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Abstract

Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in
DNA sequences. DNA-binding proteins often show degeneracy in their binding requirement and thus the overall binding
specificity of many proteins is unknown and remains an active area of research. Although existing PWMs are more reliable
predictors than consensus string matching, they generally result in a high number of false positive hits. Our previous study
introduced a promising approach to PWM refinement in which known motifs are used to computationally mine putative
binding sites directly from aligned promoter regions using composition of similar sites. In the present study, we extended
this technique originally tested on single examples of transcription factors (TFs) and showed its capability to optimize PWM
performance to predict new binding sites in the fruit fly genome. We propose refined PWMs in mono- and dinucleotide
versions similarly computed for a large variety of transcription factors of Drosophila melanogaster. Along with the addition
of many auxiliary sites the optimization includes variation of the PWM motif length, the binding sites location on the
promoters and the PWM score threshold. To assess the predictive performance of the refined PWMs we compared them to
conventional TRANSFAC and JASPAR sources. The results have been verified using performed tests and literature review.
Overall, the refined PWMs containing putative sites derived from real promoter content processed using optimized
parameters had better general accuracy than conventional PWMs.
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Introduction

Transcription Factors (TFs) play a crucial role in gene

regulation, usually binding to DNA through recognizing certain

motifs in one or two strands of DNA adjacent to the regulated

gene. The prediction of TF binding sites (TFBSs) is a big challenge

for computational biologists, particularly as increasing amounts of

sequence data become available. Direct experimental investiga-

tions of TF-DNA binding are still rather time-consuming and

labour-intensive.

Position weight matrices (PWMs) became essential computa-

tional tool and model of choice to describe sequence binding

specificities of particular TF-DNA interactions. The relatively

short (5–15 nt) sequence motifs are recognized by TFs whose

sequence specificities are not very strict [1,2]. In addition, the

laboratory in vitro measurements show a variability of affinity for

TF-DNA binding which results in a potentially large number of

binding sites in genome [3]. The variability in the binding sites of a

single factor and molecular mechanisms underlying these varia-

tions are not well understood.

PWMs are usually generated from a set of functionally related

and aligned TF binding sites, and there are several reported

approaches to this task. We use PWMs constructed from log-odds

ratios of occurrences of mono- or dinucleotides with taking into

account background nucleotide distributions. Gershenzon et al.

argued that known PWMs suffer from low specificity and

sensitivity when used as a prediction tool to discover putative

binding sites [4]. Computational biologists developed a plethora of

improvements to provide more complete models of TFBSs making

a variety of assumptions, but problems of binding specificity and

TFBS prediction remain far more complex to be completely

resolved. Recently Stormo and Zhao confirmed that many of the

existing approaches are not accurate or complete in depicting

binding specificity or how well a protein can distinguish between

different sequences [3].

In addition to limited knowledge of binding specificity

incorporated into the matrices, the mononucleotide PWMs

assume that the nucleotides of the binding sites exert independent

effects on the binding affinity. Dinucleotide matrices provide more

reliable models considering the presence of Markovian properties

in the binding nucleotide sequences [5]. However, providing a

better description, the dinucleotide model was applied to only few

particular TFs and did not address the binding motif specificity for

a variety of discovered TFs. While our earlier publication [4]

provided a proof of principle for the suggested algorithm with

application to a single transcription factor (Sp1), it was not
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implemented as a genomic scale application for a variety of TFs.

The present work represents the first large scale study of

cooperative influence of adjacent nucleotides onto TF-DNA

binding by calculating optimized PWMs (mono- and dinucleotide

alike) for a variety of transcription factors from Drosophila. The

analysis was made not for an arbitrary selected TF, but for all

available TF, including so called [11] law quality matrices.

The in situ approach to accurately defining the DNA-binding

sequence specificity of transcription factors would rely upon a

representative and complete collection of binding sites from

properly designed laboratory experiments, such as SELEX [6],

protein binding microarrays [7], or in-vivo ChIP-Seq data. In silico

detection of weak protein-binding signals with up to one

nucleotide resolution in noisy ChIP-Seq data remains to be

challenging [8,9]. In practical applications an alternate confirma-

tion of TFBS functional relevancy is a necessary step in any ChIP

experiment [10]. The in silico approaches to determining binding

specificity are far less expensive, although their common limiting

factor is a number of validated binding sites. The knowledge of

binding specificity for most TFs is not complete, particularly, the

knowledge of variability of binding sequences.

