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Abstract: Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from
the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that
protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA),
and viral propagation. However, it not known whether PDIs are required for NA maturation or if
these interactions represent a putative target for the treatment of influenza infection. We sought to
determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of
the virus. Requirement of disulfides for NA oligomerization and activity were determined using
biotin switch and redox assays in WT and PDIA3−/− in A549 cells. A PDI specific inhibitor (LOC14)
was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory
response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor
LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response.
IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or
inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells.
LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice
including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing
NA activity, potentially providing a novel platform for host-targeted antiviral therapies.

Keywords: influenza; PDIA3; NA; disulfides; LOC14

1. Introduction

The influenza A virus (IAV) causes severe respiratory illness and worldwide impact [1].
While vaccination and therapeutics are available, they are often rendered ineffective due to
the accumulation of mutations in the viral genome [1]. One potential strategy to circum-
vent this type of mutational resistance is targeting the host proteins or post-translational
processes utilized by the virus during propagation. Literature on the interaction between
IAV and host protein disulfide isomerases (PDIs), involved in disulfide bond formation, is
emerging, and viruses often utilize redox-active host chaperone proteins to assist in their
protein folding [2–7].

PDIs are a major disulfide catalyzing family of enzymes in mammalian cells [8]. One
isoform, PDIA3, is known to be required for efficient folding of IAV hemagglutinin (HA)
in vitro [2]. We have recently demonstrated PDIA3 is required for catalyzing disulfide
bonds in HA and active infection in vivo [3]. A recent study has also shown that specific
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overexpression of PDIA3, rather than other PDI isoforms, yields improved stability of
HA [9]. While other PDI isoforms are known to play a role in IAV protein expression [4],
the exact nature of that role remains unknown.

We have shown that treatment with the reversible PDI inhibitor LOC14 [10] in vitro
significantly alters the oxidative folding of IAV HA, leading to disruptions in HA matura-
tion and virus-induced inflammatory cytokine production [3]. However, whether these
disruptions in disulfide bond formation are limited to HA remain unknown. To further gain
insight, we investigated the effect of PDIA3 on IAV-NA. NA is a homotetrameric enzyme
found on the surface of the virion [11]. NA is a glycoprotein stabilized by 32 disulfide
bonds once fully matured and is known to traffic through the endoplasmic reticulum (ER),
the primary site of localization of PDI [8,12].

Active NA is required for viral release, cleaving sialic acid residues from cell surface
proteins and lipids to prevent viral aggregation on the cell [11,12]. NA inhibitors are
currently front-line therapeutic options for influenza infections [12]; however, their effec-
tiveness is often limited by rapid viral mutation [13] and a limited window of application.

In this study, we provide evidence that PDIA3 and IAV-NA interact. Inhibition or
ablation of PDIA3 results in a reduction of NA disulfide bonds, oligomerization, and
activity. Treatment of IAV-infected mice or lung epithelial cells with LOC14 decreased
viral burden, inflammation, and pro-inflammatory cytokine production. These results
demonstrate that PDIA3 regulates IAV-NA activity, and inhibiting PDIs in vivo decreases
both IAV burden and subsequent pro-inflammatory responses.

