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Abstract
Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in 
susceptible hosts that predispose to the development of severe COVID-19.
Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we under-
took proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisa-
tion analyses leveraging publicly available protein and COVID-19 datasets.
Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nomi-
nated new proteins such as soluble Fas (colocalisation probability >0.9, p=1  × 10-4), implicating Fas-
mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian 
randomisation analyses showed consistent associations of genetically predicted ABO protein with 
several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins asso-
ciated with the ABO signal revealed that the strongest association was with soluble CD209. We 
demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, 
suggesting a mechanism that could explain the ABO association with COVID-19.
Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-
CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets 
for COVID-19.
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Introduction
At the current time, the coronavirus disease 2019 (COVID-19) pandemic is implicated in the deaths 
of more than 4 million people worldwide (Dong et al., 2020). Although effective vaccines have been 
developed to substantially reduce mortality and morbidity due to severe COVID-19, the emergence 
of mutated strains of the SARS-CoV-2 virus has challenged the effectiveness of existing vaccines and 
raised the urgency of identifying alternate therapeutic pathways to target the virus (Tegally, 2020; 
Erik et al., 2020 ; Collier et al., 2021). Nevertheless, it is likely that the mutated strains of SARS-
CoV-2 will continue to exploit the same vulnerable host biology to bind onto and infect cells and, 
in susceptible individuals, evade immune defences and promote the excessive host inflammatory 
response that is characteristic of severe COVID-19 (Gordon et al., 2020a). Therefore, the identifi-
cation of host proteins that play roles in COVID-19 susceptibility and severity remains crucial to the 
development of therapeutics as host protein mechanisms are independent of genomic mutations in 
the virus. An improved understanding of these therapeutically relevant virus-host pathways may also 
be important in combating viruses beyond SARS-CoV-2 (Perrin-Cocon et al., 2020).

Several large-scale systematic experimental efforts have identified key host proteins that interact 
with viral proteins in the pathogenesis of severe COVID-19 (Gordon et al., 2020a; Gordon et al., 
2020b; Bouhaddou et al., 2020). These notably include efforts to identify direct interactions with 
the spike protein of SARS-CoV-2, which mediates virus attachment onto receptors to infect host cells 
and is also the basis of most vaccines (Shang et al., 2020; Harvey et al., 2021). To complement in 
vitro host protein characterisation efforts, several groups have leveraged genetic datasets of human 
proteins and COVID-19 disease to identify therapeutically actionable candidate host proteins that 
are likely to play roles in enhancing COVID-19 susceptibility or to be involved in the pathogenesis of 
severe COVID-19 (Pairo-Castineira et al., 2021; Zhou et al., 2021). One of the approaches used was 
Mendelian randomisation (MR). MR simulates the design of randomised trials, with the underlying 
principle that randomisation of alleles at conception offers the opportunity to examine approximate 
differences in average risk of disease between comparable groups in a population that differ only in 
the distribution of the risk factor of interest (Davies et al., 2018), for example, protein abundance 
(Zheng et al., 2020). This allows the use of alleles as genetic instruments representing genetically 
predicted protein levels to proxy effects of pharmacological modulation of the protein. Some of the 
clinically actionable proteins identified by the MR approach are part of type I interferon signalling 
(encoded by genes: IFNAR2, TYK2, OAS1) and interleukin-6 (IL-6) signalling pathways (IL6R). Only one 
of these proteins (encoded by OAS1) had any evidence of genetic colocalisation, that is, evidence that 
genetic associations of the protein and COVID outcomes shared the same causal genetic signal (Zhou 
et al., 2021). An additional protein that was supported by both MR and genetic colocalisation tests 
was ABO (Zhou et al., 2021), reported in several published genome-wide association studies (GWAS) 
of COVID-19 (Pairo-Castineira et al., 2021; Ellinghaus et al., 2020). In response to the first published 
GWAS of COVID-19, we reported findings that link the ABO signal with a number of clinically action-
able targets including coagulation factors (von Willebrand factor [vWF], and Factor VIII [F8]), IL-6, and 
CD209/DC-SIGN (Karim et al., 2020).

However, in most of the previous MR studies (Pairo-Castineira et al., 2021; Zhou et al., 2021), 
investigators only used curated cis-acting variants (genetic variants near or in the gene encoding the 
relevant protein) as genetic instruments to represent effects of genetically predicted protein concen-
trations, rather than genome-wide instruments. While the use of cis-acting variants can minimise 
the risk of horizontal pleiotropic effects (i.e. associations driven by other proteins not on the causal 
pathway for the disease), it can suffer from lower power than a genome-wide analysis due to fewer 
available instruments (Zheng et al., 2020). Furthermore, in previous protein-COVID-19 MR studies, 
genetic colocalisation tests were carried out only for protein-phenotype associations that were signifi-
cant in the MR analysis, potentially excluding many protein-phenotype associations that may share the 
same causal genetic signal but are underpowered in a proteome-wide MR approach.

In the present study, we expanded on these previous reports by undertaking a proteome-wide 
two-sample pan- and cis-MR analysis using the Sun et al. GWAS (Sun et al., 2018) of plasma protein 
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concentrations and several COVID-19 GWAS phenotypes from the ICDA COVID-19 Host Genetics 
Initiative (October 2020 release) (Huang et al., 2020). First, we showed that genetically predicted 
circulating ABO protein was associated with COVID-19 susceptibility and severity and the lead ABO 
signal was associated strongly with plasma concentrations of soluble CD209. Second, we collected 
evidence for a direct mechanism of interaction between the SARS-CoV-2 spike protein and human 
CD209 protein. Third, we performed proteome-wide genetic colocalisation tests, followed by single-
instrument cis-MR analysis, and we report additional novel targets of therapeutic relevance. Finally, 
we examined associated phenotypes using the colocalising signals from the Open Targets Genetics 
portal (http://​genetics.​opentargets.​org) to shed light on the biological basis of association of the 
proteins with the COVID-19 phenotypes.

Materials and methods

eLife digest Individuals who become infected with the virus that causes COVID-19 can experi-
ence a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe 
illness and death. Key demographic factors, such as age, gender and race, are known to affect how 
susceptible an individual is to infection. However, molecular factors, such as unique gene mutations 
and gene expression levels can also have a major impact on patient responses by affecting the levels 
of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between 
dying from or surviving COVID-19.

Identifying the molecular factors in a host that affect how viruses can infect individuals, evade 
immune defences or trigger severe illness, could provide new ways to treat patients with COVID-
19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, 
insights would likely apply across all virus strains, including current strains, such as alpha and delta, 
and any new strains that may emerge in the future.