To improve existing matrix-based models we chose to use the

commercial TRANSFAC database [11] complemented by

JASPAR [12] for two reasons: 1) TRANSFAC assures an

expert-curated experimentally confirmed comprehensive set of

TFBSs for each TF entry and 2) TRANSFAC supplies each TF

entry with a frequency matrix which can be used for prediction of

new sites and computing refined matrices. In addition, TRANS-

FAC is supplied with MatchTM tool, which we used as a

conventional instrument for TFBS prediction for comparison with

our approach.

To cover a bigger number of TFs for Drosophila melanogaster

(further Drosophila) we primarily assigned JASPAR the role of the

testing set in contrast to much larger TRANSFAC set used for

matrix training.

The main goal of this study is to optimize predictive

performance of the matrices published for Drosophila in the

TRANSFAC database where binding sequences were also

available. This selection enabled us to optimize both mono- and

dinucleotide matrices by implementing the previously introduced

approach of iterative PWM refinement [4,13].

A key feature of our study consists of drawing sequences with

similar composition of nucleotides from an area of promoters with

most significant over-representation of the signals. The iterative

PWM refinement [4] followed by supervised sampling of new

nucleotide sequences can be presented as a heuristic PWM

optimization using machine learning [14]. The target function of

such optimization is the Matthews correlation coefficient (see

Equation 6), which enables the trade-off between the false positive

and false negative rates among the observed and predicted

sequences [15]. TRANSFAC’s collection of TFs with known

binding sequences in Drosophila has been evaluated to calculate

refined PWMs which show biological relevancy and better

predictive performance compared to conventional matrices.

Results

A quantitative outline of refined PWMs
We optimized 37 TRANSFAC matrices (33 TRANSFAC TF

entries), both for mono- and dinucleotide versions shown in

Table 1. Refinement of each new matrix in terms of Matthews

correlation coefficient Cor was done for the parameters such as

motif length, location on the promoters and PWM matching cut-

off.

We found that improved matrices generated by the proposed

refinement technique perform better than conventional TRANS-

FAC matrices (initial PWMs). For this analysis, we used a

summary of predictions on synthetic tests (see Table S1 in File

Table 1. Summary of the statistics for the putative binding
sites discovered for TFs published in TRANSFACTM.

Matrices published in TRANSFACTM Predicted sites

## Matrix AC TF name S. Avail. S.Used:L
mono
found:L di found:L

1 M01083 Abd-A 40 40:10 209:8 801:8

2 M01094 Abd-B 7 7:7 39:7 155:6

3 M00171 Adf-1 7 7:21 15:21 69:20

4 M01095 AP 14 14:8 768:7 232:8

5 M01096 Brk 10 10:7 57:8 51:8

6 M01097 CAD 13 13:10 408:9 41:9

7 M01087 C/EBP 12 12:23 27:22 26:22

8 M00120 Dl 13 13:11 3:10 28:12

9 M00488 DREF 10 10:13 60:12 13:12

10 M00110 Elf1 5 5:16 166:13 8:16

11 M00696 En 11 11:7 1092:6 161:7

12 M00396 En-1 10 10:7 84:7 142:8

13 M00020 Ftz 9 9:12 26:14 95:11

14 M00022 Hb 16 16:10 1082:9 341:11

15 M00021 Kr_01 6 6:10 427:9 21:9

16 M01089 Kr_Q6 30 30:12 34:10 29:10

17 M01090 Mad 9 9:8 83:7 152:8

18 M00487 mtTFA 11 9:10 262:9 25:10

19 M00461 Ovo_01 21 21:15 17:12 28:13

20 M01101 Ovo_Q6 9 9:8 791:7 36:8

21 M01091 PRD 9 9:7 115:7 92:8

22 M01102 SD 19 19:7 518:7 277:6

23 M01098 CF1A 11 11:16 135:15 94:11

24 M00112 CF1 38 38:9 26:9 78:10

25 M00044 Sn 9 9:14 28:14 42:11

26 M00060 Sn 40 12:13 253:10 18:12

27 M00060 Sn 40 22:10 58:9 36:11

28 M00666 Sry-beta 5 5:9 44:11 57:11

29 M00234 Su(H) 10 10:13 68:12 118:12

30 M01092 TCF_Q6 25 25:16 89:13 16:15

31 M00679 Tll 10 10:8 44:7 355:6

32 M01103 TWI 11 11:14 24:12 8:14

33 M00018 Ubx 88 48:10 1476:5 535:7

34 M00283 Z 24 24:11 92:9 31:11

35 M01099 KNI 32 32:18 91:17 35:15

36 M00016 E74A 14 14:12 120:13 109:14

37 M01088 DEAF1 22 22:7 284:7 130:7

Matrix AC is AC (Accession Code) field from TRANSFACTM (naming preserved);
‘‘S. Avail.’’ and ‘‘S. Used’’ mean respectively a number of sites available in the
database and used for matrix training; L and numbers in front and after
columns show the number of detected sites and their length (L) respectively for
mononucleotide (‘‘mono’’) and dinucleotide (‘‘di’’) optimized matrices with
optimized cut-off.
doi:10.1371/journal.pone.0068712.t001