2. Results
2.1. Disulfide Bonds Are Required for NA Activity, and PDIA3 Interacts with IAV NA

Airway epithelial cells are the primary site of infection and replication of influenza [14],
therefore we utilized airway or lung epithelial cells in our in vitro experiments. Influenza-
NA is responsible for cleaving sialic acid residues of glycoproteins, enabling viral exit
from the infected cells [11,12], disulfide bonds stabilize the structure and are required
for the proper function of NA [12,15]. Comparisons of cysteine residues and disulfide
bonds show remarkable conservation in various IAV strains, and recombinant-NA (rNA)
activity was decreased by the reducing agent DTT (Figure 1A,B). Co-immunoprecipitation
experiments after IAV infection or transfection with NA expressing plasmids revealed that
PDIA1 and PDIA3 interact with NA compared to other PDIs in the IAV infection model, and
PDIA3 interacted with the ectopically expressed NA (Figure 1C–E). To determine whether
PDIA3 expression affects NA disulfide bonds and activity, PDIA3 ablated A549 cells were
infected with either H1N1-PR8 or transfected with NA (N1)-expressing plasmid. We
found significant decreases in NA production (~20%) (Figure 1F,G). A biotin-based cysteine
sulfhydryl labeling methodology [3] (Figure 1H) revealed that disulfide bonds of NA were
decreased in PDIA3−/− compared to WT cells (Figure 1I,J). The production of IFNβ was
also decreased in PDIA3−/− compared to WT cells (Figure 1K). These results indicated
that PDIA3 and NA interact, and disulfide bond formation in NA depends on PDIA3.
Deleting PDIA3 also decreased IFNβ response potentially associated with alterations in
viral burden.

2.2. LOC14 Treatment Alters Disulfides and Activity of NA and Decreases the Viral Burden

LOC14 inhibits both PDIA1 and A3 [10,15]. We observed that NA binds to both PDIA1
and A3. To test the impact of PDIA1 or A3 inhibitor on NA, lung epithelial cells were
infected with IAV and treated with LOC14 (Figure 2A). Measurement of dead cell protease
in the culture supernatants showed that LOC14 significantly decreased cell death in mock or
influenza-infected A549 cells compared to DMSO-treated samples (Figure 2B). We observed
a significant decrease in the production, disulfide bonds, and activity of NA in A549 cells
(Figure 2B–D). Analyses of samples from primary mouse tracheal epithelial cells (MTECs)
infected with IAV and treated with LOC14 revealed a decrease in oligomerization and
activity of NA along with a decrease in IAV burden as quantitated by the levels of IAV-PA
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mRNA (Figure 2E–G). Interestingly, we also observed decreased pro-inflammatory cytokine
production, including IFNβ-associated genes (Irf7), CCL20, and IFNβ in LOC14-treated
cells compared to VC-treated IAV-infected cells (Figure 2H,I). These results indicate that a
decrease in the formation of disulfide bonds of NA leads to impaired NA oligomerization,
decreased activity, IAV burden, and subsequent decreases in pro-inflammatory responses
in IAV-infected lung epithelial cells.

Figure 1. PDIA3 interaction with influenza NA required for disulfides of NA. (A) Multiple align-
ments of conserved cysteine residues that are involved in disulfide bonds (grey) of NA. (B) Re-
combinant NA (rNA-5 µg) activity assay (±reducing agent-DTT-1 mM). (C,D) NA interaction with
PDIA3/PDIA1/A5/A6 assessed by respective PDIA immunoprecipitation in mock or influenza-
infected cells. (E) pCDNA3 or pNA-transfected A549 cells, NA interaction assessed by PDIA3
immunoprecipitation. (F,G) Expression of NA in PDIA3 ablated (PDIA3−/−) or WT A549 cells
infected (left) or transfected with plasmids (right) with densitometry. (H) Schematic depicting disul-
fide labeling assay. (I,J) Western blots for NA labeling of disulfides in samples normalized with
higher total protein in PDIA3−/− A549 cells infected (left) or transfected with plasmids (right) with
densitometry of disulfide labeled proteins. (K) IFNβ measurement by ELISA. * p < 0.05 compared
to mock or WT groups by t-test. # p < 0.05 compared WT + IAV group. Data are expressed as the
standard error of the mean (±SEM).
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Figure 2. PDI inhibitor LOC14 decreases disulfides in NA, the activity of NA, viral burden, and
pro-inflammatory response in primary lung epithelial cells. (A) Schematic representing the time
points of IAV infection and LOC14/DMSO treatment and harvest in cells. (B) Dead cell protease assay
(RFU—relative fluorescence units). (C) Western blot analysis of influenza NA, PDIA3 in H1N1 PR8 or
mock virus-infected A549s treated with vehicle control (DMSO) or LOC14. (D) Western blots of NA
labeled for disulfides in samples spiked with 1.5× higher total protein in cells treated with LOC14.
(E) NA activity from the cell lysates infected with H1N1 PR8 or mock virus and treated with vehicle
control (DMSO) or LOC14. (F) Oligomerization of NA in IAV or mock virus-infected MTECs treated
with vehicle control (DMSO) or LOC14, Western blot ±DTT. (G) Influenza-NA activity measurement
from cell supernatants of MTECs infected with IAV or mock virus and treated with vehicle control
(DMSO) or LOC14. (H) Influenza-PA mRNA measurement from cell lysates of MTECs infected with
H1N1 PR8 or mock virus and treated with vehicle control (DMSO) or LOC14. (I) Measurement of
Interferon regulatory factor 7 (Irf7) or Ccl20 mRNA. (J) Measurement of IFNβ by ELISA. * p < 0.05
compared to mock + DMSO group, # p < 0.05 compared to IAV + DMSO group, by ANOVA. Data are
expressed as the standard error of the mean (±SEM).
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2.3. LOC14 Decreases IAV Burden and Inflammation in Mice

