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Optimal composite scores for longitudinal
clinical trials under the linear mixed
effects model
M. Colin Ard,a* Nandini Raghavan,b and Steven D. Edlanda,c

Clinical trials of chronic, progressive conditions use rate of change on continuous measures as the primary outcome measure,
with slowing of progression on the measure as evidence of clinical efficacy. For clinical trials with a single prespecified pri-
mary endpoint, it is important to choose an endpoint with the best signal-to-noise properties to optimize statistical power
to detect a treatment effect. Composite endpoints composed of a linear weighted average of candidate outcome measures
have also been proposed. Composites constructed as simple sums or averages of component tests, as well as composites con-
structed using weights derived from more sophisticated approaches, can be suboptimal, in some cases performing worse
than individual outcome measures. We extend recent research on the construction of efficient linearly weighted composites
by establishing the often overlooked connection between trial design and composite performance under linear mixed effects
model assumptions and derive a formula for calculating composites that are optimal for longitudinal clinical trials of known,
arbitrary design. Using data from a completed trial, we provide example calculations showing that the optimally weighted lin-
ear combination of scales can improve the efficiency of trials by almost 20% compared with the most efficient of the individual
component scales. Additional simulations and analytical results demonstrate the potential losses in efficiency that can result
from alternative published approaches to composite construction and explore the impact of weight estimation on composite
performance. Copyright © 2016. The Authors. Pharmaceutical Statistics Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Recent years have seen a shift in drug development and clin-
ical trial design strategies in Alzheimer’s disease (AD), with an
increasing emphasis on evaluation of treatment efficacy early in
the disease. This evolution, largely motivated from an expecta-
tion that earlier intervention will prove critical, has introduced
new challenges for trial design because the standard instruments
used to quantify cognitive and functional decline in AD are rel-
atively insensitive to the changes that are typical of early stages
of the disease. As a consequence, achieving acceptable levels of
statistical power with reasonable and obtainable sample sizes has
become increasingly difficult. Several strategies for addressing
this issue have been considered and evaluated in the literature,
including the use of rescoring algorithms [1], and the specification
of biomarkers as endpoints [2].

Another approach to improving the efficiency of clinical trials
is the use of so-called composite outcome measures composed
of a linear combination of the most sensitive items or instru-
ments available for a given condition. For example, regulators
from the Food and Drug Administration have released a draft
guidance [3] and published a New England Journal of Medicine
editorial [4], describing the rationale for composite endpoints
for preclinical AD. A number of composite endpoints formed
by combining scales or subscales from existing clinical, func-
tional, and neuropsychometric assessment batteries have been
proposed as primary endpoints for clinical trials of mild cogni-
tive impairment (MCI) and preclinical AD [5–7]. Discarding items

or calculating simple sums or averages of component test scores
may be inefficient, and a weighted composite that optimizes
signal to noise of the constructed outcome would be preferred.
To this end, Xiong et al. [8] have proposed a weighting algorithm
for combining scores from multiple instruments or markers into a
single composite endpoint assuming a multivariate linear mixed
effects model and a primary analysis plan comparing mean rate of
decline in treatment versus control. Their weights outperformed
alternative weighting schemes in some reported simulations but
were suboptimal in others, leading the authors to conclude that
additional research is needed. We show that the suboptimality
noted by Xiong et al. results from the fact that their proposed
weights do not account for the design and duration of the study
in which the composite is to be employed. We derive a formula
for calculating linear weights from pilot data that accommodate
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future planned trial design; the weights are optimal under the
multivariate linear mixed effects model and can be estimated
from pilot study data of arbitrary design provided the number of
measurement occasions in the pilot study is sufficient for model
identification (in the absence of residual autocorrelation, three
visits are sufficient).

Section 2 sets notation through an exposition of model
assumptions and briefly reviews the analytic results presented in
Xiong et al. [8]. We then propose optimality criteria and derive
a formula, given in Equation 2, for the optimal linear weights
as a function of the planned trial design. In Section 3, we esti-
mate weights and demonstrate composite performance using
data from the completed Alzheimer’s Disease Cooperative Study
(ADCS) MCI/donepezil trial [9]. Section 4 presents theoretically
derived illustrations of composite performance and describes a
simulation study conducted to (1) empirically validate the opti-
mality of the proposed weights, and (2) characterize the sampling
distributions of weights estimated from pilot data and explore
their impact on composite performance. Finally, Section 5 con-
cludes with a discussion of assumptions and other issues relating
to the implementation of weighted composites.

2. OPTIMAL WEIGHTS

2.1. Model specifications

Let yij.t/ denote the score for subject i on outcome measure
j D 1, : : : , m at time t. We assume throughout that the response
vector yi.t/ D Œyij.t/�mjD1 follows a multivariate linear mixed
effects model:

yi.t/ D ˛̨̨ C ai C .ˇ̌̌ C bi/tC ei.t/.