Using such a ‘natural experiment’ approach, Karim et al. compared the genetic profiles of over 
30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an 
impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for 
potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how 
the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, 
called IL-6R and FAS, were involved in the immune response and could be responsible for the immune 
over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the 
body’s innate antiviral defence system and appeared to reduce susceptibility to COVID-19.

Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to 
predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one 
of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encour-
aging results. Considering CD209 as a potential receptor for the virus could provide another avenue 
for therapeutics, similar to previously successful approaches to block the virus’ known interaction with 
a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to 
help combat the COVID-19 pandemic.

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation

Source or 
reference Identifiers Additional information

Cell line (Homo sapiens) HEK293-E
Yves Durocher, 
PMID:11788735 RRID:CVCL_6974

 

Transfected construct 
(Homo sapiens) pCMV6-CD209 Origene Cat.# SC304915

Plasmid for CD209 cDNA expression in cell-based 
binding assay

Transfected construct 
(Homo sapiens) pTT3-ACE2-BLH PMID:33432067

 Plasmid for recombinant ACE2 extracellular domain, for 
plate-based assays as the immobilised form

https://doi.org/10.7554/eLife.69719
http://genetics.opentargets.org
https://pubmed.ncbi.nlm.nih.gov/11788735/
https://identifiers.org/RRID/RRID:CVCL_6974
https://pubmed.ncbi.nlm.nih.gov/33432067/
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Reagent type (species) 
or resource Designation

Source or 
reference Identifiers Additional information

Transfected construct 
(Homo sapiens) pTT3-CD209-BLH This paper

 Plasmid for recombinant CD209 extracellular domain for 
plate-based assays as the immobilised form

Transfected construct 
(Homo sapiens) pTT3-Cd4d3+ d4 Addgene RRID:Addgene_32402

Plasmid for recombinant tag control (Cd4 domains 3 
and 4)

Transfected construct 
(Homo sapiens)

pTT3-SPIKE-COMP-
BLac This paper

 Plasmid for recombinant SARS-CoV-2 spike extracellular 
domain for plate-based assays as the soluble form

Transfected construct 
(Homo sapiens) pTT3-BirA-FLAG Addgene RRID:Addgene_64395

Biotin ligase plasmid for recombinant protein 
biotinylation

Peptide, recombinant 
protein

Streptavidin R-
phycoerythrin BioLegend Cat.# 405245 For tetramer staining in cell-based binding assay

Chemical compound, 
drug

DAPI (4',6-diamidino-
2-phenylindole) BioLegend Cat.# 422801 1 μM for flow cytometry live/dead staining

Chemical compound, 
drug D-biotin Sigma-Aldrich Cat.# 2031

100 μM supplemented to cell culture media for 
biotinylation

Software, algorithm R (version 4.0.3) R Foundation
www.​r-​project.​org
RRID:SCR_001905 Analysis and generating plots

 Continued

Genetic associations of proteins
We primarily used Sun et al. protein GWAS data (Sun et al., 2018; Emilsson et al., 2018) for the pan-/
cis-MR analyses and for performing genetic colocalisation tests (described below). The pan-/cis-MR 
effects were expressed per standard deviation (SD) higher genetically predicted plasma protein 
concentrations. Two additional proteomic datasets (Emilsson et al., 2018; Suhre et al., 2017) were 
used to identify proteins associated with the ABO locus. The genotyping protocols and QC of these 
proteomic studies have been described previously (Sun et al., 2018; Emilsson et al., 2018; Suhre 
et al., 2017). All three of the proteomic studies have used the SOMAscan assay platform (an aptamer-
based protein detection platform) to detect and quantify protein abundance (Gold et al., 2012).

Genetic associations of COVID-19
We used seven meta-analysed COVID-19 datasets from the October 2020 release of the ICDA 
COVID-HGI group (https://www.​covid19hg.​org/​results/​r4/). These seven COVID-19 outcomes are A1 
(very severe respiratory confirmed COVID vs. not hospitalised COVID), A2 (very severe respiratory 
confirmed COVID vs. population), B1 (hospitalised COVID vs. not hospitalised COVID), B2 (hospital-
ised COVID vs. population), C1 (COVID vs. lab/self-reported negative), C2 (COVID vs. population), 
and D1 (predicted COVID from self-reported symptoms vs. predicted or self-reported non-COVID). 
Definitions of these outcomes are provided in Supplementary file 1.

Harmonisation of protein and COVID summary statistics
Prior to analyses, we performed a liftover of datasets that reported genomic coordinates using the 
GRCh37 assembly to GRCh38. We also checked and ensured that the effect allele in a GWAS locus 
is the alternative allele in the forward strand of the reference genome. To infer strand for palindromic 
variants (variants with A/T or G/C alleles, i.e. variants with the same pair of letters on the forward 
strand as on the reverse strand), we first checked the orientation of all non-palindromic variants with 
respect to the reference genome to assess whether there was a strand consensus of 99% or more. 
For example, for a given GWAS, if ≥99 % of the non-palindromic variants were on the forward strand, 
we assumed that the palindromic variant would also be on the forward strand; otherwise, they were 
excluded from analyses. Details of the harmonisation workflow are provided in our GitHub pages 
(EBISPOT, 2020; Opentargets Inc, 2021).

Mendelian randomisation
To construct genetic instruments for MR analysis, we selected near-independent (r² = 0.05) genetic 
variants from across the genome (‘pan’-instruments) or from within ±1 Mbp from the transcription 

https://doi.org/10.7554/eLife.69719
https://identifiers.org/RRID/RRID:Addgene_32402
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https://www.covid19hg.org/results/r4/
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start site (TSS) of the gene encoding the protein (‘cis’-instruments) associated with the encoded 
protein abundance at p≤5  × 10–8 for pan-MR analyses and at a less stringent p ≤ 1  × 10⁻⁵ for cis-MR 
analyses (this p-value corrects for the number of proteins in the druggable genome Schmidt, 2020). 
We used the generalised summary data-based Mendelian randomisation (GSMR) approach with the 
heterogeneity-independent instrument (HEIDI)-outlier flag turned on to carry out the pan- and cis-MR 
analyses (Zhu et al., 2018). The GSMR software, using the HEIDI-outlier method, removes poten-
tially pleiotropic instruments and accounts for the residual correlation between instruments (important 
as we are using near-independent genetic instruments). To select near-independent genetic instru-
ments and account for linkage disequilibrium (LD) in the MR analyses, we used genotype data from 
10,000 randomly sampled UK Biobank participants to create a reference LD matrix, which is ancestry-
matched to the pQTL data we used. For each COVID-19 outcome, we used the Benjamini–Hochberg 
FDR (False Discovery Rate) threshold of 5 % for significance, adjusting for 2042 tests in cis-MR anal-
yses and 1286 tests in pan-MR analyses. For trans-acting instruments in pan-MR associations, variants 
were mapped to their respective cis-gene that had the highest overall V2G score in the Open Targets 
Genetics portal (Ghoussaini, 2021; Mountjoy, 2020; Open Targets Genetics, 2019a).