C57BL/6NJ mice were treated with LOC14 and infected with H1N1 PR8 (Figure 3A).
Analysis of inflammatory cells and cytokines in BALF showed a significant decrease in in-
flammatory cell profiles in LOC14-treated mice infected with IAV compared to DMSO-mice
infected with IAV, including IFN-associated Irf7 transcript in lung homogenates (Figure 3B–
F). Cytokine analysis in BALF samples showed a significant decrease in cytokine profiles
in LOC14-treated mice infected with IAV compared to DMSO-mice infected with IAV
(Figure 3G–J). Furthermore, compared to all the other groups, we observed significant
elevation of BALF protein levels in IAV-infected DMSO-treated mice. A higher concentra-
tion of LOC14 (50 mg/kg) treatment significantly attenuated IAV-induced BALF protein
(Figure 3K). There were no significant alterations in the serum alanine transaminase (ALT)
levels (Figure 3L). These results indicated that LOC14 did not induce epithelial barrier
disruption or systemic toxicity compared to vehicle-treated mice.

Figure 3. LOC14 treatment decreases influenza-induced inflammatory response in mice. (A) Schematic
representing the time points of IAV infection and LOC14 treatment and euthanasia of mice (IP-
intraperitoneal injection). (B–J) Analysis of inflammatory cells by flow cytometry, mRNA for Irf7 in
whole lung lysate by RT-qPCR, and ELISA for inflammatory cytokines and chemokines from BAL fluid
of infected mice. (K,L) Analysis of total protein in BALF and serum ALT in influenza or mock-infected
mice treated with LOC14. * p < 0.05 compared to mock groups, # p < 0.05 compared to IAV-DMSO
group by two-way ANOVA. Data are expressed as the standard error of the mean (±SEM).
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Western blot and RT-qPCR analysis of viral protein (HA), transcripts (PA) in iso-
lated lungs as well as re-infection and plaque assays with lung homogenates, showed
significantly decreased viral burden in LOC14-treated mice compared to untreated mice
(Figure 4A–E). Analysis of NA activity in the BALF of infected mice indicated a signifi-
cant decrease in the higher LOC14-treated group (Figure 4F). Taken together, these results
indicated that LOC14 treatment decreases viral burden, NA activity, and subsequent in-
flammatory response in vivo.

Figure 4. LOC14 treatment decreases the influenza burden in mice. (A,B). Western blot analysis
of IAV HA and densitometry of HA normalized to actin. (C,D) Analysis mRNA for influenza PA
in whole lung lysate by RT-qPCR and analysis mRNA by RT-qPCR for influenza PA from the lung
homogenate re-infected into HBE. (E) IAV plaque formation assay. (F) Analysis of NA activity in the
BALF. * p < 0.05 compared to mock groups, # p < 0.05 compared to IAV-DMSO group by two-way
ANOVA. Data are expressed as the standard error of the mean (±SEM).

