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Abstract: The sympathoadrenal counterregulatory response to hypoglycemia is critical for individ-
uals with type 1 diabetes due to impaired ability to produce glucagon. Ketogenic diets (KD) are
an increasingly popular diabetes management tool; however, the effects of KD on the sympathoa-
drenal response are largely unknown. Here, we determined the effects of KD-induced ketosis on
the sympathoadrenal response to a single insulin-induced hypoglycemic challenge. We investigated
how a 3 week KD feeding regimen affected the main components of the sympathoadrenal coun-
terregulatory response: adrenal sympathetic nerve activity (ASNA), adrenal gland activity, plasma
epinephrine, and brainstem glucose-responsive C1 neuronal activation in anesthetized, nondiabetic
male Sprague-Dawley rats. Rats on KD had similar blood glucose (BG) levels and elevated ketone
body β-hydroxybutyrate (BHB) levels compared to the control Chow diet group. All KD rats re-
sponded to hypoglycemia with a robust increase in ASNA, which was initiated at significantly lower
BG levels compared to Chow-fed rats. The delay in hypoglycemia-induced ASNA increase was
concurrent with rapid disappearance of BHB from cerebral and peripheral circulation. Adrenal
gland activity paralleled epinephrine and ASNA response. Overall, KD-induced ketosis was associ-
ated with initiation of the sympathoadrenal response at lower blood glucose levels; however, the
magnitude of the response was not diminished.

Keywords: counterregulatory response; epinephrine; insulin-induced hypoglycemia; ketosis;
ketogenic diet; rat model

1. Introduction

Insulin therapy is the gold standard of treatment for type 1 diabetes and patients with
advanced type 2 diabetes, but maintaining consistent blood glucose levels is challenging.
Hypoglycemia frequently results from inadvertent excessive administration of insulin [1]
and, if untreated, can lead to serious neurological consequences, such as mental confusion,
seizures, and coma. Severe hypoglycemia is a major obstacle to optimal management of
type 1 diabetes with insulin and it is not just debilitating, it can be fatal, accounting for up
to 10% of deaths in this population [2].

In individuals without diabetes, hypoglycemia is initially counteracted by increased
glucagon secretion and suppression of endogenous insulin release [3]. If blood glucose
levels continue to fall (<3.8 mmol/L), a highly coordinated neural counterregulatory
reflex is triggered which activates the sympathoadrenal system [4]. This reflex response
is initiated by falling extracellular glucose, which activates a subset of glucose-sensing
neurons in the hypothalamus and brainstem, termed glucose-inhibited neurons. Activated
glucose-inhibited neurons convey signals via sympathetic preganglionic neurons in the
spinal cord, through the adrenal sympathetic nerve to adrenal chromaffin cells. Activation
of epinephrine-producing chromaffin cells results in rapid release of epinephrine into
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the circulation [5]. This triggers physical symptoms which prompts a person to ingest
carbohydrates [6], and the mobilization of glucose via glycogenolysis, gluconeogenesis,
pancreatic glucagon secretion, reduced glucose uptake, and increased lipolysis (reviewed
in [7]).

Unlike the nondiabetic population, type 1 diabetes patients rely almost exclusively on
stimulated release of adrenal epinephrine to raise blood glucose, due to severely compro-
mised pancreatic glucagon release in response to insulin-induced hypoglycemia [8] and
an inability to stop the action of already injected insulin. A failure to mount an adequate
sympathoadrenal response can compromise a patient’s ability to both physically sense
and behaviorally respond to an episode of hypoglycemia, putting them at risk of seizures,
coma, and death—the most severe manifestations of neuroglycopenia (cerebral glucose
deprivation).

Under normal physiological conditions, glucose is the only readily available en-
ergy source for the brain. During prolonged fasting, ketone bodies (acetoacetate, β-
hydroxybutyrate (BHB) and acetone) which are small molecules produced from fatty-acid
oxidation in the liver, can readily cross the blood brain barrier and provide an addi-
tional energy source [9]. Ketosis has neuroprotective effects against hypoglycemia in both
type 1 diabetes patients [10,11] and rats [12]. Physiological levels of circulating ketones
are low, 0–0.5 mmol/L; however, during extended fasting, ketones can accumulate to
7–8 mmol/L [13] and provide up to two-thirds of the brain’s energy requirements [14]. A
carbohydrate-restricted diet, called the ketogenic diet (KD), also induces a state of stable ke-
tosis after a period of adaptation, which is comparable to extended fasting conditions [15].
The KD (55–60% fat, 30–35% protein, and 5–10% carbohydrate) has been used for almost a
century for the treatment of drug-resistant epilepsy in children [16] due to its anticonvul-
sant properties; in recent years, the KD has also become an increasingly popular nutritional
strategy for people with type 1 diabetes, owing to significant decreases in insulin require-
ments and greater blood glucose stability between meals [17]. However, there are reports
concerning an increased number of non-symptomatic hypoglycemia cases, recorded with
the aid of continuous glucose monitors [18,19], possibly due to a shift of the glycemic
threshold for sympathoadrenal/sympathoneural symptoms to lower blood glucose lev-
els [18]. To date, no studies have investigated the effects of nutritional ketosis, induced
by the KD, on the sympathoadrenal counterregulatory response (CRR) to hypoglycemia.
In contrast, a number of studies concerning the effects of acute bolus administration of
exogenous ketones on various components of the hypoglycemia CRR in humans have
been reported, with conflicting results; ingestion of ketone precursors (medium chain
triglycerides) by intensively treated type 1 diabetic patients did not decrease the levels of
counterregulatory hormones in response to insulin-induced hypoglycemia [10], and it did
not diminish in healthy humans upon BHB infusion in one study [20], yet, in another study,
acute administration of BHB in healthy humans significantly reduced the CRR [11].