Here, ˛̨̨ D Œ˛j�
m
jD1 and ˇ̌̌ D Œˇj�

m
jD1 ¤ 000 are vectors contain-

ing the fixed intercept and slope coefficients pertaining to the
m tests. The corresponding random effects vectors aaai D Œaij�

m
jD1

and bbbi D Œbij�
m
jD1 are assumed jointly normally distributed with

Efaaaig D Efbbbig D 000, and arbitrary symmetric positive definite
covariance matrix. In what follows, we will make use of the m�m
covariance matrix of the random slopes, which we denote †††b.
Neither the covariance matrix of the random intercepts nor the
matrix containing the covariances of the random intercepts and
random slopes will be required, so we forego the introduction of
notation for these parameters. The vector of residual error terms
eeei.t/ D Œeij.t/�mjD1 is also assumed to follow a multivariate normal

distribution, independent of the random effects, with Efeeei.t/g D
000, and Covfeeei.t/g D †††e for fixed t, with †††e positive definite but
not necessarily diagonal.

Six months is a typical testing interval for clinical trials in AD
and MCI. We conjecture that under these circumstances, the
impact of residual autocorrelation on the results is likely to be
negligible, and restrict attention to the case where no auto-
correlation obtains in the examples and simulations to follow.
The model above can nonetheless be elaborated as follows to
accommodate situations in which serial autocorrelation in the
composite residual errors cannot be ignored. Let �e : Œ0,1/ !
Œ0, 1� be an autocorrelation function for which the following two
conditions hold:

Covfeij.s/, eij0 .t/g D �e.jt � sj/ � eT
j †††eej0 , 8 j, j0, s, t,

xT���e.ttt/x > 0 8 x ¤ 000,

where ej denotes a conformable vector with a one in the jth
entry and zeros elsewhere, ttt D Œtk�

p
kD1, .tkC1 > tk is the

vector representation of a set of p � 2 fixed measurement times,
and ���e.ttt/ is the p � p matrix with k, k0 entry �e.jtk � tk0 j/. The
first condition requires that �e.0/ D 1, limits the number of
parameters in the doubly multivariate model for the yij.t/, and in
so doing implies that the derived composite will have the same
autocorrelation function as the component tests. The second con-
dition thus ensures that the residual autocorrelation matrix for the
composite in a trial with design ttt will be positive definite.

2.2. Composite determination

We wish to determine weights, www D Œwj�
m
jD1 ¤ 000, with which

to construct a linearly weighted composite zi.t; www/ D wwwTyyyi.t/
to satisfy some given optimality criterion. Treating www as fixed, as
when the weights are estimated from pilot data and specified in
advance of the trial in which they are to be implemented, this
construction implies that zi.t; www/ will itself follow a linear mixed
effects model:

zi.t; w/ D �.w/Cmi.w/C .ı.w/C di.w//tC ri.t; w/,

where �.www/ D wwwT ˛̨̨ and ı.www/ D wwwT ˇ̌̌ represent the fixed inter-
cept and slope coefficients, respectively, mi.www/ D wwwTaaai and
di.www/ D wwwTbbbi are their bivariate normally distributed random
counterparts, with Efmi.www/g D Efdi.www/g D 0, and ri.t; www/ is
the residual error, independent of the random effects and nor-
mally distributed with Efri.t; www/g D 0 8 t. As with the individual
markers, we require the variance of the random slopes, �2

d .www/ D

wwwT†††bwww, the variance of the residual errors, �2
r .www/ D wwwT†††ewww,

and the covariances among the residual errors over the set of
measurement times ttt,†††r.ttt; www/ D �2

r .www/���e.ttt.
The linear mixed effects (LME) weights wwwLME proposed later in

Equation 2 satisfy both finite sample and asymptotically moti-
vated formulations of optimality. Details are given in Appendix A.
For the time being, we motivate the derivation of the LME weights
through a brief outline of the asymptotic optimality criterion. Let
Oın.ttt; www/ denote a consistent, efficient, asymptotically normal esti-
mator – for example, by (restricted) maximum likelihood – of ı.www/
based on a sample of n individuals observed at measurement
times ttt. For such an estimator, as the sample size n goes to infin-

ity,
p

n
�
Oın.ttt; www/ � ı.www/

� L
�! N

�
0, �2
Oı
.ttt; www/

�
, where �2

Oı
.ttt; www/ is

the diagonal entry corresponding to ı.www/ of the inverse of the
Fisher information matrix for a single p-variate observation from
the composite longitudinal distribution (Appendix A). With stan-
dard hypothesis testing and interval estimation procedures – for
example, evaluating H0 : ı.www/ D 0 against H1 : ı.www/ ¤ 0, or
H2 : ı.www/ > 0 when ı.www/ is in fact positive – the limiting probabil-
ity of detecting a nonzero slope in the expected, or true, direction
on the composite is increasing in jı.www/j=� Oı .ttt; www/. This leads to the
following criterion for determining an optimal weight vector www�:

www� 2 argmax
www¤0

8<
:
ı.www/2

�2
Oı
.ttt; www/

9=
; . (1)
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As we show in Appendix A, this condition is satisfied by choosing
www� D wwwLME .ttt/, as given by

wwwLME .t/ D cŒ†††b C �e.t/†††e�
�1ˇ̌̌

D cƒƒƒ�1
t ˇ̌̌ .