3. Discussion

Our findings here show that the glycoprotein-specific PDIA3 interacts with NA, and
ablation of PDIA3 in lung epithelial cells results in decreases in disulfide bonds, production,
and activity of NA, subsequently, resulting in decreased viral burden and pro-inflammatory
response during influenza infection. Treatment with LOC14, a reversible inhibitor of
PDIA1/A3 [16], alters the oxidative folding and oligomerization of NA resulting in loss of
activity. LOC14 treatment of IAV-infected mice significantly decreased both viral load and
subsequent inflammatory response. Collectively, these results suggest the importance of
PDIA3 in the oxidative folding of NA and demonstrate the impact of host PDIA3 in viral
maturation and subsequent inflammation.
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The influenza virus causes seasonal outbreaks and occasional pandemics resulting
in significant morbidity and mortality [16–19]. Besides low efficacy of vaccination, there
are only a few FDA approved influenza specific anti-viral drugs that are available for
treatment [20–22]. Influenza strains are showing resistance to these available drugs [20–28].
Here we suggest a potential strategy to circumvent development of resistance to existing
drugs or vaccine shortcomings is to target the host proteins or post-translational processes
utilized by the virus during propagation.

PDIA3 catalyzes oxidative modifications of numerous proteins, including proteins
that are mediators of respiratory diseases [29–33]. PDIA3 ablation or inhibition resulted in
decreases in allergic airway inflammation, airway hyperresponsiveness, peribronchiolar
fibrosis, and pulmonary fibrosis. These phenotype improvements were attributed to
deficiencies in growth factors (POSTN, EGF, and SPP1), chemoattractant (Eotaxin), and
decreases in death receptor, Fas activity [30–33]. We also observed that PDIA3 depletion
decreases influenza-induced apoptosis of lung epithelial cells and disulfide bonds in HA,
leading to decrease in influenza burden and airway hyperresponsiveness [3,30]. Here we
report for the first time that PDIA3 inhibition disrupts disulfide bonds in influenza-NA,
and ultimately its activity. This mode of inhibition of NA subsequently decreases influenza
burden in cells and mouse lungs.

Another important component of our work is a dose-dependent decrease in many
cytokines/and chemokines in the BAL fluid of LOC14-treated mice. Cytokines and
chemokines are often stabilized by disulfide bonds [33–36], and these bonds have been
shown to be important for their function [33–36]. Although PDIs direct role in the im-
munomodulatory effect needs a thorough examination, given that PDIs are a major disul-
fide catalyzing enzymes in the cell [8], it is likely to play a major role in immunomodulation
by catalyzing the disulfide bond formation in cytokines, chemokines, and growth factors
such as osteopontin [31,32]. Treatment with NA inhibitors can also yield similar decreases
in immune activation [37], this is likely due to lower viral levels, as NA inhibitors are not
known to directly modulate the immune system [38] and their limited effectiveness when
used after the period of initial viral replication [37–40]. Our studies do not show long-term
effects of LOC14 treatment in influenza-induced immune response and lung function.
Next, it is not clear whether the decrease in inflammatory response by PDIA3 inhibition
is due to attenuation of virus or a direct effect on inflammatory molecules. Furthermore,
future studies are required to ascertain whether using PDIA3 inhibitors is a better strategy
during IAV infection compared to NA inhibitors or there is a synergistic effect by using
both. Despite the above-mentioned limitations, our novel observation in this study would
provide insight into a host-based strategy to treat IAV-infection and inflammation in the
future.