Colocalisation analysis and phenome-wide association study
To identify shared causal genetic signals between protein and COVID outcomes, we used the Bayesian 
method of genetic colocalisation implemented in the coloc R package (Giambartolomei, 2014) using 
the marginal association statistics for each trait (i.e. assuming one independent signal in each region). 
We used beta and standard errors of cis-pQTLs of phenotype pairs as inputs. The default priors in 
coloc were used, that is, the prior of an SNP (single nucleotide polymorphism)-trait association is 1 × 
10–4, and the prior of an SNP associating with both traits is 1 × 10–5. For each COVID-19 outcome, a 
posterior probability for shared causal genetic signal (PP.H4) threshold of more than 0.8 was used to 
identify shared causal genetic variants. For colocalising signals, we carried out a phenome-wide asso-
ciation study (PheWAS) using GWAS summary statistics (n = ~ 3000 GWAS) from the Open Targets 
Genetics portal (Ghoussaini, 2021; Mountjoy, 2020).

Evidence against aptamer binding artefacts
For variants associated with proteins due to aptamer or epitope binding artefacts (which tend to 
be missense variants) (Joshi and Mayr, 2018), we first assessed whether genetic instruments for 
MR or coloc-based single-SNP MR analysis were associated with corresponding gene expression (i.e. 
whether they were also cis-eQTLs). This used gene expression data from the Open Targets Genetics 
portal (Ghoussaini, 2021). SNPs that were not cis-eQTLs were investigated further by identifying 
whether they were (or were in LD at r2 = 0.8 with) missense variants. To query if variants were missense 
or in LD with missense variants, we used the functional consequence data from Open Targets Genetics 
(Ghoussaini, 2021) (which used gnomAD v2 for variant effect prediction annotation, Lek, 2016). The 
reasoning was, if missense variants also had effects on corresponding gene expression, the causal 
inference using the missense variants as genetic instruments was unlikely to be biased even if the 
effect estimates were invalid.

Where cis-pQTLs were not cis-eQTLs and were missense variants (or in LD with missense variants 
at r2 = 0.8) affecting the respective genes, these proteins were flagged and excluded from any further 
downstream analyses on the basis that the missense variant(s) might influence aptamer binding and 
produce biased effect estimates. Where cis-pQTLs were also cis-eQTLs and were missense variants 
(or in LD with missense variants) for the respective genes, although the effect estimates would not be 
valid, the causal inference using the instruments is unlikely to be biased; hence, these variants were 
retained in supplementary files and estimates of probes represented by these variants were flagged 
(using an asterisk) in the main figures. The rest, where cis-pQTLs had an effect on gene expression 
but were not missense variants or in LD with missense variants, were included in all analyses and 
presented without restrictions.

Recombinant protein production
Recombinant human receptors and SARS-CoV-2 spike protein extracellular domains were expressed 
and purified as previously described (Shilts et  al., 2021). Briefly, the full extracellular domain 
sequences of each were expressed as soluble secreted proteins in HEK293 cells. All proteins were 

https://doi.org/10.7554/eLife.69719
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affinity-purified using their hexahistidine tags. For biotinylated proteins, co-transfection of secreted 
BirA ligase in the presence of 100 µM D-biotin resulted in the covalent addition of a biotin group to an 
acceptor peptide tag, also as described previously (Kerr and Wright, 2012). The extracellular domain 
of CD209 (Q9NNX6) was defined as beginning at Pro114, while the full cDNA sequence was acquired 
from OriGene (#SC304915).

Plate-based protein binding assay
The binding of biotinylated human receptor extracellular domains to pentameric SARS-CoV-2 spike 
protein was measured using the avidity-based extracellular interaction assay (AVEXIS) as previously 
described (Bushell et al., 2008). Briefly, the wells of a streptavidin-coated 96-well plate were satu-
rated with biotinylated bait of either CD209, ACE2, or a previously described negative-control 
construct consisting only of the C-terminal protein tags shared by all other recombinant proteins (rat 
Cd4(d3 +4)-linker-Bio-6xHis) (Voulgaraki, 2005; Galaway and Wright, 2020). Across these baits, we 
applied a dilution series of the full SARS-CoV-2 spike protein extracellular domain pentamerised by a 
peptide sequence from the cartilage oligomeric matrix protein with a beta lactamase reporter. After 
washing, binding was measured by hydrolysis of a colorimetric nitrocefin substrate whose product was 
quantified by light absorbance at 450 nm.

Cell-based receptor binding assay
HEK293 cells were transiently transfected as described previously (Bartholdson, 2012) with expres-
sion plasmids encoding full-length cDNA of CD209 (Origene SC304915), or a mock transfection 
lacking the expression plasmid. Separately, recombinant biotinylated spike protein was tetramerised 
around streptavidin conjugated to phycoerythrin as previously described (Sharma et al., 2018). Cells 
were incubated with tetramers of spike or a control construct of protein tags before being analysed 
on a flow cytometer as previously described (Shilts et al., 2021). HEK293 cell lines were provided by 
Yves Durcohcer (National Research Council, Canada). Cell lines were authenticated upon first receipt 
by DNA sequencing. All cell lines were regularly tested for mycoplasma by PCR (Surrey Diagnostics) 
and found to be negative all throughout experiments. These cell lines are not listed by ICLAC as 
'commonly misidentified’.

Code availability
Codes used to harmonise summary statistics are provided in https://​github.​com/​EBISPOT/​gwas-​
sumstats-​harmoniser (EBISPOT, 2020). Codes for pan- and cis-MR analyses are provided on the GSMR 
website (https://​cnsgenomics.​com/​software/​gcta/#​GSMR). Codes for genetic colocalisation analyses 
are provided on the coloc GitHub page (https://​github.​com/​chr1swallace/​coloc; Wallace, 2021). All 
codes used in the paper to reproduce results are provided in https://​github.​com/​mohdkarim/​covid_​
paper (copy archived at swh:1:rev:4ab9f9b17ffde57f7831ea555394290ba240a2b9; Anisul, 2021).

