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Coronary

It is now well established that intracoronary imaging (ICI) in percutaneous 
coronary intervention (PCI) can improve clinical outcome measures 
compared with angiography-guided procedures.1,2 Intravascular optical 
coherence tomography (IVOCT) is a form of ICI that uses near-infrared 
light to generate high-resolution, cross-sectional, and 3D volumetric 
images of the vessel. The short wavelength (1.3 μm) of the infrared light 
used in IVOCT confers superior axial resolution compared with other ICI 
modalities, such as intravascular ultrasound (IVUS), making it particularly 
useful for near-field plaque characterisation.3,4 

At present, IVOCT is not routinely used in clinical practice, and data from 
the national audit of percutaneous coronary intervention (NAPCI) highlight 
that even in high-risk populations, such as in the case of left main PCI, ICI 
is used only in 66% of left main cases.5 There is the perception that it 
prolongs the procedure and that the individual operators’ experience with 
angiography alone is sufficient. Furthermore, there is an additional 
financial and contrast burden that comes with IVOCT use. Finally, IVOCT 
requires significant interpretation skills, which themselves require 
extensive education and training for effective usage, and this would 
appear to be the biggest barrier to widespread IVOCT adoption.6

Artificial intelligence (AI), defined as the theory and development of 
computer systems able to perform tasks that usually require human 
intelligence, has the potential to address some of these challenges. 

Machine learning (ML) is an application of AI that can function without 
specific programming and make decisions based on past data.7 In the 
context of image interpretation, ML requires the input of expert opinions 
to discriminate certain features in the image to solve a specific problem. 
Deep learning (DL) negates the need for feature selection because it 
automatically extracts essential features from raw input data. Convolutional 
neural networks are a type of DL algorithm that is well-suited for 
segmentation, object detection, registration and processing tasks. This 
then provides the ability to analyse complex images, videos and 
unstructured data in ways that ML cannot.7 ML tools have already been 
used in the most contemporary clinical IVOCT systems to facilitate better 
human interaction, interpretation and decision-making. This article 
reviews existing and future technological developments in IVOCT and 
demonstrates how they can improve IVOCT workflow for the interventional 
cardiologist.

Co-registration
IVOCT provides detailed assessment of the coronary arteries; however, 
correlating these findings with the fluoroscopic image can be challenging, 
for example, translating the optimal stent landing zone from IVOCT to 
angiography. Angiographic co-registration (ACR) is a process of integrating 
IVOCT data on an angiographic road map, thereby empowering the 
operator to effectively use the information. ACR constructs a longitudinal 
section of the entire vessel length, and the cross-sections of interest can 
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be scrolled through (Figures 1 and 2).8 Where this could be particularly 
useful is in the treatment of complex bifurcation, or diffuse disease in 
which spatial orientation is challenging and may require multiple 
fluoroscopic runs and subsequent excess ionising radiation exposure.9 A 
recent study (OPTICO II trial) has shown that ACR significantly improved 
PCI outcomes by minimising longitudinal geographical mismatch (LGM) 
and edge dissections compared with IVOCT use with no co-registration.10

Vessel Dimension Support
Angiography-guided PCI to determine coronary artery vessel diameter 
and lesion length takes years of experience and is subject to significant 
error. Enhanced IVOCT software exists that creates a cross-sectional 
image of the vessel, which incorporates multiplanar reconstruction of the 
3D data. Currently, available OCT software (Aptivue/Ultreon, Abbott 
Vascular [Figures 1 and 2] and Lunawave, Terumo) provides automated 
measurements of the lumen area and diameter. The majority of studies 
have demonstrated that a larger stent expansion is generally associated 
with better stent outcomes.8,11–13 

The use of sizing based on the external elastic lamina (EEL; Figure 3) was 
shown to be a safe approach in the ILUMIEN III study and resulted in 
comparable stent areas to that of IVUS-guided PCI.14 ILUMIEN III also 
identified a significant disparity in the identification of EEL between the 
trial sites and the IVOCT core lab (Figure 4), which subsequently led to the 
incorporation of automated EEL detection in Ultreon.