4. Material and Methods
4.1. Ethics Statement

All animal studies were approved by the University of Vermont Institutional Animal
Care and Use Committee and carried out in accordance with the Guide for the Care
and Use of Animals of the National Institutes of Health [3]. The University of Vermont
adheres to the “U.S. Government Principles for the Utilization and Care of Vertebrate
Animals Used in Testing, Research, and Training”, “PHS Policy on Humane Care and Use
of Laboratory Animals”, “USDA: Animal Welfare Act & Regulations”, and “the Guide for
the Care and Use of Laboratory Animals”. The University is accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).
University of Vermont’s PHS Assurance Number: A3301-01, expiration date: 31 October
2021. University of Vermont IACUC was approved on 12 October 2018, and the animal
protocol number is PROTO202000102, IACUC Legacy number 19-005 [3]. The de novo
renewal was approved on 4 June 2020, and the animal protocol number is PROTO202000102,
IACUC Legacy number 19-005 [3].
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4.2. Viruses

Influenza A virus Puerto Rico 8/34 (H1N1) (10100374) was purchased from Charles
River (Wilmington, MA, USA) [3].

4.3. Cells and Treatments

Primary MTECs were isolated and cultured from age and sex-matched wild type
(WT) C57BL/6NJ mice as previously described [3]. Cells were plated at 2 × 106 cells/dish
and when greater than 90% confluent, infected with mouse-adapted H1N1 influenza
A virus Puerto Rico 8/34 (PR8) at 2.5 Egg infectious units (EIU)/cell in a DMEM/F12
(Gibco, 21041025) growth factor-free medium. Ultraviolet light (UV)-irradiated virus that
was replication-deficient (mock) was used as a control [3]. Following infection, the cells
were incubated for 1 h at 37 ◦C, the plates were then washed twice with 2 mL PBS to
remove unbound virus and supplemented with growth factor-free medium. MTECs were
pretreated for 1 h with 10 µM LOC14 (5606 Tocris, Minneapolis, MN, USA), during viral
infection, and 2 h post viral infection, DMSO was used as a control. All treatments were
performed in growth factor-free medium [3].

4.4. Transfection

Cells were transfected using Lipofectamine 3000 transfection kit (L3000015 Thermo
Fisher, Waltham, MA, USA) as per manufactures instructions with the following modi-
fication: 2.5 µg of plasmid per plate, optional p3000 reagent was utilized, transfections
were incubated for 4 h. Human A549 adenocarcinoma alveolar basal epithelial cells were
cultured as suggested by the ATCC. Cells were plated at 4 × 105 cells/dish 24 h prior to
transfection. Immediately prior to transfection cells were washed with 1 mL of PBS, and
media replaced with 1 mL Opti-MEM (31985070 Thermo Fisher, Waltham, MA, USA). After
4 h, transfection media was aspirated and replaced with 2 mL Opti-MEM.

4.5. NA Activity Assay

NA activity assay was adapted from Leang et al. [41]. The assay is based on NA
enzyme activity cleaving the 2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid (MU-
NANA) substrate (16620 Cayman, Ann Arbor, MI, USA) to release the fluorescent product
4-methylumbelliferone (4-MU). NA activity was monitored in NA activity buffer containing
33.3 mM 2-(N-morpholino) ethanesulfonic acid (MES) and 4 mM CaCl2, pH 6.5 by adding
50 µL infected cell supernatant or 5 µg of infected cell lysate to 300 µM MUNANA. The
increase in fluorescence signal was monitored at 460 nm with excitation at 355 nm using a
Synergy HTX plate reader (Biotek, Santa Clara, CA, USA) [3]. Five (5) µg of recombinant
NA (rNA) was reacted with 2 mM DTT to reduce disulfide bonds (Figure 1B). Total of 5 µg
of total protein from the cell lysates, supernatants, or BALF were used for NA assay in
Figure 2E,G and Figure 4F. The total reaction volume was 100 µL. Rates were calculated
using GraphPad Prism (8.4.1).

4.6. Dead Cell Protease Assay

Cell death in influenza virus-infected ±LOC14-treated A549 cells was measured using
the Apo Tox-Glo assay (Promega, Madison, WI, USA) dead cell protease substrate as
described in Anathy et al., 2012 [30].