Results
Pan- and cis-MR analyses support the role of circulating ABO protein 
concentrations and soluble IL-6R in COVID-19 risk
Our multi-instrument MR analysis used both genetic variants from across the genome (pan-MR) and 
genetic variants near or in the gene encoding the relevant protein (cis-MR) to investigate associations 
of genetically predicted plasma protein concentrations with the risk of COVID-19 outcomes. The 
COVID-19 outcome definitions are provided in Supplementary file 1. Although the pan-MR anal-
ysis leveraged genetic data from both cis- and trans-acting pQTLs (with a selection of pQTLs from 
across the genome automated by GSMR’s built-in HEIDI-outlier exclusion method), for some protein-
COVID-19 pairs that were associated at 5 % FDR, the associations with COVID-19 outcomes were 
exclusively driven by trans-acting pQTLs or cis-acting genetic instruments. For example, although six 
proteins were represented by both cis- and trans-acting genetic instruments, two (ABO and IL6R) were 
represented only by cis-acting variants and one (SELE) was driven entirely by trans-acting instruments 
(mainly ABO trans-pQTLs) (Supplementary file 2). Overall, the pan-MR analysis revealed nine distinct 
protein probes associated with four COVID outcomes at an FDR of 5  % (Figure  1A). The pQTLs 
selected by GSMR to represent these nine probes were also cis-eQTLs (as curated for the Open Targets 

https://doi.org/10.7554/eLife.69719
https://github.com/EBISPOT/gwas-sumstats-harmoniser
https://github.com/EBISPOT/gwas-sumstats-harmoniser
https://cnsgenomics.com/software/gcta/#GSMR
https://github.com/chr1swallace/coloc
https://github.com/mohdkarim/covid_paper
https://github.com/mohdkarim/covid_paper
https://archive.softwareheritage.org/swh:1:dir:5340f4d898bba2ddc12702259c9d3be293c84f00;origin=https://github.com/mohdkarim/covid_paper;visit=swh:1:snp:c48db085c203d1eb6f8eb71ce1e24ccca02c9a18;anchor=swh:1:rev:4ab9f9b17ffde57f7831ea555394290ba240a2b9
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3,283 protein probes
7 COVID phenotypes 

3,157 protein probes
7 COVID phenotypes

1,259 pQTLs - 192 protein probes
7 COVID phenotypes

22 pQTLs - 9 protein probes
4 COVID phenotypes

6 pQTLs - 3 protein probes
4 COVID phenotypes

Exposure: pan-pQTLs (Sun et al)

Outcome: 7 COVID datasets (Oct 

2020)

Ref panel: UKBd10k

pan-GSMR settings:
● r² = 0.05
● p = 5 x 10⁻ 8

● min. number of instruments = 10
● HEIDI = TRUE

FDR 5%

cis-MR support (p < 0.05)*

● No Ensembl IDs or chromosome 
no. = 13 probes

● On X/Y chromosome = 113 probes

3,283 protein probes
7 COVID phenotypes 

3,156 protein probes
7 COVID phenotypes

22,092 probe-phenotype 
pairs

Exposure: cis-pQTLs (Sun et al)

Outcome: 7 COVID datasets (Oct 2020)

Ref panel: UKBd10k

cis-GSMR settings:
● r² = 0.05
● p = 1 x 10⁻ 5

● min. number of instruments = 5
● HEIDI = TRUE

cis-window = 
+1 Mbp from 

TSS

● No Ensembl IDs or chromosome 
no. = 13

● On X/Y chromosome = 113
● Removed 1 probe with no MAF 

data for its cis-SNPs 
(TXNIP_11682_7_3)

2,133 cis-pQTLs - 312 protein 
probes

7 COVID phenotypes
 

5 cis-pQTLs - 2 protein probes
4 COVID phenotypes

 

9 probe-phenotype pairs
 

PP.H4 > 0.8

cis-MR genetic colocalisation

FDR 5%

Figure 1. Flowcharts illustrating the process of (A) pan-Mendelian randomisation (MR) and (B) cis-MR and genetic colocalisation. Both pan- and cis-MR 
methods used (Sun et al., 2018) as the source of genetic instruments and the UK Biobank downsampled 10 k (UKBd10k) individual genotype data as 
reference panel. We selected near-independent genetic instruments and performed two sample MR analysis using generalised summary data-based 
Mendelian randomisation that adjusted for residual correlation between instruments. Genetic colocalisation analysis was used to estimate posterior 

Figure 1 continued on next page
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Genetics portal Open Targets Genetics, 2019) and, except the ABO signal via rs8176719-insertionC 
(will be referred to as rs8176719-insC – a frameshift mutation that inserts a guanine nucleotide in the 
258th position of exon 6), were not missense variants or in LD with missense variants (Supplementary 
file 3), minimising the possibility that SNPs with artefactual associations with proteins were used as 
genetic instruments for the majority of significant pan-MR association.

While the pan-MR analysis used genetic data from across the genome, the cis-MR analysis 
restricted genetic instrument selection to those near (within 1 Mb of TSS) or in the gene encoding the 
protein. Three proteins with pan-MR associations were supported by corresponding cis-MR associa-
tions (Figure 1A and B, Supplementary file 4): ABO, ICAM-1, and IL-6R. Among these three, only 
ABO and IL-6R proteins had some evidence of genetic colocalisation with posterior probabilities (PP.
H4) more than 0.9 and 0.4, respectively, of a shared genetic signal between protein and COVID-19 

probabilities of shared causal genetic signal between protein and outcomes. A posterior probability of shared causal genetic signal of more than 0.6 
(i.e. a PP.H4 or posterior probability for hypothesis 4 > 0.6) was used as evidence of genetic colocalisation. The dashed line separates analysis (above the 
line) from target curation (below the line). *Only three proteins with pan-MR evidence of association with COVID also had cis-MR evidence support at 
nominal cis-MR p-value<0.05.

Figure 1 continued
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Figure 2. Forest plot illustrating associations of genetically predicted plasma protein concentrations with selected COVID-19 phenotypes. The black 
point estimates represent odds ratios (ORs) of COVID-19 outcome per standard deviation (SD) increase of genetically predicted protein abundance 
using genetic instruments from across the genome (pan-Mendelian randomisation [pan-MR]). The blue point estimates represent OR of COVID outcome 
per SD increase of genetically predicted protein abundance using genetic instruments near or in the gene encoding the protein (cis-MR). Error bars 
represent 95 % confidence intervals (95% CI). The areas of the squares are proportional to the inverse of the variance of the log ORs. For each COVID 
phenotype, pan-MR associations at FDR 5 % were retained. Each row under a COVID phenotype represents a pQTL and includes the number of cases 
in the COVID phenotype (nCases), the number of SNPs used as genetic instruments for the protein (nSNPs), the posterior probability that protein and 
COVID traits colocalise (PP.H4), the posterior probability evidence for vs. against shared causal variants (log2(H4/H3)), and the candidate colocalising 
signal (coloc_SNP). * denotes proteins that have coloc_SNP that are either missense variants or in linkage disequilibrium with missense variants, 
rendering their effect estimates potentially biased.
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phenotype (Figure 2). Although the PP.H4 of IL-6R was very weak (0.4), it had a positive (H4/H3 = 3.6), 
indicating a common signal of the IL-6R protein with the COVID-19 outcome is a more likely scenario 
than the association driven by two independent signals.