Previous studies in KD-fed nondiabetic mice reported an impairment in glucagon
secretion in response to insulin-induced hypoglycemia [21]. Although acute administration
of glucagon to hypoglycemic type 1 diabetes patients is an effective treatment to stimulate
endogenous glucose production, its role in the endogenous CRR in type 1 diabetes is limited
due to pancreatic alpha- and beta-cell failure. For that reason, and the fact that glucagon
injections are less effective in patients who follow a low-carbohydrate diet [22], our study
focused specifically on the role of the sympathoadrenal system and epinephrine, which are
expected to be the major contributors to the CRR in the setting of type 1 diabetes. Therefore,
the aim of this study was to test the effects of dietary ketosis, induced by a 3 week KD,
on components of the sympathoadrenal CRR to severe insulin-induced hypoglycemia in
healthy, nondiabetic rats, by measuring adrenal sympathetic nerve activity (ASNA), adrenal
gland activity, and epinephrine release, as well as the activation state of catecholaminergic
C1 neurons in the brainstem, which are glucose-sensitive and involved in the hypoglycemic
CRR [23,24]. The adrenal sympathetic nerve, unlike renal, lumbar, or muscle sympathetic
nerves, is activated by hypoglycemia independent of elevated insulin levels [25] and can be
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acutely recorded in anesthetized rats [26]. As ASNA positively correlates with epinephrine
release [27], and the actions of epinephrine on target tissues produces physical symptoms
of hypoglycemia, in vivo ASNA recordings in anesthetized rats can provide a sensitive,
real-time measure of hypoglycemia progression without confounders such as handling
stress, multiple blood draws for plasma epinephrine quantification, and difficulties in
registering mild physical symptoms in conscious animals. We hypothesize that the CRR is
likely to be reduced, and the time course of its initiation may be shifted, as the KD may
provide additional substrate and spare glucose for neuronal metabolism in the face of
diminishing glucose availability, thereby delaying the central sympathoadrenal response.

2. Materials and Methods
2.1. Animals

All experiments were conducted in accordance with the Australian Code of Practice for
the Care and Use of Animals for Scientific Purposes (New South Wales: Animal Re-search
Act 1985) and approved by the Sydney Local Health District Animal Welfare Committee
(AWC #2018/014). Adult male Sprague-Dawley rats (325–485 g, n = 27) were fed either a
ketogenic diet (KD, SF10-053, 69% fat, 16% protein, 1.2% digestible carbohydrate, Ketogenic
Rodent Diet, Specialty Feeds, Glen Forrest, WA, Australia, n = 12) or a control standard
irradiated rodent diet (Chow, 4.6% fat, 19% protein, 59.9% total carbohydrate, Specialty
Feeds, Glen Forrest, WA, Australia, n = 15) ad libitum with free access to drinking water
for 3 weeks. Rats were housed (3 per cage) at the Heart Research Institute animal facility at
23–25 ◦C, 12 h dark/light cycles, 50–60% humidity. Following dietary manipulation, rats
were randomly divided into insulin or PBS groups: Chow + insulin (n = 12), Chow + PBS
(n = 3), KD + insulin (n = 9), or KD + PBS (n = 3).

2.2. Anesthesia

Sodium pentobarbital (Virbac, Milperra, NSW, Australia) has minimal effects on
blood glucose levels and Fos expression [28,29] and, therefore, was used for anesthesia in
overnight fasted rats (induction: 65 mg/kg ip; maintenance: 13 mg/h iv). The depth of
anesthesia was monitored by checking blood pressure responses to tail or paw pinches
and was adjusted if changes exceeded 10 mmHg. Arterial PO2, PCO2, and pH were kept
within the physiological range by monitoring end-tidal CO2 throughout the experiment
and adjusting ventilatory rate and volume when necessary. Core body temperature was
maintained at 36.5–37.5 ◦C.

2.3. Cannulations and Nerve Recordings

The right carotid artery and jugular vein were cannulated (for the recording of arte-
rial blood pressure and administration of drugs, respectively), and a tracheostomy was
per-formed for mechanical ventilation and recording of end-tidal CO2. Animals were
ventilated with room air and supplemental 100% O2. Heart rate was derived from a
three-lead ECG. The left adrenal sympathetic nerve was isolated and carefully placed on
silver bipolar electrode as previously described [26]. Neurograms were sampled at 2000
Hz, bandpass filtered (10 Hz–3 kHz), and amplified 5000 times (BMA-931 Bioamplifier,
CWE, Ardmore, PA, USA). As the adrenal sympathetic nerve can contain a mixture of
preganglionic (activated by glucoprivation and synapsing on catecholaminergic chromaffin
cells) and postganglionic nerve fibers (innervating the adrenal cortex), upon completion of
the 2 h recording period, a ganglion blocker hexamethonium (40 mg/kg, Sigma-Aldrich,
St. Louis, MO, USA) was administered intravenously. Experiments (n = 2, KD + Ins
group) were excluded from analysis of adrenal sympathetic nerve activity (ASNA) and
all related analyses as the ratio of pre-to-postganglionic activity was less than 50% [27].
As such, these recorded nerves were not predominantly preganglionic and did not reflect
the specific hypoglycemia-induced changes in activity; therefore, they were deemed sub-
optimal. ASNA recordings were rectified, smoothed (τ = 2 s), and normalized to baseline
(100% activity) by subtracting residual activity (0%) after crushing the nerve with forceps
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at the conclusion of experiment. Mean ASNA, expressed as a percentage change from
baseline, was analyzed in 3 min intervals taken immediately before insulin administration
(0 min) and 15, 30, 45, 60, 90, and 120 min post insulin administration.