Detection of both the EEL and lumen enables assessment of plaque 
burden, a metric of optimisation used in the ULTIMATE study.13 Scrolling 
through the OCT cross-sections enables the operator to determine the 
proximal and distal landing zones, defined as the segment with minimal 
atherosclerotic plaque burden and where there is greatest visibility of the 
EEL (Figure 2). The software then automatically calculates the length of 
the lesion. This approach is said to minimise complications such as LGM, 
stent edge dissection and, consequently, stent thrombosis further down 
the line.15,16 However, when treating diffuse or high-burden disease, a 
luminal measurement may be preferred to minimise the risk of stent edge 
mechanical problems.

Figure 1: Example of Ultreon OCT-guided PCI 
to Mid-left Anterior Descending Artery

A

B

C

D

A: Morphological assessment with automated calcium detection, measuring arc, thickness and 
longitudinal extent of calcium. B: Stent sizing with automated detection of external elastic 
membrane (EEL; expanded in Figure 2). C: Review of post-stent deployment with automated 
detection of proximal stent edge malapposition (yellow dots indicate struts >300 µm malapposed 
and longitudinal extent represented on longitudinal reconstruction). C,D: Automated stent 
expansion indices can be displayed using ILUMIEN stent half/half (dual) mode (C) and longitudinal 
reconstruction (D, upper) or tapered mode (D, lower). Dual mode presents proximal and distal 
segment minimum stent area (MSA) and relative stent expansion according to proximal and distal 
reference measurements, respectively. Tapered mode achieves a frame-by-frame assessment of 
expansion, highlighting underexpansion <80% in orange and highlighting the MSA across the 
entire stented segment. OCT = optical coherence tomography; P = proximal; PCI = percutaneous 
coronary intervention.

Figure 2: External Elastic Lamina 
Detection to Facilitate Stent Sizing

Ultreon-guided vessel sizing for stent selection. Upper panels show automated external elastic 
lamina (EEL) detection (dashed white line) and lumen contour (solid white line) with averaged EEL 
and lumen diameters (EEL 6.07 mm proximal and 3.84 mm distal), suggesting a 3.5 mm stent 
selection (rounding down to the nearest stent size from the smaller distal EEL). Longitudinal 
reconstruction (lower panels) indicates regions with EEL >180°, suggestive of reasonable landing 
zones, facilitating a stent selection of 28 mm. 
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Romagnoli et al., who compared various OCT optimisation criteria on the 
CLIO-PCI 2 cohort, showed that the presence of focal untreated edge 
disease had a high incidence of device-oriented cardiovascular events 
with an HR of 8.17.11 The recently published ILUMIEN IV study, the largest 
randomised trial comparing IVOCT with angiography, failed to demonstrate 
a benefit in terms of clinical outcomes at 2 years.17 On further examination, 
9.5% of patients in the IVOCT arm had untreated focal reference segment 
disease.17 Furthermore, the in-segment (5 mm upstream and downstream 
of the stent) minimum luminal diameter was similar at 2.43 mm between 
the OCT and the angiography arm. This implies that the stents were being 
deployed in either small calibre vessels or heavily diseased sections of 
the artery. What this potentially highlights is poor operator–machine 
interaction and that there is a need for development of automated 
software that identifies landing zones based on disease burden.

Morphology Assessment
Near-infrared light has distinct backscattering and attenuating 
characteristics, dependent upon the properties of the tissue being 
penetrated, with sharp boundaries achieved between distinct vascular 
tissue layers facilitating high-resolution assessment of the vessel using 
IVOCT (Figure 2). Based on its components, atherosclerotic plaques can 
be classified as being stable or vulnerable. Stable plaques are 
characterised by heavy calcification, fibrotic tissue and small lipid pools. 
Conversely, vulnerable plaques tend to have a large lipid pool (necrotic 
core) and thin fibrous cap (thin-cap fibroatheroma; TCFA) that is soft in 
nature and prone to rupture.4 

In a recent study by Reynolds et al., IVOCT was shown to identify plaque 
characteristics (plaque rupture, intraplaque cavity and layered plaque) 
suggestive of a culprit lesion in 46% of the participants with MI associated 
with non-obstructive coronary arteries (MINOCA).61 Furthermore, a study 
by Prati et al. showed that the presence of high-risk plaque characteristics 
(minimum luminal area <3.5 mm2, fibrous cap <75 μm, lipid arc >180°, and 
macrophage infiltration) predicted cardiac death and target lesion MI with 
an HR of 7.54 (95% CI [3.1–18.6]).15 

The Combine OCT-FFR trial showed that in patients with diabetes, the 
presence of TCFA was associated with a fivefold risk of major adverse 
cardiac events (MACE) despite the absence of ischaemia.18 Furthermore, 
the PACMAN-AMI study provided the rationale for identification of 
vulnerable plaque by demonstrating a reduction in plaque area volume by 
use of proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors in 
such patients.19 Based on these findings, it is plausible that early 

identification and treatment of high-risk plaque components with IVOCT 
could prevent adverse events in the future.