Genetically predicted ABO concentration was associated with risk in four out of seven COVID-19 
outcomes (Figure 2). These four outcomes represented both susceptibility (e.g. COVID-19 vs. popu-
lation, cis-MR odds ratio [OR] [95% CI] per SD genetically predicted ABO concentrations: 1.08 [1.05, 
1.10], p=7  × 10–10) and severity (e.g. hospitalised COVID-19 vs. population, cis-MR OR [95% CI]: 1.12 
[1.08, 1.17], p=1  × 10–8) of COVID-19. Genetically predicted soluble IL-6R was only associated with 
higher risk of hospitalised COVID-19 compared to population-based controls (cis-MR OR [95% CI] per 
SD genetically predicted IL-6R: 0.94 [0.91, 0.97], p=8  × 10–4) (Figure 2).

When examining the SNPs involved in the pan-MR associations of the nine probes, all probes except 
IL-6R and ABO had at least one trans-acting SNP, and in all these cases, at least one of the trans-acting 
SNPs were assigned to the ABO gene by the Open Targets Genetics V2G pipeline (Table 1), re-con-
firming the pervasive pleiotropy of the ABO genetic signal. Furthermore, when examining the consis-
tency of pan-MR associations of these nine probes across all seven COVID-19 outcomes, the protein 
probes that have trans-acting ABO SNPs exhibited a similar association profile as the ABO protein 
probe, associated with only COVID-19 outcomes that have population-based controls (Supplemen-
tary file 5).

CD209/DC-SIGN: a proposed alternate receptor for SARS-CoV-2
The ABO signal (rs8176719-insC) contributes to the determination of non-O blood groups and regu-
lates circulating levels of both ABO and several non-ABO proteins; Yamagata University Genomic 
Cohort Consortium (YUGCC), 2014; Arguinano et  al., 2018. We explored proteome-wide asso-
ciations of rs8176719-insC in three separate proteomic datasets; Emilsson, 2020. Aside from the 
ABO protein, the ABO signal rs8176719-insC showed the strongest association (Sun et al: p=6.03  × 
10–258, Emilsson et al: p=1.00  × 10–307, Suhre et al: p=1.27 × 10–75) with higher plasma concentrations 

Table 1. Summary of proteins reported in our study and the different sources of evidence supporting their prioritisation.

Protein

Supported by multi-instrument pan-MR

Supported by multi-
instrument cis-MR

Supported by GC 
and single-SNP 
cis-MR

Experimental 
support

Existing 
drugs

Previously 
reported

No. of 
cis-acting 
SNPs

No. of 
trans-
acting 
SNPs Trans-acting gene(s)*

ABO 93 0 None ✓ ✓ x x ✓

QSOX2 16 63 ABO, OBP2B, ADAMTS13 x x x x x

CD209 8 45 ABO, SURF6 x x ✓ x ✓

FAM3D 8 44
ABO, SULT2B1, FAM83E, 
NTN5, FUT2 x x x x x

SELE 0 60
ABO, FAM118B, RALGDS,
OBP2B, ADAMTS13, SURF1 x x x ✓ x

ADGRF5 5 9 ABO, IL6ST, ADAMTS13 x x x x x

ICAM1 71 1 ABO ✓ x x ✓ x

TIE1 2 18
ABO, ST3GAL6, GBGT1, 
SURF6 x x x x x

IL6R 62 0 None ✓ x x ✓ ✓

FAS No No No x ✓ x x x

OAS1 No No No x ✓ x x ✓

THBS3 No No No x ✓ x x x

Detailed description of each column is provided in Supplementary file 9.
*Where trans-acting SNPs are used, genes assigned to SNPs with the highest variant-to-gene scores in Open Targets Genetics were used for 
annotation. GC: genetic colocalisation; MR: Mendelian randomisation.

https://doi.org/10.7554/eLife.69719


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Genetics and Genomics

Anisul et al. eLife 2021;10:e69719. DOI: https://​doi.​org/​10.​7554/​eLife.​69719 � 10 of 22

of soluble CD209 in all three datasets (associations from two datasets illustrated in Figure 3, and 
associations from all three datasets tabulated in Supplementary file 6). To validate this as a relevant 
target for COVID-19, we experimentally tested whether CD209 directly interacts with SARS-CoV-2, as 
had been recently proposed based on similarities to SARS-CoV-1, which was reported to bind CD209 
(Yang, 2020). We used human cells to generate recombinant SARS-CoV-2 spike protein, spanning the 
full-length extracellular domain according to a design previously established to retain functionality 
(Shilts et al., 2021). We found that purified spike protein indeed could directly attach onto human 
cells expressing CD209 but not control cells, suggesting that CD209 could act as a receptor for viral 
attachment onto host cells (Figure 4A). Furthermore in a direct binding assay testing purified soluble 

Figure 3. Proteome-wide association of the ABO signal (rs8176719-insC) in (A) Sun et al. and (B) Emilsson et al. 
datasets. The x-axis represents the chromosome for the gene encoding the protein. The y-axis represents the 
p-value of the per-allele association of rs8176719-insC (or an SNP in high linkage disequilibrium at r2 >0.8 with 
rs8176719-insC) with the proteins in Sun et al. and Emilsson et al. datasets. The red triangles point downwards and 
denote the inverse association of the ABO signal with the protein. The blue triangles point upwards and denote 
the positive association of the ABO signal with the protein. Only proteins that were considered significant at the 
study-specific Bonferroni-corrected p-value thresholds are displayed in this plot and tabulated in Supplementary 
file 6. (Supplementary file 6 also reports associations from an additional protein dataset – Suhre et al.).

https://doi.org/10.7554/eLife.69719


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Genetics and Genomics

Anisul et al. eLife 2021;10:e69719. DOI: https://​doi.​org/​10.​7554/​eLife.​69719 � 11 of 22

CD209 and the viral spike protein, we could detect binding that was specific and comparable to the 
primary known receptor for SARS-CoV-2, ACE2 (Figure 4B).

Proteome-wide genetic colocalisation implicates additional proteins in 
COVID-19 risk including FAS, SCARA5, and OAS1
To identify additional proteins associated with the risk of COVID-19, we conducted proteome-wide 
genetic colocalisation tests followed by single-SNP MR analysis (Supplementary file 7). This ‘coloc-
first’ approach identified four proteins (ABO, FAS, OAS1, THBS3) with evidence of genetic colocali-
sation (PP.H4 >0.8) with four out of seven COVID-19 phenotypes (Figure 5). Two of these (FAS and 
THBS3) are, to the best of our knowledge, not reported in proteomic MR studies of COVID-19 to date 
which have only examined for colocalisation evidence after MR.