(2)

Here, c ¤ 0 is an arbitrary constant, and �e.ttt/ is a scalar design
term defined as

�e.t/ D eT
2

h
XT����1

e X
i�1

e2,

where X D Œ111, t�, with 111 a conformable vector of 1s. In the special
case where there is no residual autocorrelation, ���e.ttt/ D I, and

�e.ttt/ D
�Pp

kD1.tk � Nt/
2
��1

, with Nt D p�1 Pp
kD1 tk . This parallels

a basic result in the single-variable LME model with no residual
autocorrelation, for which the contribution of the residual vari-
ance to uncertainty in the slope estimate is minimized, and hence,
precision in the slope estimate is maximized, by maximizing the
sum of squares of the measurement times [2]. Note that by previ-
ously stated assumptions, all the required inverses exist, andƒtttƒtttƒttt is
positive definite.

The choice of the constant c in Equation (2) does not have
any impact on composite efficiency. Nonetheless, some addi-
tional comment on the role that it plays is warranted. In addi-
tion to determining the scale of the composite, c is also the
sole determinant of the sign of the composite slope, such that
E
˚

zi
�

t; wwwLME .ttt/
��

is increasing (decreasing) in t whenever c is
greater (less) than zero, as follows immediately from the fact that
ı
�
wwwLME .ttt/

�
is a c multiple of a quadratic form in a positive defi-

nite matrix. This is, in particular, regardless of the componentwise
sign of ˇ̌̌ . While this might at first seem to suggest, for exam-
ple, that when c > 0 and ˇj > 0 the weight assigned to the
jth marker will always be non-negative, this is not necessarily the
case, as we show by example in Appendix A. Informally, these
‘negative weights’, when they occur, indicate that the efficiency of
the composite is better served by noise cancellation than by sig-
nal augmentation. The practical and conceptual challenges posed
by negative weights are considered in Section 5. Weight estima-
tion and its consequences for trial efficiency are considered in
Sections 4 and 5. A simulated data set and R [10] code that can
be used to generate fully worked examples of the LME weighting
approach are available for download from the journal website.

2.3. LME weights for between-group comparisons

The presentation above presumes that the composite is being
optimized for analysis of rate of change in a one-group setting,
and it is therefore reasonable to ask whether the weights given in
Equation (2) are appropriate for trial designs that feature placebo
and treatment arms. In general, when treatment affects expecta-
tions but not covariances, the optimal weights for detection of
treatment-mediated between-group differences in rate of change
can be determined as follows:

wwwLME2
.t/ D cƒƒƒ�1

t .ˇ̌̌Trt � ˇ̌̌/ , (3)

where ˇ̌̌Trt is the mean rate of change for the treatment group and
ˇ̌̌ is the mean rate of change for the placebo group. The deriva-
tion of Equation (3) parallels that of Equation (2) after replacing
ı.www/2 in Equation (1) with ŒıTrt.www/�ı.www/�2, say. One obvious chal-
lenge in using Equation (3) to determine composite weights from
pilot data is the requirement that the relative magnitude of the

expected treatment effect on each test be specified in advance of
the trial. This difficulty is conveniently bypassed when the treat-
ment effect size, expressed as a proportion of placebo group
mean rate of change, is the same for all component tests, that
is, when ˇ̌̌Trt D .1 � k/ˇ̌̌ for some nonzero constant k � 1,
say. In this case, which we refer to as proportional invariance (PI),
Equation (2) will continue to yield an optimal composite for detec-
tion of a 100� k% attention of placebo slope owing to treatment.
The issue of weight specification for between-group comparisons
is considered in some additional detail in Section 5. In what fol-
lows, the term LME weights will continue to refer to the weights
of Equation (2) unless otherwise specified.

2.4. A related formulation of optimality

The weighting proposal outlined in this paper is in several
respects similar to a weighting approach recently described in
Xiong et al. [8]. Although assumptions on covariances differ some-
what from those outlined in the current manuscript, in that Xiong
et al. assume that residual errors will be independent across tests
and allow for distinct residual autocovariance functions from one
test to the next, the principal difference between their weights
and the LME weights of Equation (2) lies in the optimality crite-
rion each has been derived to satisfy. Under their chosen form of
the multivariate LME model, Xiong et al. derive their weights to
maximize the probability of observing decline in a randomly sam-
pled subject over a one-unit interval of time, on account of which
we will refer to their weights as unit-time decline (UTD) weights,
denoted as wwwUTD . As detailed in Appendices A and B, modulo
the different assumptions on the covariances among the resid-
ual errors and the arbitrary restriction on the direction of change
in the resulting composite, UTD weights are in fact a special case
of LME weights, where the optimization has been undertaken
with respect to a trial with design vector ttt D Œ0, 1�T , instead of
with respect to a trial of known, arbitrary design. This difference
can have important consequences for composite efficiency, as the
simulations of Section 4 demonstrate.