PWM Optimization for TFs in Drosophila
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1) and a measure of information content presented as sequence

Logos for discovered putative TFBSs (Figure S1 and other figures

in Files S2 and S3). The refined PWM in mono and dinucleotide

formats can be found in File S4.

A more comprehensive analysis, including comparison with

MatchTM tool and validation of a biological content of some of our

findings, is performed in the following sections.

The length of the initial matrices is equal to the common part of

aligned TFBSs. TRANSFAC sites in most cases have already been

aligned in the database. However, the resulting mononucleotide

PWMs did not necessarily preserve the initial lengths. This

happens because the matrix refinement procedure offers the motif

length to find matches with largest Cor. For this reason, we can

observe shifts in positioning toward the most conserved nucleotides

within the initial sequence, which accounts for the irregularity of

background nucleotide distribution on promoter sequences used

for training. In particular, for Brk, Ftz, Dl, En, Hb, one or both

optimized matrices have longer lengths than the initial sequences.

As seen from Table 1 or Table S1, for each particular TF, the

averaged total number of discovered sites is neither for real nor for

synthetic data larger than the total number of promoter sequences

used for PWM training. Employing an arbitrary lower cut-off

value with the original PWM would apparently produce more

matches, most of which would be false positives. Low specificity,

which hampers the application of conventional PWMs for TFBS

prediction [16], is therefore overcome by our approach. Taking

into account our limited knowledge, some optimized matrices can

be expected with better or worse (when compared to the original

PWMs) specificity or sensitivity in a single analysis. Someone

interested in a simultaneous application of many PWMs can

benefit from a generally better total performance of the optimized

matrices. In particular, result of the comparison presented in

Table S1 provides extra insight into the differences between

optimized mono- and dinucleotide matrices when they are applied

to a completely new promoter content (synthesized test sequences)

that was not used in the matrix training. In the next section we will

give more comprehensive quantitative analysis of PWM tests, but

here we provide a big picture of the predictive performance of our

method.

The following selected results come from analysis of one of

synthetic tests constructed from biological binding sequences taken

from JASPAR. For comparison, since TFs have different total

numbers of true positive (TP) and false positive (FP) matches, we

characterized the estimated sensitivity and specificity through

proportions of all predicted TP (or FP) to the size of a respective

test set. To observe results from a big picture, all TP and FP

matches discovered in JASPAR synthetic tests (Table S1) were

collected by the type of matrix in three groups (Initial, OPT mono,

OPT di). In total, the initial matrices give 77 true positives against

127 false positives; optimized mononucleotide matrices give 123

true positives against 73 false positives; finally, optimized

dinucleotide matrices give 106 true positives against 76 false

positives. Because both optimized mono- and dinucleotide

matrices were tested on the same testing sets, we can easily

calculate the percentage of improvement when using optimized

matrices against the initial matrices calculated from TRANSFAC.

The total number of TPs improved (increased) by 59.7% (out of

total 77) for the mononucleotide matrices and by 37.7% for the

dinucleotide matrices compared to the result from initial matrices

used in TRANSFAC. Similarly, for the number of FPs a global

picture comes as follows: for the mononucleotide PWMs the total

number of FPs decreased by 42.5% (out of total 127) and for the

dinucleotide matrices it decreased by 40.2%. The comparison was

done with a fixed cut-off of the corresponding optimized matrix.

The analysis of the results in terms of common statistical precision

– recall indicators also showed better predictive performance of

the optimized matrices over the MatchTM tool predictions and is

presented in section ‘‘Optimized PWMs show an increased

accuracy in simulations’’.

Sequence Logos in Figure 1 show how well nucleotide content is

conserved in the putative binding sequences found here. The

sequence Logo is constructed from information content [17]

measured in bits and shows the consensus sequence along with

relative frequency of bases at every position of a binding site. For

reference, the Logo of the initial TRANSFAC sequences was

included in the first column. Putative TFBSs newly discovered by

the mono- and dinucleotide optimized matrices with the optimal

cut-offs are placed in the second and third columns respectively.