The accurate assessment of lesion morphology will considerably assist 
the lesion preparation strategy. At one extreme direct stenting may be 
appropriate in lipid-rich or even largely fibrous plaques to avoid distal 
embolisation and slow coronary flow. In contrast, some lesions with these 
characteristics may be deferred for optimal medical therapy to minimise 
risk of peri-procedural MI. Increasingly, the target lesion contains a 
moderate to high calcific burden, which may require tools beyond simple 
balloon dilatation for adequate modification.20 Recently, an OCT-based 
calcium scoring tool developed by Fujino et al. showed that a maximum 
calcium deposit angle >180°, thickness of >0.5 mm, and length >5 mm are 
predictors of stent underexpansion.21 Lesions were found to have all three 
attributes associated with suboptimal stent expansion <70% in 29.2% of 
the validation cohort. Therefore, in such cases, a more aggressive calcium 
modification strategy is mandated prior to stenting.21 The latest IVOCT 
software (Ultreon) can help accurately delineate calcific arcs and the 
thickness of the calcium deposit throughout the entire length of the target 
vessel (Figures 1 and 5).22 However, it is important to note that the 
accuracy of calcium assessment relies upon adequate blood clearance 
using contrast media (Figure 5).

A few studies have used the DL features of AI to fully automate plaque 
characterisation using IVOCT, the most recent and noteworthy by Chu et 
al.23–25 Chu et al. developed an AI-based tool using a convolutional neural 
network that comprehensively delineates various plaque constituents in 
stable patients. The DL algorithm was trained over a large and diverse 
dataset of IVOCT images, annotated by experienced analysts in order to 
outline lumen contours, internal elastic lamina, non-tissue parts (stent, 
wire), plaque components, and markers of inflammation. The dataset 
consisted of various anatomical morphologies to provide qualitative and 
quantitative assessment of plaque and vessel components. Initial internal 
evaluation of the dataset using this AI model showed excellent detection 
of fibrous, lipid and calcific plaques, with a diagnostic accuracy of 97.6%, 
90.5% and 88.5%, respectively. When the model was tested on external 

Figure 3: Bristol Coronary Biobank Co-
registered OCT and Trichrome

1 mm

Matched optical coherence tomography (OCT) and trichrome histological specimen highlighting 
external elastic lamina and media (stained red) and identified on OCT by the dashed white line 
(the asterisk denotes a small calcified nodule). 

Figure 4: Accuracy in Identifying 
External Elastic Lamina

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

ILUMIEN III: optimise PCI
EEL visibility at either reference segment

Site assessed Core lab assessed

EEL <180° p=0.0158 EEL >180° p=0.0158

Comparison of site- and core lab-assessed external elastic lamina (EEL) measurements 
demonstrating a significant inaccuracy of clinical assessment.14 PCI = percutaneous coronary 
intervention. Data source: Ali et al. 2016.14
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IVOCT runs, consensus on coronary tissue characterisation could be 
reached in most of the plaque regions by experts from three OCT core 
labs. Both the machine algorithm and humans found interpretation of 
high-attenuating plaque most challenging. Remarkably, the inter-observer 
agreement for high-attenuating plaques (lipid-rich and macrophagic) was 
as high as 81.8%. However, the average analysis speed for the AI model 
was 0.07 ± 0.01 seconds per cross-section, while it took several minutes 
to annotate one frame in the core lab. Furthermore, image interpretation 
by AI is enhanced by evaluating multiple IVOCT frames at once. Overall, 
this AI model has shown the potential to reduce subjectivity in image 
interpretation and facilitate IVOCT quantification of plaque composition. 
Further research is needed to assess this model’s ability to evaluate 
patients who present with high-risk lesions.