2.4. Insulin Injections

In unpublished pilot studies conducted in our laboratory, we established that a single
intravenous injection of 5 U/kg of insulin in anesthetized, overnight fasted rats produced
a consistent and highly reproducible level of hypoglycemia in both Chow- and KD-fed
groups. Such a consistent degree of hypoglycemia allowed tracking the changes in ASNA
with changes in blood glucose levels over time without the need for a hypoglycemic-
hyperinsulinemic clamp. In the current study, hypoglycemia was induced in the Chow-
fed (n = 9) and KD-fed (n = 7) rats by a single intravenous injection of insulin (human
recombinant, 5 U/kg, I2643, Sigma-Aldrich, North Ryde, NSW, Australia). The control
Chow (n = 3) and KD-fed (n = 3) rats were injected the same volume of PBS. Peripheral
blood glucose and BHB were measured from a drop of blood, obtained via a tail nick, at 0
(pre insulin administration), 15, 30, 45, 60, 90, and 120 min. Baseline (0 min, pre insulin
administration) blood glucose and BHB were consistently measured between 11:00 a.m.
and 12:00 p.m. An Accu-check Performa glucose meter (Roche Diabetes Care, North Ryde,
NSW, Australia) and corresponding glucose strips were used for glucose determination,
and an Abbott Optium Neo glucose and ketone meter with Freestyle Optium ketone strips
(Abbott Diabetes Care, Doncaster, VIC, Australia) were used for BHB measurements.

2.5. Measurement of Cerebral Venous BHB Levels

To confirm the presence and utilization of BHB in the brain, cerebral venous blood
BHB was sampled in a small separate group of animals (KD + Ins n = 2 and Chow + Ins
n = 3) at baseline (0 min) and 15, 30, 45, 60, 90, and 120 min post insulin injection. The skull
was exposed, and a 4–5 mm diameter hole was drilled above the confluence of sinuses
posterior and central to Lambda (Supplementary Figure S1). The confluence of sinuses
was opened by puncturing the dura with a needle. Venous blood was sampled at specified
times with the ketone strips as described above, by reopening the hole in the confluence of
sinuses and letting it bleed for ~7 s before occluding it with gauze.

2.6. Epinephrine ELISA

At the conclusion of the recording period, blood was collected via the carotid artery catheter.
Plasma was separated, aliquoted, and stored at −80 ◦C. Ultra-sensitive epinephrine ELISA
(KA3837, Abnova, Taipei, Taiwan) was performed according to the manufacturer’s instructions.

2.7. Immunohistochemistry

Two hours post insulin administration and following blood collection, rats were
transcardially perfused with ice-cold PBS and 4% paraformaldehyde. Adrenal glands
and the brain were removed and post-fixed for 24 h. Fixed adrenal glands (3–5 per
treatment group) were embedded together in 2% agar and sectioned on a vibrating mi-
crotome at 20 µm in 1:5 series. Brainstem (n = 3 per treatment group) was sectioned coro-
nally at 40 µm in 1:5 series. Free-floating sections underwent routine immunohistochem-
istry [24]. Primary antibodies for adrenal gland immunohistochemistry were anti-PNMT
(phenylethanolamine-N-methyltransferase, a marker for epinephrine-producing cells [30];
1:1000, rabbit polyclonal, generated and characterized by P.R. Howe [31]) and anti-Fos (a
marker for recently activated cells of neuronal origin; 1:1000, guinea pig polyclonal 226004;
Synaptic Systems, Goettingen, Germany). Anti-tyrosine hydroxylase primary antibody
(TH, a marker for catecholaminergic neurons, 1:100, mouse monoclonal, Avanti Antibodies,
#AV1, previously characterized by Nedoboy et al. [32]) together with anti-Fos antibody (as
above) was used for brainstem immunohistochemistry. Secondary antibodies conjugated
with fluorescent tags were used to enable visualization of colocalizations. The secondary
antibodies used were donkey anti-rabbit AlexaFluor488 (1:500, 711-546-152, Jackson Im-
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munoresearch, West Grove, PA, USA) and donkey anti-guinea pig Cy5-conjugated (1:500,
706-175-148, Jackson Immunoresearch, West Grove, PA, USA) (adrenal gland), and goat
anti-mouse IgG1k-specific Cy5 (1:500, 115-175-205, Jackson Immunoresearch, West Grove,
PA, USA) and donkey anti-guinea pig Cy3-conjugated (1:500, 706-166-148, Jackson Im-
munoresearch, West Grove, PA, USA) for the brainstem. Sections were mounted on glass
slides with ProLong Diamond antifade (Invitrogen, Carlsbad, CA, USA).