PWM refinement method is not an exhaustive method for

identifying the overrepresented motifs in promoter sequences.

Each selected TF entry (rows in Figure 1) emphasizes similarity of

consensus patterns between Logos from columns A, B, C, D.

Sequence Logos for the remaining TFs are placed in the pages 1–3

[see File S2] and pages 1–2 [see File S3], and are presented by

only columns A,B,C (there was no JASPAR entries to compare).

The prevalence of the most conserved nucleotides as the tallest

letters in the Logos (Figure S1 and other Figures from Files S2 and

S3) for some TFs does not necessarily follow the arrangement

presented in the initial consensus. The first two or rarely three top

nucleotides sometimes are permuted or changed. For instance,

that happens at positions 5 and 11 in Z, positions 1, 4, 7 in En, and

position 1 in Abd-B (positions numbered in left-to-right order as

shown in Figure 1 with reference to position numbers in column

A). This variability might indicate nucleotide positions with

significant degeneracy. Other examples can be found in sequence

Logos from Files S2 and S3, which also include Logos of

discovered sites for other TFs. From such examples we can see that

often the initial consensus pattern was reproduced at the top Logo

nucleotides although with a lower entropy. The positions where

this happened should be considered more stable than positions

where swapping has occurred. More details on this matter are

provided in the Discussion.

In addition to that, our results (Figure 1) show that some

nucleotide positions in putative sites appeared to be more

conserved by the information content [17] than expected from

initial sequences, for instance: Dl at positions 4, 5, 6; En at

positions 1, 2, 7; Brk at position 2, and Abd-B at positions 2, 4, 6

(all positions related to the initial sequence consensus starting from

left to right).

Inspection of the sequence Logos from predicted TFBS

sequences on the aligned promoters shows that motifs discovered

using dinucleotide matrices are in general more similar to those

used in training and thus are likely biased by the content of initial

sequences. This can be seen when comparing top nucleotides from

most respective Logos in columns C to A vs. B to A in Figure 1

with the exception of Dl, which might demand more special

investigation. We suggest (without estimating the quantitative

effect, which is beyond the scope of the current study) that this

visible property might result from taking into account the co-

occurrence of neighboring nucleotides during dinucleotide matrix

optimization.

Besides the better predictability on synthetic tests, the refined

PWMs with optimized motif length and cut-off show biological

relevancy on real promoter sequences.

PWM Optimization for TFs in Drosophila
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Figure 1. Information content of new sites found by the optimized matrices compared to TRANSFACTM and JASPAR sites. (A) Initial
TRANSFACTM sites. (B) From new discovered sites (mononucleotide matrix). (C) From new discovered sites (dinucleotide matrix). (D) From JASPAR
CORE collection. Shown sequence Logo for Dl, En,Ubx,Brk, Z and Abd-B TFs.
doi:10.1371/journal.pone.0068712.g001

PWM Optimization for TFs in Drosophila
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Biological relevancy of the motifs discovered by
optimized PWMs

In silico identification of TFBSs requires independent confirma-

tion of the results by alternative approaches. To investigate

whether motifs found by our analysis are biologically relevant, we

used the UniPROBE database, which is generated by protein

binding microarrays (PBM) for a range of proteins (406 at the time

of analysis) from different organisms (currently not including

Drosophila) [7,18]. Consequently the UniPROBE database is

relatively accurate collection of data on TF-DNA binding [18].

Each protein entry in UniPROBE provides quantitative

preferences for all possible nucleotide sequence variants (‘‘words’’)

of length k (called ‘‘k-mers’’). The small number of proteins

collected in UniPROBE prevents us from performing a compre-

hensive annotation of all putative TFBSs identified using refined

PWMs. Thus, we used UniPROBE to illustrate capabilities of the

optimized PWMs to predict new biologically meaningful TFBSs.

As such we were able to map some of our putative binding sites to

known orthologous TFs that had similar DNA binding preferences

based on the data in UniPROBE.

For this analysis we selected non-redundant putative TFBSs of

three arbitrary TFs: Ubx, En and TCF which were cleared from

redundant sites (further we refer to the selected sites as PWM-sites

for brevity). Ubx and En are homeodomain proteins and

homeodomains have conserved amino acid sequences across most

of eukaryotic organisms. This high degree of conservation makes

them an ideal system for studies attempting to elucidate specific

protein-DNA interactions. The third TF was TCF (Pangolin) with

High Mobility Group box (HMG-box) sequence specific binding

domain. Given the evolutionary conservation of both binding sites

and protein sequences, we reasoned that these three sets of PWM-

sites would be similar to known motifs for other binding proteins

with similar DNA binding domain structures, and that finding

such a similarity would provide additional support that matched

new PWM-sites are likely to represent genuine TFBSs.