TCFA and plaque rupture have been strongly associated with acute 
coronary syndrome.4 Lee et al. developed an AI model that can 
automatically detect lipids and assess fibrous cap thickness on IVOCT. 
This model was able to accurately discriminate lipidic plaques (sensitivity 
of 85.8%) and clearly identify the fibrous caps in these lesions with 
minimal inter-observer variance. Albeit optimistic findings, there was a 
high frequency of false positives attributed to mixed morphology plaques 
and side branches.26 Nevertheless, this method holds promise for further 
research.

Destination Therapy and Concept of MLD MAX
For an AI tool to work, it must rely on expert insights and be trained with 
the diverse demographic pool that makes up the local population. MLD 
MAX is an acronym for a prescriptive IVOCT workflow that uses a pre-PCI 
run to assess morphology, length and diameter (MLD) and a post-PCI run 
to identify medial dissection, apposition and expansion (MAX). Use of this 
algorithm in IVOCT represents true systematic implementation of AI. The 
Lightlab (LL) initiative was specifically designed to assess the impact of 
this IVOCT workflow on PCI efficiency. The LL programme showed that the 
implementation of the MLD MAX workflow in IVOCT, when compared with 
angiography guidance, resulted in lesser radiation exposure, time spent 
on vessel preparation, and reduction in unplanned treatment at the 
expense of only 9 additional minutes, on average.27 These data show that 
this standardisation of the IVOCT workflow during PCI could possibly 
improve outcomes without significantly increasing procedure time, and 
this may result in increased adoption during routine PCI.

Stent Expansion
Stent underexpansion has been consistently demonstrated to be 
associated with worse longer-term outcomes from PCI.28–32 As such, the 
European consensus statement in 2018 recommended stent expansion of 
greater than 80% of the reference lumen diameter and a minimum stent 
area of more than 4.5  mm2 using OCT.33 The current OCT software 
provides an automated assessment of the degree of stent expansion 
(Figure 1). Optimal stent expansion could be determined using dual 
reference areas or through tapered minimum stent expansion. In dual 
reference mode, expansion is calculated by comparing the respective 
halves of the stent with either the proximal or the distal reference area. 
Proximal and distal reference areas are defined as the lumen areas of the 
first frame outside of the stented segment.  In contrast, tapered mode 
calculates expansion from an interpolated vessel size based on side 
branches detected by IVOCT (Figure 1).34 The development of AI to guide 
stent expansion assessment increases the ease of use of the OCT system, 
which is likely to encourage the use of OCT and, as a result, improve 
outcomes for patients undergoing PCI. However, how operators interact 
with theses data is critical for patient outcome. For example, the potential 
harm of vessel perforation as a result of higher pressure stent post-
dilatation should be weighed against a small incremental gain in stent 
expansion. It is also worth bearing in mind that expansion metrics are 
reliant upon the selection of proximal and distal reference sites. There will 
be inaccuracies in the relative expansion if the stent is landed in an area 
of high disease burden.

Post-procedural assessment with ICI is crucial because it helps evaluate 
the stent for underexpansion, malapposition, tissue protrusion, edge 
dissection or LGM (Figure 1). In bifurcation PCI, there is evidence to 
suggest that stent malapposition is a more common finding at the proximal 
main vessel (MV), and dissection or tissue prolapse in the distal MV.35

Specific Areas Where AI Can 
Add Further Knowledge
Bifurcation
Bifurcation lesions are challenging to manage and tend to be associated 
with higher rates of adverse cardiac events than non-bifurcation lesions.36 
Procedural planning of bifurcation lesions with only conventional 
angiography can lead to inaccuracies.36 IVOCT offers the benefit of being 
able to clearly illustrate ostial lesions without having to deal with issues 

Figure 5: Ultreon Calcium Detection

A B

A: Co-registered angiographic and optical coherence tomography (OCT) imaging with calcium highlighted in orange. The left panel shows the presence of calcium with arc > 60° and highlights 
significant burden extending >5 mm longitudinally. The right panel is configured to demonstrate calcium arc >180° and despite highlighting segments with significant arc (the central OCT frame shows a 
thin (<0.5 mm) arc of 216°), the longitudinal extent is limited. B: Inaccurate calcium detection generated by poor clearance of blood from the lumen. D = distal; P = proximal.
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such as overlap and foreshortening.36 When assessing complex bifurcation 
lesions with IVOCT, a standalone IVOCT pullback may be required to 
precisely measure the side branch ostium. However, crossing an IVOCT 
catheter through the MV stent strut into the side branch carries a risk of 
stent deformation and other safety concerns. Nonetheless, it has been 
shown that measurements of the side branch ostium made on cut-plane 
analysis of the MV OCT pullback are comparable to those from a dedicated 
side branch IVOCT pullback.37 Software has now been developed that 
enables 3D IVOCT reconstruction of coronary bifurcation lesions.31 For 
example, the software from Abbott Vascular has a mode wherein the 
carina and side branch ostia are automatically identified. Not only does 
this facilitate analysis of the vessel dimensions but also decision-making 
on the bifurcation stenting strategy.