2.8. Image Acquisition and Analysis

Adrenal medullae (randomly selected five sections per treatment group) were im-
aged (Zeiss Axio Imager Z2; 20×) and analyzed in Fiji ImageJ software. The thresholded
Fos-positive area, measured in pixels, was normalized to the PNMT-positive area and
ex-pressed as a percentage of PNMT-positive area. Fos-positive staining outside of the
PNMT-immunoreactive area was excluded. Four 40 µm brainstem sections containing the
C1 catecholaminergic nucleus (bregma level −12.48 to −12.12) per animal were used to
count the number of TH immunoreactive cells (TH+), Fos immunoreactive cells (Fos+),
and double-labeled (TH+/Fos+) cells bilaterally within the region. A rectangular region
of interest (ROI, 1680 × 810 µm) was superimposed on the images taken with Zeiss Axio
Imager Z2, 10× objective, and cells were counted manually within the ROI by an operator
blinded to the experimental conditions.

2.9. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software (version 9.0.0).
Comparisons between groups were made with unpaired t-test or Mann-Whitney test for
non-normally distributed residuals, and one or two-way ANOVA with Holm-Šidák’s
post-tests for multiple comparisons where appropriate; for data with unequal SDs, Brown-
Forsythe ANOVA test was used. Results are reported as means ± SEM unless stated
otherwise, with statistical significance set at p < 0.05. The smallest effect size was derived for
ASNA, epinephrine, PNMT+/Fos+, and TH+/Fos+ measurements from the data generated
from the Chow + Ins group which was considered a normal physiological response to
insulin injection. To detect a difference of >20%, a minimum of three animals per group was
required to achieve the power >80% for all measured variables (ASNA, epinephrine, blood
glucose, BHB and Fos). Sample sizes for all treatment groups and measured variables are
outlined in Figure 1.
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3. Results
3.1. The Effects of KD on Blood Glucose, BHB, Arterial Pressure, and Heart Rate

To induce the state of stable ketosis [33], we used a high-fat, adequate-protein, low-
carbohydrate diet in male Sprague-Dawley rats. As expected, following 3 weeks of a
keto-genic diet, (KD)-fed rats (n = 12) had significantly increased fasting BHB levels (KD:
3.1 ± 0.1 mmol/L vs. Chow: 1.5 ± 0.1 mmol/L, respectively, p < 0.0001, Figure 2b) but
similar fasting blood glucose levels to Chow-fed rats (n = 15) (KD: 5.1 ± 0.2 mmol/L vs.
5.5 ± 0.3 mmol/L, p = 0.46, Figure 2a). Interestingly, baseline mean arterial pressure (MAP)
in anesthetized animals was higher in the KD-fed rats compared to the Chow-fed animals
(127 ± 3 mmHg vs. 110 ± 2 mmHg, p = 0.0001, Figure 2c), whereas heart rate did not differ
significantly (Figure 2d).
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Figure 2. Ketogenic diet increases BHB but does not change blood glucose levels. Sprague-Dawley
rats were fed ketogenic diet (KD, n = 10, red circles) or control diet (Chow, n = 12, black circles) for
3 weeks. KD-fed rats had comparable (a) blood glucose levels and significantly higher (b) blood
BHB levels. (c), KD-fed rats had significantly elevated baseline mean arterial pressure (MAP),
but not (d) heart rate. Crosses indicate animals that were excluded from further analysis due to
hypoglycemia-induced convulsions (black) or suboptimal nerve recordings (red). Data are means ±
SEM, Mann-Whitney test (a) and unpaired t-test (b–d); *** p < 0.001, **** p < 0.0001.

3.2. Insulin Administration Lowers Blood Glucose and BHB

Insulin (5 U/kg) consistently induced a progressive decrease in blood glucose lev-
els in both Chow and KD groups (Figure 3a). In the KD-fed rats, BHB fell significantly
within the first 30 min of insulin injection but remained considerably higher than the
Chow-fed rats at every timepoint (Figure 3b). Within 120 min, BHB decreased from
3.2 ± 0.3 mmol/L to 1.5 ± 0.3 mmol/L, levels similar to the pre-insulin levels in the Chow-
fed rats. The BHB levels following insulin in Chow-fed rats were physiological for fasting
conditions [34]. These data indicate that both glucose and ketones are consumed following
administration of insulin. Within 60 min of insulin administration, MAP decreased signifi-
cantly in both Chow-fed and KD-fed rats and was no longer different between the groups
(Supplementary Figure S2).