4.7. CRISPR Lines

PDIA3-deficient A549 cells were purchased from Synthego (Synthego Corporation,
Menlo Park, CA, USA). Cells were screened by plating 1 cell/well in a 96 well flat bottom
plate. Single cell wells were marked and monitored for growth. After approximately
four doublings, cells were trypsinized and transferred to 6-well plates. Upon reaching
~70% confluency cells were trypsinized and transferred to T75 flasks. PDIA3 levels were
ascertained by Western blot.
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4.8. Mouse Model of IAV-Infection and LOC14 Treatment

All mice were females, C57BL/6NJ strain, bred, and maintained at the University
of Vermont animal facility. All mice were anesthetized using isoflurane and exposed to
2000 egg infectious units (EIU) IAV (PR8) or mock (UV killed PR8) suspended in PBS via
the nasopharyngeal route. Mice were administered LOC14 via the intraperitoneal injection
(IP) 1 h before infection and 24 h or 48 h post infection via oropharyngeal route under
anesthesia. Mice were euthanized at 72 h post infection to collect bronchoalveolar lavage
fluid (BALF) and lung samples for further analysis (Figure 3A).

4.9. BALF Processing

BALF was collected by lavaging lungs with 1.0 mL of sterile PBS. Cells were isolated by
centrifugation, and total cell counts were determined using a Guava easyCyte HT cytometer
(Millipore) and analyzed using Flowjo (version 10.4.2, Ashland, OR: Becton, Dickinson
and Company, Ashland, OR, USA). Differential cell counts were obtained via cytospins
using Hema3-stained (Fisher Scientific) total cells, on a minimum of 300 cells/animal. The
differential cell counts were normalized to the total cell counts [3].

4.10. Analysis of mRNA Expression

Adapted from Chambelain et al., 2019 [3]. Right lung lobes were flash-frozen and
pulverized, and total RNA was isolated using Qiazol Lysis Reagent (Qiagen, Germantown,
MD, USA) and purified using the RNeasy kit (Qiagen). One microgram of RNA was reverse
transcribed to cDNA using M-MHV Reverse Transcriptase (Promega, Madison, WI, USA)
for quantitative assessment of gene expression using SYBR green (Bio-Rad, Hercules, CA,
USA). Expression values were normalized to indicated housekeeping genes. The primers
used in this study are listed in Table 1 [3].

Table 1. List of qPCR primers for RT-qPCR analysis in this study.

Primer Name Primer Sequence (5′-3′)