Figure 4. In vitro binding experiments with purified SARS-CoV-2 spike protein confirm human CD209 as a functional binding target. (A) Human cell 
lines overexpressing cell-surface CD209 protein gain the ability to specifically bind SARS-CoV-2 spike. The density plots represent flow cytometry 
measurements of HEK293 cells stained with fluorescently conjugated tetramers of SARS-CoV-2 spike protein or a tag-only protein control. Blue 
distributions are cells with surface CD209, while red are control-transfected cells. Light shades indicate a negative control tetramer that was used for 
staining, while dark shades are stained with spike protein. (B) Purified recombinant CD209 ectodomains interact with the spike protein of SARS-CoV-2 in 
an in vitro binding assay. A dilution series of purified spike protein was applied over immobilised CD209, ACE2 (positive control), or a negative control 
protein. A plot of quantified absorbance is displayed alongside a representative assay plate. Error bars are standard deviations of two replicates.

https://doi.org/10.7554/eLife.69719
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Figure 5. Forest plot illustrating associations of genetically predicted plasma protein concentrations that colocalised with the selected COVID-19 
phenotypes (PP.H4 > 0.6). The black point estimates represent odds ratios (ORs) of COVID-19 outcome per standard deviation (SD) increase of 
genetically predicted protein abundance using single-SNP colocalising signals (coloc_SNP). Error bars represent the 95 % confidence interval around 
the estimates. The areas of the squares are proportional to the inverse of the variance of the log ORs. * denotes proteins that have coloc_SNP that are 
either missense variants or in linkage disequilibrium with missense variants, rendering their effect estimates potentially biased.

Figure 6. Regional association plots arranged to mirror the genetic associations of the colocalising proteins (FAS, ABO, and OAS1) with their respective 
COVID-19 phenotypes. The top panels represent genetic associations of the selected COVID-19 phenotypes, and the bottom panels represent genetic 
associations of the protein from the Sun et al. dataset. The x-axis in each panel represents the genomic locations in or around the genes encoding FAS, 
ABO, and OAS1. The y-axis in each panel represents the p-value of the genetic associations.

https://doi.org/10.7554/eLife.69719
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Consistent with pan- and cis-MR findings, there was evidence of genetic colocalisation between 
the ABO protein and six out of seven COVID-19 phenotypes (Figure 6), with similar MR estimates 
when the colocalising SNP was used to perform single-SNP cis-MR.

The coloc-first approach revealed a common genetic signal between OAS1 and COVID-19 in two 
out of seven COVID-19 phenotypes (PP.H4 = 0.88 in COVID-19 vs. population, and 0.82 in hospital-
ised COVID-19 vs. population). However, the SNPs representing the common genetic signal between 
OAS1 and COVID-19 phenotypes (12:112919637:G:A and 12:112919388:G:A) were missense variants 
in OAS1 gene or in LD with missense variants at r2 >0.8, rendering their effect estimates potentially 
biased due to aptamer binding effects (see Materials and methods). Despite this, the same vari-
ants have effects on gene expression (as assessed in any of several tissues curated by Open Targets 
Genetics Open Targets Genetics, 2019), which is independent of aptamer binding, suggesting that 
causal inference regarding OAS1 protein and COVID-19 risk may still be valid. We have, therefore, 
presented OAS1 estimates in Figure 5 but flagged with an asterisk denoting the effect estimates as 
potentially biased.

Unlike ABO, OAS1 could not be tested using the multi-instrument MR approach due to insuffi-
cient number of valid instruments, highlighting the complementary value of the genetic colocalisa-
tion approach alongside multi-SNP MR methods. In single-SNP MR analyses, genetically predicted 
higher OAS1 was associated with lower risk of severe COVID-19 vs. population (OR [95% CI] per SD 
genetically predicted OAS1 concentrations: 0.52 [0.42, 0.65], p=5  × 10–9), hospitalised COVID-19 vs. 
population (0.63 [0.53, 0.75], p=1  × 10–7) and susceptibility to COVID-19 vs. population (0.79 [0.71, 
0.87], p=2  × 10–6).

Proteins that exhibited association only in one of the COVID-19 phenotypes included circulating 
FAS and THBS3. Genetically predicted elevated FAS (indicated by two FAS probes: FAS.9459.7.3 and 
FAS.5392.73.2) and THBS3 were associated with a higher risk of severe COVID-19 (OR [95% CI] per 
SD genetically predicted FAS concentrations indicated by FAS.9459.7.3: 1.38 [1.17, 1.62], p=1  × 10–4) 
and COVID-19 vs. lab/self-reported negative COVID-19 (OR [95% CI] per SD genetically predicted 
THBS3 concentrations: 1.70 [1.30, 2.22], p=9  × 10–5), respectively.

PheWAS with colocalising variants provides additional biological 
insights for the basis of associations of the proteins with risk of 
COVID-19
For the proteins with evidence of genetic colocalisation between protein and COVID-19 phenotype, 
we used their lead variants (or variants they tag at r2 >0.6 if a lead variant was not reported in a GWAS) 
to identify additional associated phenotypes. At p<1   × 10–5 (Bonferroni corrected for the  ~3000 
phenotypes in the Open Targets Genetics portal), most of the variants exhibited associations with 
haematological indices, with some, like the ABO signal, also associated with other COVID-19-relevant 
phenotypes (Supplementary file 8). For example, the ABO signal was associated with monocyte 
count, deep vein thrombosis (DVT), and pulmonary embolism (PE). OAS1 and THBS3 variants were 
associated with platelet counts. For FAS, there were no additional phenotypic associations at p<1  × 
10–5 shown by its colocalising variant.

Discussion
Our systematic proteome-wide MR and genetic colocalisation analysis supported several previously 
proposed proteins and suggested additional clinically actionable targets for COVID-19 (Table 1). Of 
particular note, we provided pan- and cis-MR evidence with strong genetic colocalisation support 
for the ABO signal for most COVID-19 phenotypes. Although the ABO protein itself is not clinically 
actionable, the ABO signal was linked to plasma concentrations of several clinically tractable targets. 
We demonstrated that the CD209 protein we had found to have the strongest association with this 
ABO signal has a direct interaction with the SARS-CoV-2 spike protein, providing further evidence 
for a plausible mechanism. Our analyses also supported the role of soluble IL-6R in hospitalised 
COVID-19, with evidence from pan- and cis-MR analyses but limited evidence of genetic colocalisa-
tion with hospitalised COVID-19 but supported by the recent COVID-19 clinical trials of tocilizumab 
(which is partially mimicked by the IL-6R instrument used in the present study). Using a proteome-
wide ‘colocalisation-first’ approach, we recapitulated previously reported targets (e.g. OAS1) and 

https://doi.org/10.7554/eLife.69719
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uncovered additional novel proteins that may play causal roles in COVID-19 susceptibility (THBS3), or 
severity (FAS).