To assess the presence and utilization of BHB in the brain, a preliminary subset of
animals (KD n = 2 and Chow n = 3) was used to measure BHB levels in the cerebral venous
blood obtained from the confluence of sinuses (Supplementary Figure S1), concurrently
with the peripheral blood BHB measurements. In this subgroup, there was a rapid decrease
in cerebral BHB levels in KD-fed animals in the first 30 min (from 3.0 ± 0.2 mmol/L
to 1.0 ± 0.2 mmol/L, Figure 4a); this change was larger than the peripheral blood BHB
decrease within the same time period (2.3 ± 0.0 mmol/L to 1.2 ± 0.0 mmol/L, Figure 4a).
Baseline BHB levels in the Chow-fed rats were substantially lower in both cerebral and
peripheral blood (1.6 ± 0.4 mmol/L and 1.4 ± 0.3 mmol/L, respectively) compared to the
KD-fed rats, and the hypoglycemia-induced decrease was modest, reaching the lowest of
0.5 mmol/L at 60 min post insulin injection (Figure 4b). In comparison, BHB nadir in the
KD-fed animals was 1 mmol/L (Figure 4a).
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Blood glucose and (b) BHB levels were measured at 0, 15, 30, 45, 60, 90, and 120 min post insulin
administration. No significant differences (a, n = 5 both groups) in blood glucose levels were found
between groups at any timepoint. (b), BHB levels were significantly higher in KD + Ins rats (red
line, n = 5) at every timepoint compared to Chow + Ins rats (black line, n = 5); BHB sharply declined
within 30 min of insulin injection in KD + Ins rats (red line). Data are means ± SEM, */# p < 0.05,
** p < 0.01, two-way ANOVA with Holm-Šidák’s post hoc tests for multiple comparisons.
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Figure 4. Disappearance of BHB from cerebral venous blood is rapid in the KD-fed rats. Following
insulin injection, cerebral venous BHB (a,b, blue hatched area) was measured after 15, 30, 45, 60, 90,
and 120 min in the blood obtained from confluence of sinuses simultaneously with peripheral blood
(tail vein) BHB measurements (a,b, purple shaded area). (a) KD-fed animals (n = 2); (b) Chow-fed
animals (n = 3). KD—ketogenic diet; Chow—standard rodent diet.

3.3. KD-Induced Ketosis Shifts the Initiation of ASNA to Lower Blood Glucose Levels but
Preserves the Maximal Response

Insulin-induced hypoglycemia initiated a robust increase in ASNA (Figure 5a—sample
traces and Figure 5b—grouped data) in all animals compared to the PBS-treated controls,
indicative of a functional sympathetic CRR. Four out of nine insulin treated Chow-fed
rats were not included in further analysis due to the development of clonic convulsions
(presumably neuroglycopenic seizures), terminatable by glucose administration, within
2 h of recording (grouped data shown in Supplementary Table S1). None of the KD-fed
rats showed any signs of clonic convulsions. The blood glucose level required to induce a
doubling in ASNA (Figure 5c dashed blue line) was much lower (~2.8 mmol/L) in KD-fed
than in Chow-fed rats (~3.7 mmol/L; Figure 5c). Following an initial delay, the ASNA
response in KD-fed rats exponentially increased reaching a similar (if not higher) maximum
to Chow-fed rats (KD 284.2 ± 38% (n = 5); Chow 285.6 ± 34% (n = 5); Figure 5b).
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Figure 5. Ketogenic diet does not decrease adrenal sympathetic nerve response to hypoglycemia but
shifts its initiation to lower blood glucose levels. The ASNA response was analyzed in 3 min intervals
taken immediately before insulin administration (0 min) and 15, 30, 45, 60, 90, and 120 min post
insulin administration. (a) Example traces of ASNA recorded over 120 min post insulin administration
(black arrow) from KD + Ins rats (red) and Chow + Ins rats (black). (b) Grouped data showing
significant increases in ASNA in both KD + Ins (solid red line, n = 5) and Chow + Ins rats (solid black
line, n = 5), compared to the respective PBS controls (dashed red and black lines, n = 3 for both). (c)
Grouped data showing a shift (blue arrow) in ASNA response to lower blood glucose levels in KD +
Ins rats (red line) compared to Chow + Ins rats (black line). The dashed blue line in (c) indicates 100%
increase in ASNA from baseline. Data are means ± SEM; * p < 0.05, ** p < 0.01, *** p < 0.001; two-way
ANOVA with Holm-Šidák’s post hoc tests for multiple comparisons. ASNA—adrenal sympathetic
nerve activity.

3.4. Insulin-Induced Hypoglycemia Increases the Activation of Medullary C1 Neurons

The activation of tyrosine hydroxylase-expressing (TH) neurons in the ventrolateral
medulla (C1 area) is necessary for stimulation of epinephrine secretion from the adrenal
gland [35]. The number of TH-immunoreactive neurons in the RVLM did not differ be-
tween treatments (Figure 6a–d), whereas the proportion of activated (TH+/Fos+) neurons
significantly increased in the Chow + Ins group (Figure 6a,e) compared to the corresponding
PBS control (Figure 6a vs. Figure 6c,e). Although there was an increase in TH+/Fos+ in
the KD + Ins group compared to KD + PBS (30.3% ± 6.6% vs. 11.7% ± 1.7%, respectively,
Figure 6b,e), the difference was not statistically significant. These results demonstrate the
involvement of the brainstem glucoregulatory nuclei in the CRR under both Chow and
KD conditions.
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arrows indicate TH and Fos colocalization. (e) Grouped data showing the percentage of Fos-express-
ing TH+ C1 neurons (hatched bars TH+ only, solid bars TH+ and Fos+). (f) Representative images 
were taken at Bregma level −12.48 (blue rectangle). Data are means + SEM; ** p < 0.01; one-way 
ANOVA with Holm–Šidák’s test for multiple comparisons. Chow + Ins—chow-fed rats injected 
with insulin; KD + Ins—ketogenic diet-fed rats injected with insulin; Chow + PBS—chow-fed rats 
injected with vehicle PBS; KD + PBS—ketogenic diet fed rats injected with vehicle PBS. 
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ure 7g) concurrently with adrenal chromaffin cell activation, suggesting that the neuroen-
docrine function of adrenal chromaffin cells is preserved in the KD-fed rats. 