3. EXAMPLE: LME WEIGHT CALCULATION

To illustrate the efficiency gains that are possible with
LME-weighted composites, as well as the manner in which LME
weights respond to changes in trial design, we report calcula-
tions based on an analysis of data on the cognitive subtest of
the Alzheimer’s Disease Assessment Scale (ADAS), the Clinical
Dementia Rating Scale (CDR)-Sum of Boxes, and the Mini-Mental
State Examination (MMSE), using biannual testing data from the
n D 257 subjects in the vitamin E arm of the ADCS MCI/donepezil
trial [9] (all analyses conducted using R statistical software [10]).
The primary endpoint for this trial was time to conversion to AD,
and the design incorporated a provision for transitioning subjects
who converted to active treatment with donepezil. We therefore
excluded post-conversion/donepezil treatment visits from all
analyses. Parameters were estimated by fitting a multivariate LME
model with correlated residuals across tests and within measure-
ment occasions using the R function growth() from the lavaan
package[11], version 0.5-17 (Supporting information). To support
interpretation of the weights, scores were rescaled prior to the
analysis by dividing each test score by its respective baseline stan-
dard deviation (6.05, 0.78, and 1.90 for the ADAS, CDR, and MMSE,
respectively). The fit of this model was found to be superior to a4

2
0

Copyright © 2016. The Authors. Pharmaceutical Statistics Published by John Wiley & Sons Ltd. Pharmaceut. Statist. 2015, 14 418–426



M. Colin Ard, N. Raghavan and S. D. Edland

0

20

40

60

0 1 2 3

Time (Yrs)

A
D

A
S

−
C

og
13

0

5

10

0 1 2 3

Time (Yrs)

C
D

R
 S

um
 o

f B
ox

es

10

20

30

0 1 2 3

Time (Yrs)

M
M

S
E

0

3

6

0 1 2 3

Time (Yrs)

C
om

po
si

te

Figure 1. Subject-specific longitudinal trajectories on the ADAS, CDR, MMSE, and LME-weighted composite (optimized for 3-year change from baseline), for n D 160
non-converting completers from the vitamin E arm of the ADCS MCI/donepezil trial [9]. Horizontal axes, time on trial (years); vertical axes, test scores.

model assuming unstructured multivariate normality by both AIC
(9081 for LME vs 9092 for unstructured) and BIC (9198 for LME
vs 9986 for unstructured). Plots of individual patient trajectories
for the n D 160 vitamin E arm subjects who completed the trial
without converting are presented in Figure 1 (constructed using
the R package ggplot2 [12]). Unstandardized scores on each of
the three component tests, as well as for the LME-weighted com-
posite, optimized for an analysis of change from baseline to last
observation over a 3-year trial, are depicted. The plots were inter-
preted as providing graphical support for the appropriateness
of the assumption of patient-specific longitudinal trajectories.
The similarity of the composite to the ADAS reflects the fact that
the (standardized) ADAS received the largest weight of the three
component tests with the specified 3-year trial duration (Table I).
Estimates of the relevant parameters were as follows, with rows
and columns ordered ADAS, CDR, and MMSE:

Ǒ̌̌ D

0
@ 0.29

0.74
�0.32

1
A , O†††b D

2
4 0.10 0.28 �0.11

0.28 1.04 �0.38
�0.11 �0.38 0.17

3
5 ,

O†††e D

2
4 0.24 0.05 �0.06

0.05 0.51 �0.07
�0.06 �0.07 0.63

3
5 ,

Table I. Weights and sample size reductions for analy-
ses of change from baseline to last observation.

Trial duration
(months) wADAS wCDR wMMSE %N-reduction

6 0.37 0.51* �0.11 18.0%
12 0.44 0.45* �0.11 17.1%
18 0.53 0.36* �0.11 17.9%
24 0.61 0.28* �0.11 19.8%
30 0.69* 0.20 �0.11 15.9%
36 0.75* 0.14 �0.11 9.5%

wj references the LME weight assigned to test j after
rescaling each test by its baseline standard deviation
and normalizing the weights to sum to 1 in absolute
value (ignoring rounding error); %N-reduction gives the
approximate percent reduction in required sample size
by the LME-weighted composite relative to the best per-
forming individual test treating the estimates as the true
parameter values; * indicates the most sensitive individ-
ual test for each trial duration.
LME, linear mixed effects; ADAS, Alzheimer’s Disease
Assessment Scale; CDR, Clinical Dementia Rating Scale;
MMSE, Mini-Mental State Examination.
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Table I presents the resulting LME weights, scaled so that the
composite slope is positive and the sum of the absolute values of
the weights is 1 (by choosing c D 1=.

P
j jƒƒƒ
�1
t ˇ̌̌j/; reported values

subject to rounding error), for hypothetical trials ranging from 6
to 36 months in duration with trial endpoints specified as change
from baseline to last observation. As the results from Table I
show, the LME weights prescribe that the CDR should make the
strongest contribution to the composite for shorter trials. As the
trial duration increases, however, the LME weights deemphasize
the CDR, and the ADAS takes over as the dominant component.
The asterisks (*) in Table I identify the most efficient of the three
tests at each trial duration. The CDR is estimated to be the most
efficient instrument for trials with a duration of 2 years or less,
whereas the ADAS is estimated to be more efficient for longer
trials, roughly tracking the patterns in the weights across the
spectrum of hypothetical designs. The negative weights for the
MMSE reflect the fact that whereas the ADAS and CDR increase
over time in MCI patients, the MMSE decreases over time in the
same population.