Polymerase acidic–FW CGGTCCAAATTCCTGCTGA

Polymerase acidic–REV CATTTGGGTTCCTTCCATCC

mPP1B–FW TTTTCATCTGCACTGCCAAG

mPP1B–REV TGCAGTTGTCCACAGTCAGC

mRP2–FW TTGCCAGCAATTCGTGTGA

mRP2–REV CCAGTTGACCTCTTCTGACA

mGAPDH–FW AGGTCGGTGTGAACGGATTTG

mGAPDH–REV TGTAGACCATGTAGTTGACCTCA

mIRF7–FW GAAGACCCTGATCCTGGTGA

mIRF7–REV CCAGGTCCATGAGGAAGTGT

4.11. Biotin Switch Assay

Adapted from Chamberlain et al., 2019 [3]. To block free sulfhydryls, cells were lysed
in buffer containing 20 mM Tris·HCl (pH 8.0), 100 mM NaCl, 0.5% Nonidet P-40, 10%
glycerol, 1% protease inhibitor cocktail (P8340 Sigma-Aldrich, St. Louis, MO, USA) (v/v),
1% phosphatase inhibitor cocktails 1 and 2 (P5726, P0044 Sigma-Aldrich, St. Louis, MO,
USA) (v/v), and 1 mM N-ethylmaleimide (NEM) for 1 h at ambient temperature. Excess
NEM was then removed via acetone precipitation [3]. Briefly, acetone was cooled to−20 ◦C.
Four times the sample volume was added to protein samples. Samples were then vortexed
and incubated overnight at −20 ◦C. Precipitated protein was pelleted by centrifugation
at 14,000× g for 10 min. The supernatant was aspirated, and the resulting pellet was
suspended in buffer containing 20 mM Tris·HCl (pH 8.0), 100 mM NaCl, 0.5% Nonidet P-40,
10% glycerol, 1% SDS, and 1% protease inhibitor cocktail (P8340 Sigma-Aldrich, St. Louis,
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MO, USA) (v/v), 1% phosphatase inhibitor cocktails 1 and 2 (P5726, P0044 Sigma-Aldrich,
St. Louis, MO, USA) (v/v). Upon resuspension disulfides were reduced with 20 µM DTT
and newly formed sulfhydryl groups were labeled with 1 mM 3-(N-maleimido-propionyl)
biocytin (MPB) (M1602 Invitrogen, Waltham, MA, USA) for 1 h at ambient temperature [3].
Excess DTT and MPB were removed via acetone precipitation. The labeled lysate was
precipitated using NeutrAvidin agarose resin (29200 Thermo Scientific, Waltham, MA, USA)
and subsequently probed using an anti-HA antibody. As a reagent control, lysates from
cells were incubated with DMSO and subjected to the same procedures [3].

4.12. Non-Reducing Gel Electrophoresis

Adapted from Chamberlain et al., 2019 [3]. Cell lysates were resuspended in loading
buffer without the reducing agent DTT. A separate set of samples was resuspended in
loading buffer with DTT and incubated at 95 ◦C for 5 min to reduce the disulfide bonds. The
samples were resolved by SDS-PAGE and subjected to Western blot analysis as described [3].

4.13. Western Blot Analysis

Adapted from Chamberlain et al., 2019 [3]. Following dissection, right lung lobes
were flash-frozen for protein or mRNA analysis. Lungs were pulverized and lysed in
buffer containing 20 mM Tris·HCl (pH 8.0), 100 mM NaCl, 0.5% Nonidet P-40, 10% glycerol,
and 1% protease inhibitor cocktail (P8340 Sigma-Aldrich, St. Louis, MO, USA) (v/v), 1%
phosphatase inhibitor cocktails 1 and 2 (Sigma-Aldrich, P5726, P0044) (v/v) [3]. Proteins
from cell lysates were prepared in the same buffer. Insoluble proteins were pelleted via
centrifugation. Following protein quantitation of the supernatant, samples were resus-
pended in loading buffer with DTT and resolved by SDS-PAGE. Proteins were transferred
to PVDF, and membranes were probed using a standard immunoblotting protocol. Protein
quantification of supernatant was determined using DC Protein Assay (5000116 Bio-Rad,
Hercules, CA, USA). Samples were resuspended in loading buffer with DTT and resolved
by SDS-PAGE. The quantification of protein expression was performed by densitometry
using Image Studio Lite software (LI-COR Biosciences, Lincoln, NE, USA) [3]. Antibodies
used for Western blots are as follows: IAV H1 HA (11684-RP01 Sino biological, Wayne,
PA, USA); IAV N1 NA (AF4858 R & D, Minneapolis, MI, USA); PDIA3 (LSB9768 LS bio,
Seattle, Washington, USA); PDIA1 (ADI-SPA-890-F Enzo, New York, NY, USA); PDIA5
(NBP1-92252 Novus Bio, Centennial, CO, USA); PDIA6 (ab83456 Abcam, Waltham, MA,
USA); β-actin (A5441 Sigma, St. Louis, MO, USA), and GAPDH (607902 Biolegend, San
Diego, CA, USA) [3].

4.14. Image Processing

Digital images were acquired using an Amersham Imager 600RGB (GE). Photoshop
(CC 2020; Adobe, San Jose, CA, USA) and Illustrator (CC 2020; Adobe, San Jose, CA, USA)
were used to assemble the figures. Samples were run on the same gel. When required,
brightness and contrast were adjusted equally in all lanes [3].