During a provisional approach bifurcation PCI, a proximal recross will 
result in an extended metallic neo-carina, and the risk of this is minimised 
if the distal cell of the jailed side branch ostium is selectively rewired.38 
The position of recrossing of the wire after MV PCI also depends on the 
stent design and the presence or absence of a strut link in front of the 
ostium.39,40 Currently, IVOCT software (Lunawave, Aptivue and Ultreon) 
has the ability to display the recrossing point in 3D through ‘stent 
enhancement’, and enable real-time co-registration with the reconstructed 
IVOCT image.41 Imaging-guided recross will not only minimise carinal and 
side branch struts but it also has the potential to optimise the vessel 
geometry. Small prospective registries have demonstrated the feasibility 
of assessment of the guidewire recrossing point after MV stenting using 
3D IVOCTs.39,42,43

Image acquisition in left main (LM) lesions can be challenging, especially 
in the case of ostial lesions, in which it is difficult to completely eliminate 
red blood cells from the aortic root. In contrast, a pilot study assessing the 
feasibility of IVOCT in LM PCI demonstrated a procedural success (defined 
as residual angiographic stenosis <50%, TIMI 3 flow in all branches and 
adequate OCT stent expansion) of 86% in the 70 recruited patients. The 
1-year survival free from MACE was 98.6%.44 Additionally, studies of IVOCT 
in non-ostial LM lesions have shown that more than 80% of the frames 
could be analysed and that the majority of the non-analysable frames 
were from proximal lesions.45,46 Moreover, the recently published 
randomised controlled OCTOBER study demonstrated that OCT guidance 
in LM and non-LM bifurcation PCI had a lower incidence of the primary 
composite endpoint (MACE) at 2 years compared with angiography only 
(10.1% versus 14.1%, respectively), and this is despite 15% IVUS use in the 
angiography arm.12 The positive results of this study could partly be 
attributed to the use of a robust OCT workflow for bifurcation PCI. 
Furthermore, the currently available AI and 3D reconstruction software 
should drive an increased uptake of IVOCT for bifurcation PCI.

Stent Failure
From IVOCT registries, malapposition, neoatherosclerosis, underexpansion 
and distal edge dissection have been identified as the major causes of 
stent thrombosis.47–49 Regardless of the extent of expansion, stent 
malapposition has been linked with worse outcomes in the short and long 
term.50 Positive vascular remodelling, a consequence of late 
malapposition, has been linked with late stent thrombosis.51,52 IVOCT 
facilitates better identification of neoatherosclerosis and uncovered stent 
struts, compared with other ICI modalities.48,53 

Another OCT registry had identified tissue protrusion (extrusion of either 
tissue or atherothrombotic material from inside the stent) as a predictor of 
stent thrombosis and is also associated with adverse short-term 

outcomes.54 Irregular protrusion, which confers negative cardiovascular 
outcomes, is more commonly associated with acute coronary syndrome 
than stable coronary disease.55

IVOCT with ACR could be valuable in the assessment and management of 
stent failure. Poor vessel expansion and trauma are some of the major 
factors that contribute to acute and subacute stent thrombosis.56 In long 
stented segments, localisation of the stent pathology could facilitate 
treatment of the precise anatomical location, especially when poorly 
visualised on angiography. Overall, the co-registration process facilitates 
easy decision-making without obstructing the workflow of the catheter 
laboratory.