The theoretical improvement in efficiency available by using
the weighted composite relative to the best of the three individ-
ual tests for each trial design, operationalized as the approximate
percent reduction in required sample size for a specified type
I error rate and statistical power [2], and calculated assuming
the estimates are the true values of the population parame-
ters, is given in the last column of Table I. Values range from
9.5% to 19.8% and exceed 15.0% for all but the 36-month trial
duration. The impact of weight estimation on expected compos-
ite efficiency is considered in the simulations of Section 4. We
emphasize that the analysis presented earlier is intended only to
be illustrative. For example, although beyond the scope of the
current manuscript, the aforementioned adaptive reassignment
of subjects who converted to the donepezil arm would warrant
more in-depth consideration in actual practice.

4. COMPOSITE EFFICIENCY AND
WEIGHT ESTIMATION

In this section, we consider the efficiency of weighted composites
as a function of the weights utilized in their calculation with two
primary goals: (1) to illustrate the losses in trial efficiency that can
result when suboptimal weighting schemes are employed and (2)
to evaluate the performance of composites calculated using LME
weights estimated from pilot data. To facilitate the presentation,
attention is restricted to the case in which two tests, termed Best
and Worst and following a bivariate LME model without residual
autocorrelation, are being considered for inclusion in a composite
for a 3-year trial with annual observations. Parameters of primary
interest are

ˇ̌̌ D

	
1
1



, †††b D

�
0.5 �Slp
�Slp 2.0

�
, †††e D

�
2.0 0.0
0.0 0.5

�
,

where the tests are ordered Best, Worst, and �Slp 2 f0.2, 0.5, 0.8g.
With these specifications, Best is a relatively efficient test for
the hypothetical 3-year design, and Worst is relatively inefficient.
Although they do not influence composite performance when
the data are balanced, the remaining parameters were speci-
fied as follows: ˛̨̨ D 000, Covfaaaig D †††b, Corfaij , bijg D 0.5, and
Corfaij , bij0g D

p
0.5�Slp, j ¤ j0 2 fBest, Worstg.

4.1. Composite efficiency and the choice of weights

The relationship between the theoretical efficiency of a
hypothetical weighted composite and the weight vector
www D .wBest , wWorst/

T used in its calculation is depicted in
Figure 2. Efficiency, on the left vertical axis, is operational-
ized as NComposite=NBest D Œ�2

Oı
.ttt; www/=ı2.www/�=Œ�2

Ǒ
Best

=ˇ2
Best� for a

given weight vector www, where �2
Ǒ

Best

D �2
Oı
.ttt; e1/. The notation

NComposite=NBest references the fact that the parameter ratio by
which it is defined is approximately equal to the ratio of the
required sample sizes to detect nonzero slopes with given power
in LME model analyses of the composite and of Best [2]. Values of
NComposite=NBest < 1 indicate a composite that affords a gain in
sensitivity to longitudinal change relative to Best for the 3-year
design, and values > 1 indicate an inefficient composite. A
dotted-dashed horizontal line segment at NComposite=NBest D 1
is provided as a visual aid. Weight vectors are registered to the
horizontal axis as the difference wBest � wWorst between the
weights under the constraint that wBest C wWorst D 1. Thus, for
example, a value of 0 on the horizontal axis corresponds to an
equally weighted composite, and a value of 1 corresponds to a
composite that is identically equal to Best.

The U-shaped curves in the top half of Figure 2 plot the rel-
ative efficiencies of hypothetical composites as functions of the
weights used in their calculation. The minima of the curves indi-
cate the efficiency gains that can be achieved with an optimal
linearly weighted composite. For example, for �Slp D 0.2, the
figure indicates that inference based on the maximally efficient
composite would require approximately 21% fewer subjects than
inference based on Best, whereas for �Slp D 0.8, the vast majority
of potential composites would be less efficient than Best. The rela-
tive ineffectiveness of the compositing approach when �Slp D 0.8
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Figure 2. Horizontal axis: wBest � wWorst , difference between weight assigned to the
two tests, scaled to sum to 1; left vertical axis: NComposite=NBest , approximate ratio of
required sample sizes to detect a nonzero slope in the composite relative to Best,
with values <1 (dotted-dashed horizontal line) indicating an efficient composite;
right vertical axis: density, kernel density estimate for weight differences based on
simulations; �Slp , correlation of random slope coefficients between tests; U-shaped
curves in the upper portion of the figure plot NComposite=NBest as a function of wBest �
wWorst for each value of �Slp ; points labeled ‘U’, ‘S’, and ‘L’ plot NComposite=NBest across
simulations for UTD-weighted, inverse baseline standard deviation-weighted, and
LME-weighted composites; bell-shaped curves at the bottom of the figure depict
kernel density estimates for the wBest � wWorst values associated with LME weights
estimated from simulated data for each value of �Slp .4
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results in large part from a confluence of two factors: (1) the pro-
nounced difference in the efficiencies of Best and Worst for the
specified design, which limits the value added by incorporation
of Worst into the composite regardless of the value of �Slp, and (2)
the redundancy of the information provided by scores on the two
tests when �Slp is large in absolute value.

