0.963 0.765 0.967 0.911 0.943 0.751 0.955
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