Automated plaque characterisation through a DL model as described by 
Chu et al. could be of potential benefit in decision-making when dealing 
with neoatherosclerosis.23 According to the current European guidelines, 
there is a Class I indication for either drug-coated balloon (DCB) or drug-
eluting stent (DES) in the treatment of in-stent restenosis. Xhepa et al., in 
a study of 197 patients, assessed the impact of neointimal pattern seen on 
IVOCT and treatment modality relative to the outcome.57 Based on 
neointimal quadrants, patients were categorised into low or high 
inhomogeneity groups. Interestingly, DES showed a significant advantage 
over DCB in the high inhomogeneity group (MACE: HR 0.26, p=0.004; 
target lesion failure: HR 0.28, p=0.006). However, at this stage, further 
prospective studies are required to confirm this effect prior to change of 
standard practice.

Further Research
One of the factors that contributes to poor prognosis in PCI is contrast-
induced nephropathy (CIN). The use of dextran or normal saline instead of 
contrast during IVOCT assessment has been shown to minimise the risk of 
CIN while producing similar quality images.8 However, there remain 
problems with blood mixing, and the potential to provoke arrhythmias 
with non-contrast flushes.4 To add to this, the development of an 
automated IVOCT algorithm based on poor-quality images can be 
challenging. Non-contrast flushes with similar biocompatibility need to be 
investigated to minimise these issues.8

In current clinical practice there remains a dichotomy between physiology 
and imaging guidance in PCI. Recently, Yu et al. developed a new 
approach for rapid computation of virtual fractional flow reserve pullbacks 
from IVOCT images.58 Using this technology, an optical flow reserve (OFR) 
was developed and validated against fractional flow reserve (FFR) to 
determine the functional significance of coronary artery stenosis. The 
overall vessel-level diagnostic accuracy of OFR was 90% with a sensitivity 
of 87% and specificity of 94%, compared with an FFR of ≤0.80 to define 
physiological significance. These findings seem promising and there is 
the potential for this technology to be adopted into practice in the near 
future.

Challenges in Automated IVOCT
Undoubtedly, AI can potentially provide guidance to the interventional 
cardiologist at each stage of PCI. However, just like the clinician that AI is 
assisting, there are important limitations that are worth considering. One 
of the main factors that affects the AI interpretation of vessel size or 
morphology is the quality of the IVOCT image. The presence of blood swirl 
due to inadequate clearance or signal dropout due to stent strut or wire 
will restrict the ability of any AI model to detect tissue characteristics 
accurately.8 With the Ultreon software, a poor-quality OCT run can 
potentially result in both under- and overestimation of calcium, which can 
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lead to deleterious outcomes when not cross-checked by the operator. In 
a similar setting, there also remains a possibility that Ultreon can falsely 
detect EEL, which could lead to inappropriate sizing of devices, thereby 
leading to unwanted downstream effects.

Current IVOCT software can identify motion artefacts and signal noise in 
real time. However, it does not have the capability to distinguish between 
poor-quality pullbacks and other issues such as catheter instability or 
suboptimal vessel visualisation. A previously proposed segmentation 
algorithm to detect the quality of pullbacks by Bologna et al. had a modest 
sensitivity of 76%.59 Development of AI that can reliably distinguish 
between inadequate image quality and different tissue morphologies 
would provide additional benefit to the interventional cardiologist by 
instructing them that repeat image acquisition was necessary. However, 
one should always be aware of the possibility that AI algorithms can 
misidentify structures in the presence of artefacts, especially when the 
software provides results that seem unusual or inconsistent with clinical 
judgement. In such cases it is essential to manually review and verify the 
findings and retain the need for human interaction with AI algorithms.

Before automated IVOCTs can adopted in clinical practice, there are a few 
aspects that will need to be addressed. First, there is a need for an AI 
algorithm to be built using a large-scale, expertly annotated dataset. This 
would then enable the AI model to train and test techniques on data 
representative of real-world scenarios. Second, to overcome the 
regulations surrounding updates on medical technology, there needs to 
be more robust and reliable evidence to justify the use of AI algorithms in 
routine practice. Finally, issues around data ownership of existing large 
datasets could limit the rate at which automated software develops.60 The 
ability of Ultreon software to self-learn will be limited for this reason, given 
that companies will need to seek approval prior to adapting any change.

Conclusion
The advent of AI in OCT has improved the ease with which interventional 
cardiologists use it. Recent data from randomised studies support routine 
use of ICI to guide PCI. There is now a need for development of software 
with an improved user interface. Continued growth in this field will result 
in a greater uptake through improved interpretation, minimising inter-
observer variance and significantly reducing procedural time. 
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