The points labeled ‘L’ on the three curves indicate the weights
and theoretical relative efficiencies of composites calculated
using LME weights. Similarly, points labeled ‘U’ refer to UTD
weights with the signs reversed and a unit of time defined as
1 year (cf., Xiong et al. [8]), and points labeled ‘S’ refer to weights
that are proportional to the inverses of the baseline standard
deviations (cf. Donahue et al. [6]), which are equal for the two
component tests in this example. LME weights are located at the
minima of the relative efficiency curves, and (asymptotically) opti-
mize power for a composite analysis under the indicated design.
By comparison, UTD weights and inverse baseline standard devi-
ation weights are relatively distant from these minimizing LME
weights. Expected performance levels of the resulting composites
suffer considerably as a result, with NComposite=NBest > 1 in five of
the six cases depicted for these alternative weighting algorithms.
For �Slp D 0.8, the corresponding efficiency loss approaches
a 50% increase in required sample size for the UTD-weighted
composite relative to simply using Best.

4.2. Simulation: estimation of weights from prior data

Parameters required to calculate LME weights are in practice
unknown and must be estimated from prior data (although see
Xiong et al. [8] for a different suggestion). To explore the impact
of weight estimation on composite performance, we simulated
10,000 data sets of size NTrain 2 f100, 200, 400g using the param-
eters specified earlier, and for each of the three values of �Slp.
Parameters for LME weight calculation were estimated from each
simulated data set using the summary measures approach out-
lined in the Supporting information. Primary interest centered on
the sampling distributions of the weight estimates as a function of
the simulation parameters and NTrain, and the expected efficien-
cies of composites calculated from estimated LME weights.

Kernel density estimates for the estimated weight vectors
based on training data sets of size NTrain D 400 are plotted at
the bottom of Figure 2 for each of the three simulated values
of �Slp and are registered to the right vertical axis. While some
heterogeneity is apparent, the distributions of the differences in
the estimated weights are in all three cases approximately sym-
metrical, centered near the true value of wBest � wWorst for the
LME weights, and reasonably concentrated near the optimizing
arguments of the analytic efficiency curves. A more complete
cataloging of the findings is provided in Table II, which gives
NLME=NBest at each value of �Slp assuming wwwLME .ttt/ known, and also
reports the estimated expectations (Expected) and 0.95 quantiles
.Q0.95/ of these ratios of estimated sample size requirements from
the Monte Carlo simulations at all three values of NTrain. As is evi-
dent from the table, the expected loss of efficiency from having to
estimate the LME weights is quite small (<2%), even with training
samples of only 100 subjects. Somewhat greater risk is evident in
the estimated 0.95 quantiles, but this also decreases to a practi-
cally ignorable level for sample sizes of NTrain D 400. The amount
of precision in weight estimation that is required in any given set-
ting may depend on any number of factors, and the simulations
reported here do not obviate the need for sensitivity analyses
in the construction of LME-weighted composites. At a minimum,

however, the results reported in Table II indicate, in our view, that
the need to estimate LME weights should not generally be seen
as a barrier to implementation.

5. DISCUSSION

As demonstrated in the preceding sections, although compos-
ite outcome measures offer the possibility of increased efficiency
relative to individual tests, improved performance is not guaran-
teed, and poorly constructed composite instruments can actually
decrease statistical power. By contrast, when assumptions are
met, LME weights can be used to produce composites with opti-
mal performance characteristics for longitudinal trials. These opti-
mal composites can in some cases dramatically outperform com-
posites calculated using alternative published methods applied
to the same pool of assessments. Furthermore, as indicated by
the simulations, even when weights must be estimated from pilot
data, expected efficiency loss relative to use of the true theoreti-
cal LME weights will be of an ignorable magnitude provided pilot
sample sizes are sufficiently large. This does not necessarily mean
that there is always a great deal to be gained from use of weighted
composites. As seen in Sections 3 and 4, in some circumstances,
even optimally weighted composites provide minimal perfor-
mance gains relative to the most efficient of the component tests.
Whether or not a composite endpoint should be utilized in such
cases is likely to depend on a range of factors, including pilot
sample size, regulatory requirements, and the cost of administer-
ing multiple tests. The occurrence of ‘negative’ weights, as when
the weights for two tests that exhibit change in the same direc-
tion take opposite signs, is another situation where exclusion of
component tests from the chosen composite may be appropriate.
At the very least, in such cases, the potential gains in efficiency
from including negatively weighted tests will need to be weighed
against the cost to interpretability of the composite.