Figure 6. Insulin-induced hypoglycemia increases activation of medullary C1 neurons in Chow-fed
animals. (a–d) Representative images of Fos (magenta) and TH (green) immunolabelling of C1 region
of medulla oblongata in (a) Chow + Ins, (b) KD + Ins, (c) Chow + PBS, and (d) KD + PBS; white arrows
indicate TH and Fos colocalization. (e) Grouped data showing the percentage of Fos-expressing
TH+ C1 neurons (hatched bars TH+ only, solid bars TH+ and Fos+). (f) Representative images were
taken at Bregma level −12.48 (blue rectangle). Data are means + SEM; ** p < 0.01; one-way ANOVA
with Holm-Šidák’s test for multiple comparisons. Chow + Ins—chow-fed rats injected with insulin;
KD + Ins—ketogenic diet-fed rats injected with insulin; Chow + PBS—chow-fed rats injected with
vehicle PBS; KD + PBS—ketogenic diet fed rats injected with vehicle PBS.

3.5. Chromaffin Cell Activity and Epinephrine Secretion Are Not Diminished in KD-Fed Rats

The proportion of Fos-positive, PNMT-immunoreactive (epinephrine-producing) chro-
maffin cells in the adrenal medulla and plasma epinephrine levels were quantified 2 h after
insulin administration to establish that hypoglycemia activated the sympathoadrenal CRR
(Figure 7). PBS-treated (control) Chow- and KD-fed rats had virtually no Fos immunore-
activity (1.1% ± 0.1% and 0.7% ± 0.2%, respectively, Figure 7c–e) and correspondingly
low levels of epinephrine (16.2 ± 5.8 pg/mL and 2.9 ± 7.7 pg/mL respectively, Figure 7g).
Insulin-induced hypoglycemia significantly increased Fos immunoreactivity in both Chow-
fed rats (23.6 ± 4.8%, p = 0.0001, Figure 7a,e) and KD-fed rats (20.9 ± 1.8%, p = 0.0007,
Figure 7b,e). Epinephrine levels were significantly and similarly increased in Chow-fed
and KD-fed rats (869.7 ± 144.5 pg/mL and 973.2 ± 77.1 pg/mL, respectively, Figure 7g)
concurrently with adrenal chromaffin cell activation, suggesting that the neuroendocrine
function of adrenal chromaffin cells is preserved in the KD-fed rats.
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ministration in (a) Chow + Ins and (b) KD + Ins rats or PBS administration in (c) Chow + PBS and 
(d) KD + PBS groups. (e) Grouped data showing the proportion of Fos-immunoreactive epineph-
rine-producing (PNMT-positive) chromaffin cells is significantly elevated following insulin injec-
tion in both Chow and KD-fed animals (n = 5 sections/group obtained from 3–5 animals). (f) Bright-
field image of an adrenal gland section with the medulla circled in blue. (g) Plasma epinephrine 
levels were significantly higher in Chow + Ins (n = 5, black solid circles) and KD + Ins (n = 5, red 
solid triangles) rats compared to Chow + PBS (n = 3, black empty circles) and KD + PBS (n = 3, red 
empty triangles) rats, respectively. Data are means ± SEM; * p < 0.05, ** p < 0.01; Brown–Forsythe 
ANOVA with Dunnett’s test for multiple comparisons. Chow + Ins—chow-fed rats injected with 
insulin; KD + Ins—ketogenic diet-fed rats injected with insulin; Chow + PBS—chow-fed rats injected 
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Figure 7. Ketogenic diet does not impair adrenal gland activity and epinephrine release. (a–d)
Representative images of Fos (cyan) and PNMT (red) staining of adrenal medulla 2 h post insulin
administration in (a) Chow + Ins and (b) KD + Ins rats or PBS administration in (c) Chow + PBS and
(d) KD + PBS groups. (e) Grouped data showing the proportion of Fos-immunoreactive epinephrine-
producing (PNMT-positive) chromaffin cells is significantly elevated following insulin injection in
both Chow and KD-fed animals (n = 5 sections/group obtained from 3–5 animals). (f) Brightfield
image of an adrenal gland section with the medulla circled in blue. (g) Plasma epinephrine levels
were significantly higher in Chow + Ins (n = 5, black solid circles) and KD + Ins (n = 5, red solid
triangles) rats compared to Chow + PBS (n = 3, black empty circles) and KD + PBS (n = 3, red empty
triangles) rats, respectively. Data are means ± SEM; * p < 0.05, ** p < 0.01; Brown-Forsythe ANOVA
with Dunnett’s test for multiple comparisons. Chow + Ins—chow-fed rats injected with insulin; KD +
Ins—ketogenic diet-fed rats injected with insulin; Chow + PBS—chow-fed rats injected with vehicle
PBS; KD + PBS—ketogenic diet fed rats injected with vehicle PBS.