Our proteome-wide genetic colocalisation analysis prioritised soluble Fas (sFas, also known as 
soluble CD95) receptor protein in the very severe COVID-19 phenotype. This finding was not reported 
in previous proteomic MR studies of COVID-19 most likely because they only assessed evidence of 
shared signals for targets prioritised by an MR-first approach. The soluble Fas receptor is reported 
to act as a decoy receptor competing with the trans-membrane Fas receptor for Fas ligand (FasL) 
(Cheng, 1994). Genetically predicted higher circulating sFas is, therefore, likely to represent effects of 
lower Fas-FasL signalling and, in our study, was associated with a higher risk of very severe COVID-19. 
Fas-FasL signalling typically initiates a cascade of intracellular programmes that result in cell death 
or apoptosis. Fas-mediated apoptosis plays a central role in T- and B-cell homeostasis (Hao, 2008), 
preventing the emergence of autoreactive or overactive immune cells (Hao, 2008; Butt, 2015). Exces-
sive inflammation by hyperactive T-cells and autoantibodies was reported to underlie several cases of 
severe COVID-19 (Khamsi, 2021). To what extent sFas contributes to the excessive pro-inflammatory 
response in severe COVID-19 remains to be determined. Furthermore, Fas-mediated apoptosis of 
virus-infected cells is a major mechanism of resolution of viral infections (Thomson, 2001). Delayed 
apoptosis is reported to be one of the strategies exploited by SARS-CoV-2 in the early stages of infec-
tion to facilitate viral replication (Thomson, 2001; Ivanisenko et al., 2020). Additional insights for the 
role of sFas in COVID-19 can be gleaned from the results of recent drug trials. For example, Fas is 
one of the major targets of lopinavir-ritonavir – a combination HIV protease inhibitor (Sorbera et al., 
2020); clinical trials of lopinavir-ritonavir failed to provide any therapeutic benefits beyond standard 
care in hospitalised COVID-19 patients (Cao et al., 2020). On the other hand, clinical trials testing 
dexamethasone demonstrated beneficial effects on survival for COVID-19 patients who were on respi-
ratory support (RECOVERY Collaborative Group et al., 2021). In addition to its anti-inflammatory 
effects, dexamethasone downregulates molecules associated with decelerating apoptosis (Achuthan, 
2018), including sFas (Joashi et al., 2002). An in-depth assessment of the specific role of soluble Fas 
in COVID-19, including whether or not it contributes to the beneficial effects of dexamethasone, is 
warranted in future studies.

Observational studies were the first to report differences in risk of severe COVID-19 based on ABO 
blood groups, although with some conflicting reports (Zhao, 2020; Zietz et al., 2020; Bhattacha-
rjee et al., 2020). GWAS of COVID-19 susceptibility have, however, consistently reported a signal in 
the ABO locus (Bhattacharjee et al., 2020; Shelton, 2020), despite prior observations that controls 
used in the first published GWAS of COVID-19 (Ellinghaus et al., 2020) may be over-represented for 
blood group O (the most common blood group) and can result in associations due to selection bias. 
However, in a meta-analysis of GWAS of COVID-19, the ABO signal remained even when Ellinghaus 
et al. was excluded.

Furthermore, using these GWAS data, we and Katz et al. (in a preprint) (Katz et al., 2020; Karim 
et al., 2020) had previously linked the ABO signal with CD209/DC-SIGN protein, clotting factors, 
coagulation disorders, and concentrations of IL-6, all potential risk factors for COVID-19. In the present 
study, we build on previous work and show consistent cis- and pan-MR associations of genetically 
predicted circulating ABO protein with an expanded list of COVID phenotypes which colocalise with 
the ABO signal, supporting a shared genetic signal of ABO protein and the COVID-19 phenotypes.

We show that, next to the ABO protein, the ABO signal had the strongest association with the 
CD209 protein relative to other proteins and present experimental evidence of binding of CD209 with 
the full-length spike protein of SARS-CoV-2, independently but consistent with a concurrent preprint 
(Amraie, 2020). CD209 is a receptor on monocyte-derived dendritic cells (moDCs) that was shown, 
before this binding interaction was known, to facilitate entry of replication-competent SARS-CoV-2 
and demonstrated to switch off the type I interferon signalling pathways necessary for transcription of 
several antiviral genes (Yang, 2020). The soluble isoforms of CD209 measured in our proteome data-
sets are known to correlate in expression levels to the membrane isoforms (Mummidi et al., 2001; 
Plazolles, 2011), making it plausible that the signal we observed is associated with greater abun-
dance of CD209 as a cell-surface viral receptor. Alternatively, in the context of other viruses known 
to directly bind CD209 as we show here for SARS-CoV-2, soluble CD209 has been demonstrated to 
modulate infection, such as by promoting endocytosis if the soluble CD209 coating the virus acts as 
opsonins (Plazolles, 2011). Further research would be beneficial to reveal which of these mechanisms 

https://doi.org/10.7554/eLife.69719
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explain the association we observed. These findings may also help interpret the clinical significance 
of the higher CD209 gene expression in immune cells (extracted from bronchoalveolar lavage fluid) in 
severe COVID patients than healthy controls (Gao, 2020). It should be noted that the present study 
developed a therapeutic hypothesis for CD209 based solely on the strong evidence of association of 
the ABO signal with plasma concentrations of CD209 and evidence from the pan-MR association of 
CD209 with COVID-19 phenotypes (the pan-MR associations being driven mainly by trans-acting ABO 
SNPs) with no corresponding support of cis-MR or colocalisation. This suggests that while cis-MR and 
colocalisation analyses can support pan-MR associations of a target with disease, the lack of cis-MR or 
colocalisation for a target is not necessarily evidence against its therapeutic relevance.

In the present study, we also found that genetically predicted higher OAS1 – an interferon-induced 
broad-spectrum antiviral enzyme – was associated with lower risk of both susceptibility and severity 
of COVID-19, consistent with findings of a recent published report (Zhou et al., 2021). A large clinical 
trial of systemically administered interferons failed to show any substantial therapeutic benefits for 
severe COVID-19 (WHO Solidarity Trial Consortium et al., 2021). However, the strong evidence 
from human genetics supports reconsidering the role of interferon-based therapies in a new light, 
especially with respect to timing of administration (which current genetic studies are unable to provide 
any insights on) and route (systemic vs. nebulised) (Monk, 2020).