The choice of the multivariate LME modeling framework in
this manuscript owes to several factors. Xiong et al. [8] assume
a variant of this model in deriving their UTD weights. Further,
precedent comes from the fact that the LME model is frequently
assumed in studies of AD and MCI [2]. Focusing directly on the
merits of the LME model with respect to the current application,
we perceive two primary strengths. First, the LME model offers
a parsimonious yet flexible framework for modeling the changes
in means, increases in variance, and decreases in correlations
that are typically observed over time in studies of patients with
chronic progressive diseases such as AD or MCI. This is likely to be
of particular benefit with pilot data sets that feature a relatively
small sample size, as the reduction in the number of parame-
ters that must be estimated can be substantial. Second, because
LME weights can be calculated for known, arbitrary clinical trial
designs given sufficient pilot data, the approach can not only be
used to determine weights for trials with a longer duration than
available pilot data but can also be adapted for the case where
the trial endpoint is change from baseline to last visit – as in
a mixed model repeated measures analysis [13] – by specifying
the trial design vector t D Œt1, tp�

T (Section 3). In so doing, the
primary analysis for the planned trial can be freed from depen-
dence on the linearity assumption, even as the multivariate LME
model structure is utilized to reduce the mean square error of
the estimates of ˇ̌̌ andƒtƒtƒt . In the remainder of the discussion, we
consider several practical issues relating to the implementation of
weighted composites in clinical trials.
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Table II. Efficiencies of composites constructed from estimated weights.

NTrain D 100 NTrain D 200 NTrain D 400

�Slp NLME=NBest Expected Q0.95 Expected Q0.95 Expected Q0.95

0.2 0.791 0.805 0.845 0.797 0.817 0.794 0.804
0.5 0.911 0.929 0.979 0.920 0.945 0.915 0.928
0.8 0.992 1.012 1.068 1.002 1.030 0.997 1.011

‘Expected’ gives simulated approximation to EfN OLME=NBestg, where N OLME refer-
ences the required sample size to detect a nonzero slope in a composite calcu-
lated from estimated LME weights, and the expectation is taken with respect to
the distribution of the LME weight estimates; Q0.95 gives simulated approxima-
tion to the 95th percentile of the distribution of N OLME=NBest .
NLME=NBest , approximate ratio of sample sizes required to detect nonzero slope
in LME-weighted composite relative to Best; LME, linear mixed effects; NTrain, size
of simulated pilot data set on which weight estimates were based.
�Slp D correlation between random slopes for Best and Worst.

5.1. Missing data and random measurement times

In clinical trial practice, researchers are likely to encounter both
variable measurement times and missing observations. In our
experience, disagreements between nominal and actual mea-
surement times typical of clinical trials have minimal impact on
endpoint efficiency and hence should not generally be of great
concern. Missing data, whether due to attrition or to isolated fail-
ures in test administration or data collection, is potentially a more
significant issue. For example, weights that are optimal for com-
pleters are likely to be suboptimal for non-completers owing to
the functional dependence of the LME weights on the design
term �e.ttt/. Furthermore, because composite calculation requires
complete data at each measurement occasion, the composite test
score will be missing if even a single component test score is
missing. One option for addressing these concerns is to employ
a fully multivariate multiple imputation strategy (i.e., imputation
of scores on component tests). In addition to being good practice
in the handling of missing data, this option is also well suited to
the present setting because it permits calculation of composite
scores in the presence of intermittent missing data on individual
tests. Other options include calculation of weights using modified
formulas that leverage expected or observed dropout patterns
rather than the nominal trial design. The relative impacts of these
strategies on trial efficiency are as yet unclear, and further stud-
ies of composite performance in the presence of missing data will
be required.

5.2. Composites for between-group designs

As noted in Section 2, the LME weights given in Equation (2)
are optimal for both single-group and between-group designs
provided the PI assumption is satisfied. Equation (3) is more
generally applicable, but less practical because it requires speci-
fication of the differential magnitudes of treatment effects across
tests. Because of this and in the absence of information to indi-
cate that PI does not hold, we expect that the LME weights of
Equation (2) will prove to be of greater utility in most cases. At
the same time, the potential for violations of the PI assumption
has been cited by some researchers as partial motivation for rely-
ing on inverse baseline standard deviation-weighted composites
as an alternative to numerically optimized composites [6]. We
question whether baseline-standardized composites offer mean-

ingful protection for this case, however. For example, tests that
are subject to ceiling effects may exhibit marked insensitivity to
treatment efficacy, yet because they also tend to have restricted
variability at baseline, it is precisely these tests that are likely
to be most strongly emphasized in inverse baseline standard
deviation-weighted composites.

We describe two ways, one model based and one empirical, in
which Equation (3) can be utilized to adjust weights and/or assess
efficiency losses tied to PI violations when PI cannot be safely
assumed and no data are available to directly inform effect size
determination. The first general strategy is to reference covari-
ance parameters for the random slopes in conducting sensitiv-
ity analyses for different relative effect sizes on the component
tests. For example, we conjecture that when pairwise correla-
tions among random slope coefficients for different tests are high,
this may be taken as an indication that the PI assumption is rea-
sonable. This in turn suggests that if the correlations between
the random slope coefficients for a given test A and those of
the remaining tests are all small relative to the intercorrelations
among those remaining tests, it may be worth exploring how
composite efficiency would be impacted if rate of change on test
A was unaffected by treatment. Alternatively, sensitivity analyses
for composites calculated using Equation (2) could be carried out
by assuming that treatment effect sizes are inversely proportional
to the ratio of the mean rate of change to the standard deviation
of rates of change on each test. There are at least two reasons that
such an approach might prove valuable: (1) a pronounced lack of
heterogeneity in rate of decline may be taken as an indicator of
potential treatment insensitivity, and (2) in so far as LME weights
tend to favor tests with a strong signal relative to the amount of
between-subject variability, positing larger effect sizes for tests
with weaker signals relative to between-subject variability should
provide a fairly strong test of the robustness of LME-weighted
composites to PI violations.