4. Discussion

It was previously reported that acute administration of ketones leads to attenuation
of the counterregulatory response to insulin-induced hypoglycemia, but studies on the
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effects of chronic diet-induced ketosis are lacking. Here, we report that a 3 week KD
in rats (1) induces stable ketosis, (2) does not impair the counterregulatory epinephrine
release in response to severe insulin-induced hypoglycemia, (3) does not diminish the
sympathoadrenal response as assessed by adrenal sympathetic nerve activity and adrenal
gland function, and (4) shifts the onset of sympathoadrenal counterregulatory response
to lower blood glucose levels. The delay in the sympathoadrenal response is concurrent
with rapid cerebral and peripheral ketone consumption and diminished activation of
low-glucose-sensitive C1 neurons in the brainstem. Our findings support the notion that
ketones may be an effective alternative (or additional) energy source at times of decreased
glucose availability; however, in contrast to other studies, nutritional ketosis does not
decrease the magnitude of counterregulatory sympathoadrenal response.

Elevated levels of plasma ketone bodies are associated with increased cerebral up-
take and utilization of ketones [13,36,37], as well as a parallel decrease in brain glucose
metabolic rates [34], indicating a glucose-sparing effect and a metabolic switch toward
ketone metabolism, possibly explaining the delayed ASNA response in KD-fed rats in
the present study. The degree of cerebral ketone uptake and the glucose-sparing effect
of ketones depend on the duration and magnitude of ketosis [34,38]. During prolonged
fasting ketones can provide up to 60% of the brain’s energy requirements [14]; additionally,
with every 1 mmol/L increase in plasma ketones, brain glucose utilization rate decreases
by 9–10% [15,34,39]. In our study, a 3 week KD regimen was enough to raise blood BHB
levels to 4.1 mmol/L, a level close to the Km for brain endothelial ketone transport by
MCT1 (monocarboxylate transporter 1) [39], suggesting that the concentration of BHB was
sufficient to exert effects on the brain. In contrast, overnight fasting-induced elevation of
BHB to ~1.6 mmol/L in Chow-fed rats was insufficient to optimally contribute to neuronal
metabolism and probably did not play a significant role in the CRR to hypoglycemia. A
sharp reduction in cerebral and peripheral BHB levels in the KD-fed rats was observed
within 30 min of insulin administration, which coincided with a slow ASNA increase
during this period. Once the fall in BHB plateaued at 30 min, ASNA increased exponen-
tially. Given that insulin rapidly inhibits ketogenesis [40], the decreasing levels of BHB in
both peripheral and cerebral blood are indicative of net BHB consumption by extrahepatic
tissues, including the brain.

While we did not directly measure brain tissue consumption of BHB, we can speculate
on the basis of BHB measurements in the cerebral venous blood that central glucose-
inhibited neurons (i.e., neurons that increase their firing rate in the presence of low glucose)
were not sufficiently activated until a substantial amount of BHB disappeared from the
circulation, which manifested as a delayed increase in ASNA and epinephrine release. One
of the important brain nuclei necessary for the CRR and specifically for the sympathetically
mediated epinephrine secretion is the C1 area in the rostral ventrolateral medulla [24,41].
In our study, a smaller proportion of activated C1 neurons in KD-fed rats may indicate
a delayed response to hypoglycemia due to the time-course of Fos expression, which is
reported to peak at 2 h post stimulus in the medulla [42]; however, in the absence of a
longer time-course (e.g., 3 h post insulin), lower (but not delayed) activation of C1 neurons
cannot be excluded.

In addition to the preserved ASNA, adrenal gland activity was not adversely affected
in the KD-fed rats, as evidenced by high level of chromaffin cell activation and plasma
epinephrine concentration measured at the end of the experiment. This suggests a good
agreement between the function of the adrenal gland and ASNA, which is not always the
case. Previous studies in mice [43] and rats [25] revealed that, under conditions of recurrent
hypoglycemia, ASNA does not correlate with epinephrine release, suggesting impairment
of the CRR at the level of the adrenal gland.

The mechanism of action of ketones in various physiological and pathological states
has been studied extensively, mostly by analyzing the effects of acutely administered
exogenous ketones [44–47], which produce similar level of ketosis as the KD. However,
Poff et al. cautioned against the extrapolation of findings from acute studies to chronic KD-
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induced conditions, as the metabolic state resulting from KD consumption, although similar,
is not identical to the one resulting from exogenous ketone administration [48]. This indeed
appears to be the case in studies investigating the CRR to hypoglycemia; previous human
studies showed that acute infusion of exogenous ketones causes a reduction in epinephrine
levels [11,49], which contrasts with our findings in KD-fed rats. This discrepancy might
be explained by the stimulatory effects of acute ketone administration on cerebral blood
flow [50], which is associated with significantly reduced perception of hypoglycemia
symptoms and blunted sympathoadrenal response in healthy humans [51]. These findings
suggest that attenuated CRR to hypoglycemia in the settings of acute administration of
ketones, as opposed to KD-induced sustained ketosis, might be due to the direct effects of
ketones on cerebral blood flow, the elevation of which allows a faster delivery of all energy
substrates, including glucose, to the brain rather than preferential neuronal metabolism of
ketones. In fact, it was shown that chronic diet-induced ketosis does not alter cerebral blood
flow in rats but increases capillary density in the brain [52]. In order to maximize cerebral
uptake and efficiency of ketone utilization as an energy substrate, a period of adaptation
is required, as occurs with KDs [53,54] and extended fasting [55–58]. Adaptation enables
the upregulation of MCTs and ketolytic enzyme expression in the brain [59,60], whereas
acute administration of exogenous sources of ketones does not [37,61]. In the present study,
3 weeks of KD was sufficient to induce a stable level of ketosis (>2.5 mmol/L), which
was not further augmented by an overnight fast (fed level of ketones 3.2 ± 0.2 mmol/L,
unpublished pilot studies) and, therefore, may be considered a maximum nutritional level;
these characteristics were previously described and defined as keto-adaptation in KD-fed
Sprague-Dawley rats [33]. The observed glucose-sparing effect may provide a metabolic
energy buffer for the glucose-sensing neurons in the hypothalamus and brainstem during
the initial stages of hypoglycemia, thereby delaying autonomic neurogenic symptoms
such as shakiness, hunger, palpitations, and sweating (or evidence of increased ASNA
in anesthetized animals); once the buffering capacity of ketones is exceeded, glucose-
inhibited neurons are activated and the CRR is rapidly initiated. Further studies are
warranted to investigate whether there is sufficient time for the sympathoadrenal response
to increase endogenous glucose production before the development of neuroglycopenia
under conditions of nutritional ketosis.