Non-O blood group individuals generally have higher risk of DVT and other coagulation disorders 
than O blood group individuals (Groot, 2020). The ABO signal, which largely determines the non-O 
blood groups, was also associated with DVT, PE, and higher levels of vWF and F8; vWF binds to and 
protects F8 from biological degradation (Federici, 2003). F8 is a key protein in the intrinsic coagula-
tion pathway that activates Factor X and induces the formation of fibrin – the central component of 
blood clots (Bhopale and Nanda, 2003). Both DVT and PE are reported to affect almost a third of 
ICU-admitted COVID-19 patients (Malas, 2020). While several clinical trials evaluating the efficacy of 
anticoagulants for severe COVID-19 are underway, the National Institute of Clinical Excellence in the 
UK has suggested screening all hospitalised COVID-19 patients for any contraindications to anticoag-
ulant use and offering prophylactic anticoagulation to eligible patients (National Institute for Health 
and Care Excellence, 2020).

We found moderate evidence for the role of IL-6 signalling in COVID-19 in agreement with a 
previous report (Bovijn et al., 2021). However, there was ambiguous evidence of genetic colocalisation 
(PP.H4: 0.46). Nevertheless, there was more support for a shared genetic signal between sIL-6R and 
hospitalised COVID-19 than for them to be driven by independent signals (H4/ H3 = 3.6). As noted by 
Bovign and colleagues (Bovijn et al., 2021), with some caveats, the phenotypic consistency of associ-
ations between the IL-6R genetic instrument and pharmacological effect of tocilizumab enable poten-
tial use of the IL-6R instrument to investigate therapeutic or adverse effects of tocilizumab. Although 
a previous report showed largely neutral effects of tocilizumab compared to placebo in hospitalised 
COVID-19 patients (Stone et al., 2020), two recent trials (REMAP-CAP Anthony C and Paul R, 2021 
and RECOVERY RECOVERY Collaborative Group, 2021) with a longer follow-up period showed 
beneficial effects on survival at 90 days, consistent with the prediction of a protective effect using the 
tocilizumab-mimicking IL-6R genetic instrument in the present study and the previous report.

The major strengths of our study include the use of both genome-wide and local genetic instru-
ments for MR analysis, the proteome-wide genetic colocalisation tests to nominate additional proteins 
of therapeutic relevance, and the expanded list of COVID-19 phenotypes analysed. We showed 
consistency of the association of ABO with the different COVID-19 phenotypes for both instrument 
selection strategies. Proteome-wide colocalisation tests implicated additional proteins that likely 
lacked sufficient genetic instruments to be detected by the multi-instrument GSMR method. For our 
top-ranked association with the CD209 protein, we provide experimental evidence for a mechanism 
that implicates CD209 as having a potentially causal role in disease pathology. Our experiments 
provide both direct evidence of biochemical binding between the purified spike protein of SARS-
CoV-2 and CD209, and verification that this interaction occurs in live human cells. Host-directed ther-
apies involving pathogen binding receptors have previously been developed against other infectious 
diseases where pathogen mutations or variants stymied more traditional approaches (Zenonos et al., 
2015).

Our study also has several limitations. The reliability of the MR approach depends on the selection 
of the appropriate genetic instruments for the exposure (Schmidt, 2020). Where proteins are the 
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exposure, the use of genetic instruments from across the genome can result in more instruments and 
potentially higher power to detect associations. However, the inclusion of a broader set of genetic 
instruments for protein-MR analysis can lead to associations not mediated by the protein under inves-
tigation (i.e. horizontal pleiotropy). In these cases, the use of genetic variants near or in the locus 
encoding the protein (cis-acting SNPs) can provide more specific estimates of risk, albeit at a potential 
power cost, associated with genetically predicted concentrations of the protein under investigation 
(Schmidt, 2020). A key problem of the latter approach is the selection of correlated genetic instru-
ments that can lead to numerical approximation errors (Gkatzionis et al., 2021). In the present study, 
we leveraged both pan- and cis-MR approaches and used an MR method (GSMR) that automates 
the selection of near-independent genetic instruments and performs MR adjusting for any residual 
correlation (Zhu et  al., 2018). Nevertheless, horizontal pleiotropy can also affect cis-MR analyses 
when different variants from the same gene region represent different biological pathways, indicated 
by heterogeneous effect estimates, or driven by a single variant with a large effect (e.g. missense vari-
ants) (Gkatzionis et al., 2021). To prevent the selection of heterogeneous instruments and minimise 
the selection of variants with large effects, the multi-instrument GSMR method used in the present 
study implements the HEIDI test which excludes genetic variants with strong or heterogeneous effects. 
The exclusion of missense variants with potential aptamer binding effects is evidenced in our study, 
where SNPs in 96 % of nominally significant protein probes associated with COVID-19 also had effects 
on corresponding gene expression in different tissues across gene expression datasets as curated by 
our portal (Open Targets Genetics, 2019). Even while using cis-acting genetic instruments, the MR 
associations can be confounded due to LD between cis-pQTLs and disease-associated SNPs, and this 
is at least partially mitigated by genetic colocalisation tests. However, the genetic colocalisation tests 
used in our study assumed a single causal variant in each locus and will, therefore, result in higher 
false-negative tests if there is more than one trait-associated causal variant. An additional issue is 
related to the selection of COVID-19 GWAS datasets used for analyses. Most protein-MR studies have 
used COVID-19 phenotypes with population-based controls, given their larger number of controls 
providing additional power to detect signals but at a cost of not being able to distinguish signals 
relevant to disease progression. While study designs with milder/asymptomatic cases as controls are 
useful to study disease progression, they are frequently underpowered and, because the selection 
of study participants are conditioned on the outcome, are susceptible to collider-stratification bias 
(Griffith, 2020). To enable a comprehensive assessment, we used all published COVID-19 pheno-
types (October 2020 freeze), irrespective of controls used and, as expected, found most signals in 
COVID-19 phenotypes with population-based controls. For one of the targets (CD209), although we 
experimentally demonstrate binding of CD209 with spike protein of SARS-CoV-2, understanding the 
functional significance CD209 has on viral entry and any immunological relevance during infection 
requires further research. Finally, although we nominate several targets that may be therapeutically 
relevant for COVID-19, clinical trials are required for definitive assessments and to guide therapy. For 
example, the findings related to the ABO signal strongly implicated the adverse role of dysregulated 
coagulation in COVID-19 specifically in non-O blood group individuals; whether pre-emptive use of 
anticoagulants guided by blood groups can prevent severe COVID-19 is subject to findings of trials 
such as the ongoing ACTIV-4 trial (NCT04505774) (U.S. National Library of Medicine, 2020).

In conclusion, we integrated genetic investigation with functional assessments of CD209, a receptor 
in moDCs, and postulated that this target may convey the COVID-19 risk of the ABO signal. Based on 
proteome-wide genetic colocalisation and MR, we also prioritised sFas for more detailed investiga-
tions of its therapeutic relevance to severe COVID-19 risk.
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