The second approach we outline is perhaps better suited to
weight determination by Equation (3) and builds on the dis-
tinction between age-related and disease-related decline when
normative data are available. To motivate, note that even in the
event that an effective treatment for AD is found, it may be that
the best-case scenario for treated patients is a post-therapeutic
rate of decline that is commensurate with that of healthy con-
trols. Accordingly, it may be appropriate to determine weights4

2
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as in Equation (3), but under a modified form of PI in which
ˇ̌̌Trt D kˇ̌̌CNE C .1 � k/ˇ̌̌ , where k 2 Œ0, 1/ is a constant and ˇ̌̌CNE

is the mean slope vector for an appropriately matched popula-
tion of cognitively normal elderly subjects. The proposal in this
case is thus to leverage normative data on the component tests
to support pre-specification of effect sizes that respect an invari-
ant proportionality of, on the one hand, the difference between
treatment and placebo rates of decline, and, on the other, the
difference between healthy control and placebo rates of decline.
This approach will tend to downweight tests that are, relative to
the other component tests, more sensitive to age-related declines
than to the differences in rate of change between patients and
healthy controls.

5.3. In-trial weight estimation

A final issue of some importance concerns the question of
whether weights should be estimated and specified in advance
of the trial in which they are to be implemented, as we have
assumed would be the case. As previously noted, alternative
strategies have been suggested or adopted. For example, the
primary outcome measure specified for the joint ADCS/Eli Lilly
Anti-amyloid Treatment in Asymptomatic Alzheimer’s study [14]
is the baseline-standardized ADCS Preclinical Alzheimer Cogni-
tive Composite, with weights set to be determined from in-trial
baseline data [6]. A second more directly relevant example comes
from Xiong et al. [8], who propose that weights be estimated
using data from the trial in which the weights are to be applied
and described a procedure in which a multivariate LME model
is fit to repeated bootstrap samples to estimate the off-diagonal
blocks of the information matrix of the fixed effects estimates for
hypothesis testing purposes. Our preference for pretrial weight
estimation of LME weights owes to several factors. First, inde-
pendently estimated weights can be treated as fixed constants,
and hence the resulting composite can be analyzed using meth-
ods appropriate for any single prespecified quantitative outcome
measure. This means that critical values for hypothesis tests do
not need to be adjusted to account for the optimization, and that
specialized procedures such as the Xiong et al. bootstrap are not
required for estimation of standard errors. This latter point is also
relevant to the practicability of the trial analysis, as in our expe-
rience, failures of convergence in doubly multivariate parameter
estimation are relatively common in off-the-shelf statistical pro-
grams that can be used to fit multivariate LME models. In further
support of pretrial weight calculation, the results of Section 4
indicate that minimal efficiency losses are to be expected for
composites calculated using weights estimated from indepen-
dent pilot data given sufficient training sample sizes and provided
assumptions are met. There is also some question as to the cir-
cumstances under which regulatory agencies will be willing to
sanction clinical trials when the construction of the primary end-
point is left unspecified until after the trial has been completed
and the data have been unblinded. Finally, we note that in-trial
weight estimation can introduce complications with respect to
interpretation and hypothesis testing of the composite slope.
Specifically, fully in-trial estimation of either UTD or LME weights
leads to a composite slope estimate that is defined as a quadratic
form in a positive definite matrix. The slope estimate under this
analysis plan is thus inherently nondirectional, with a sampling
distribution that is either non-negative or non-positive depend-
ing on the sign of the normalizing constant c, and we conjecture

that a failure to account for this in hypothesis testing is likely to
have adverse consequences for control over the type I error rate.

6. CONCLUSION

Composite outcome measures can be used to improve statisti-
cal power in longitudinal clinical trials. However, these gains can
only be realized for linearly weighted composites if the chosen
weights are appropriate for the pool of component tests, the
study population, and the trial design. This manuscript has pre-
sented methods for determining optimal composites under the
assumption that the component tests follow a multivariate LME
model. The theory that we have outlined can be used not only
to determine the optimal weights for a given set of component
tests but also to guide selection of component tests for incorpora-
tion into the composite. Furthermore, the approach that we have
proposed for implementing weighted composites allows the use
of standard analytic and hypothesis testing procedures provided
that pilot data – such as a previously completed trial in the tar-
get patient population – are available, makes use of all available
information from the administration of each component test, and
can be combined with applications of model-based rescoring
algorithms (e.g., item response theory) to individual tests.
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