The effect of the KD on blood pressure was not a focus of the current study; however,
it is worth noting the significantly elevated baseline level of mean arterial pressure in the
KD-fed rats. Although the exact mechanisms of the development of this observed increase
in blood pressure is unknown, one possibility is the BHB-induced increase in sympathetic
nerve activity. Indeed, one previous study did report a stimulatory effect of BHB added to
the rat chow for 4 days on sympathetic nerve activity in rats [62]; however, the existing
literature in this area is limited, particularly in animals [63]. It is well established that chron-
ically elevated sympathetic nerve activity can lead to hypertension [64]; taken together,
we can hypothesize that in the present study the elevated baseline blood pressure may
have resulted from sympathoexcitatory effects of KD-induced chronic ketosis. However,
without further investigation, other mechanisms cannot be ruled out.

Technical Considerations

This study has technical and interpretive limitations that must be considered. First,
the invasive ASNA recordings reported in this study were only achievable in anesthetized
animals and, as such, limited us to recording only severe symptoms of hypoglycemia, such
as clonic convulsions in some Chow-fed animals. However, the measurements of physical
symptoms of hypoglycemia were not our primary objective. One of the advantages of
using an anesthetized preparation is that it eliminates handling stress-induced changes in
epinephrine, one of the key measures of the CRR in our study. Second, it can be argued the
measurements of epinephrine release in response to hypoglycemia are sufficient to assess
the function of the sympathoadrenal system as it positively correlates with ASNA [27]; how-
ever, it is not always the case. As such, Sivitz et al. demonstrated that repeated exposure to



Nutrients 2021, 13, 2627 13 of 16

insulin-induced hypoglycemia significantly reduces plasma epinephrine without reducing
the level of ASNA [25]. Further studies by Ma et al. confirmed that the dysregulation
of sympathoadrenal counterregulatory response originates at the level of adrenal gland,
leading to impaired epinephrine release [43]. Therefore, it was prudent in the current study
to assess multiple components of the sympathoadrenal response to pinpoint the possible
source of impairment. Advantageously, ASNA recordings give a direct real-time measure
of the sympathetic output following a hypoglycemic stimulus. This is important because,
in our study, the precipitous decline in ASNA after an initial hypoglycemia-induced rise
was predictive of the occurrence of clonic convulsions in Chow-fed rats (Table S1), a finding
not possible with epinephrine measurement after termination of the experiment. Although
not explored in the current study, this observation deserves further examination. Third,
this study was focused primarily on the effects of circulating ketones on the CRR; however,
the KD used here contained 34% of medium-chain fatty acids (from Copha—hydrogenated
coconut oil), which are not only readily metabolized into ketone bodies in the liver but
can also cross the blood-brain barrier (unlike long-chain fatty acids) and directly affect
brain energy metabolism through various mechanisms [65]. Our experiments were not
designed to assess the relative contribution of medium-chain fatty acids on the CRR, but
their contribution to the demonstrated response cannot be excluded. Lastly, the study was
conducted in healthy, nondiabetic rodents and, although it does provide novel insights
into the normal hypoglycemia-induced CRR under the conditions of chronic nutritional
ketosis, it would be optimal, albeit challenging, to study this response in animal models
of diabetes.

5. Conclusions

The current study provides a novel insight into the sympathoadrenal CRR to insulin-
induced hypoglycemia under conditions of nutritional ketosis in healthy, nondiabetic rats.
We demonstrated that the sympathoadrenal response in KD-fed rats is as strong as in Chow-
fed rats; however, it occurs at lower blood glucose levels. Were similar effects to occur in
type 1 diabetes, KD might be a useful strategy to mitigate symptoms and consequences of
hypoglycemia while providing the brain with an additional metabolic substrate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13082627/s1, Figure S1: Representative image showing a rat dorsal skull craniotomy
exposing the confluence of sinuses, Figure S2: The effects of insulin-induced hypoglycemia on blood
pressure and heart rate in anesthetized rats, Table S1. Grouped data for animals excluded due to
clonic convulsions.
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