4.15. ELISA

Adapted from Chamberlain et al., 2019 [3]. Lung protein samples were assayed for
IL-6 (DY406, R&D, Minneapolis, MN, USA), GCSF (DY414, R&D, Minneapolis, MN, USA),
IL-1β (DY401, R&D, Minneapolis, MN, USA), KC (DY453, R&D, Minneapolis, MN USA),
IFN-β (DY814-05 and DY8234-05, R&D, Minneapolis, MN, USA), and CCL20 (DY760, R&D,
Minneapolis, MN, USA) by ELISA according to the manufacturer’s instructions.

4.16. Serum ALT Determination

Serum ALT levels were determined using an alanine transaminase colorimetric activity
assay kit (700260 Cayman, Ann Arbor, MI, USA). Assay was run according to manufac-
turer’s instructions.
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4.17. Immunoprecipitation

Adapted from Chamberlain et al., 2019 [3]. HBE cells were lysed in a buffer containing
20 mM Tris·HCl (pH 8.0), 100 mM NaCl, 0.5% Nonidet P-40, 10% glycerol, 1% protease in-
hibitor cocktail (P8340 Sigma-Aldrich, St. Louis, MO, USA) (v/v), 1% phosphatase inhibitor
cocktails 1 and 2 (P5726, P0044 Sigma-Aldrich, St. Louis, MO, USA) (v/v). PDIA3 was
precipitated using anti-PDIA3 antibody (ADI-SPA-585-F Enzo Life Sciences, Farmingdale,
NY, USA) and Protein G agarose beads (15920010 Invitrogen, Waltham, MA, USA). As a
control, lysates from cells were incubated in non-specific rabbit gamma globulin (011-000-
002 Jackson ImmunoResearch, West Grove, PA, USA) and subjected to the same procedures.
Samples were run on reducing gels [3].

4.18. Virus Plaque Assay

Confluent MDCK (NBL2, ATCC-CCL34) cells were trypsinized and seeded to 6-well
plates at 3 × 106 cells/well and incubated at 37 ◦C, 5% CO2 for overnight. The next day
the cells were rinsed 2–3 times with sterile 1× PBS to remove all FBS from growth media.
The cells were infected with 1.5 mL of various serial dilutions of lung homogenate and
incubated at 37 ◦C, 5% CO2 for one hour. Following the virus absorption, cells were washed
twice with sterile 1X PBS. Then these cells were overlaid with 3 mL of 0.5% low melting
agarose (+2 ug/mL TPCK). The cells were incubated at 37 ◦C, 5% CO2 for 72 h. Once
plaques are visible, the agarose gel was removed from each well. The agarose and cells
were fixed with 2 mL 10% PFA for 1 h (at room temperature). After 1 h PFA was removed,
and agarose was stained with 1 mL 1% crystal violet for 20 min (at room temperature).
Excess stain was removed, and wells were washed with water. The number of visible
plaques were recorded in each well, and calculated as PFU/mL = Average of plaques (in
duplicate wells)/dilution × Volume.

4.19. Statistics

Adapted from Chamberlain et al., 2019 [3]. All mice studies were repeated once. All
statistical analysis was carried out using Graph Pad Prism 8. The ROUT [42] method was
used to identify outliers with a cutoff of Q = 2%, and identified outliers were removed from
the subsequent statistical analysis (see Figure legends). No sample size were estimated
prior to the start of the experiment. Data were pooled from two experiments and analyzed
by one or two-way analysis of variance (ANOVA) where appropriate, and a two-stage
linear step-up procedure of Benjamini, Krieger, and Yekutieli [43] (FDR, Q = 5% or 0.05)
test to adjust for multiple comparisons. Adjusted p values (“q” values) of <0.05 were
regarded as discovery in FDR. Parametric student’s t-test were used where appropriate.
p values < 0.05 were regarded as statistically significant in Mann Whitney and parametric
student’s t-test. Data for all the results were expressed as ±SEM.
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