We used the UniPROBE search tool (available at http://

the_brain.bwh.harvard.edu/uniprobe/) with default settings and

queried putative PWM-sites for Ubx, En and TCF on the

promoter data set to filter out TFs that bind similar DNA

(oligonucleotide) motifs in other organisms. The upper boundary

for E-values was set to 0.001, which corresponded to E-values

returned from queried original sites from TRANSFAC. The E-

value is utilized as a ranking tool to select a protein with a known

binding site most similar to the submitted TFBS. In total, we

queried UniPROBE with 296, 39 and 16 putative non-redundant

TFBSs for Ubx, En and TCF, respectively. The numbers

correspond to the total number of detected non-redundant

PWM-sites for these TFs.

In the remaining part of this section we analyze the similarity

between top UniPROBE matches to those three TFs. We used a

conventional sequence alignment tool and graphical representa-

tion of aligned amino acid sequences to indicate the location of

protein binding domains, using existing data sources. Our findings

are supported by publications and databases regarding the binding

property of these proteins and their closest homologues.

Querying UniPROBE with PWM-sites for Ubx yielded 24

proteins, the PWM-sites for En yielded two, and the PWM-sites for

TCF yielded only one. Table 2 lists the top matches from this

analysis according to their E-values. Notably, each of the matched

TFs CEH-22 and Sox-4 appeared in UniPROBE query report

several times with E-values lower than those for original TFBS.

From this result we can assume that En and TCF have closer

binding specificities with CEH-22 and Sox-4 TFs than with others

in UniPROBE.

We hypothesized that those proteins identified by the UniP-

ROBE analysis were related in terms of the amino acid sequences

of their DNA-binding domains. To test this possibility we aligned

the amino acid sequences of retrieved proteins using ClustalW2

(available at http://www.ebi.ac.uk/Tools/msa/clustalw2). The

aligned amino acid sequences were retrieved from the UniProt

database (although the name is similar, this is not the UniPROBE

database), available at www.uniprot.org. When UniProt protein

had several isoforms, the protein sequence labeled as ‘‘canonical’’

was retrieved. The results were visually assessed with JalView

available online with ClustalW2. A standalone JalView application

is available at http://www.jalview.org/.

The three panels in Figure 2 present the three alignments

among the amino acid sequences of the best matches and target

proteins from Table 2. For comparison, we added the known

homologs Ceh-16 and Hoxa-7 also found in UniProt. The bars at

the bottom of the aligned sequences are placed according to the

amino acid coordinates of the binding domains published in

UniProt. The numbers at the top of each panel show the amino

acid coordinates of the first protein from the proteins submitted to

ClustalW2. Three conservation histograms (feature of JalView) in

Figure 2 show a high similarity among the aligned protein

sequences including the targets En, TCF and Ubx. In particular,

from the conservation histogram in panel A, more than 50% of

positions showed at least 70% sequence identity for En, Ceh-16

and Ceh-22; similar results are shown in panels B and C. These

alignments suggest that Hoxa-6, CEH-22 and Sox-4 have similar

binding domains and therefore are likely to have similar DNA-

binding preferences, providing support for the UniPROBE

analysis.

The smaller length (7 nt) and the bigger number of queried

PWM-sites for Ubx (than for En and TCF) are consistent with the

bigger number of UniPROBE matches. Although we did not

quantify dependencies between the number of UniPROBE

matches and their quality, we visualized the result of the alignment

as a rooted UPGMA (Unweighted Pair Group Method with

Arithmetic Mean) tree constructed based on the percentage of

identity, as computed by JalView (Figure 3). For this analysis, we

used proteins of a length similar to Ubx and excluded proteins

marked ‘‘non-characterized’’ or ‘‘predicted’’; Ubx sequence was

included as a reference. The tree confirmed the E-value result for

Ubx from the UniPROBE report in Table 2, in which Hoxa-6 is

closely related to Ubx based on the amino acid sequence

alignment.

The analysis above indicates that TFs identified by UniPROBE

as having similar DNA binding preferences to TFs of interest also

had similar amino acid sequences. Based on this similarity, we

reasoned that these TFs may also share similar biological

functions. To investigate the biological roles of TFs identified by

UniPROBE, the TFs used in sequence alignment and their

homologs, we conducted literature reviews.

Beyond the sequence alignment which indicated closely

overlapping protein binding domains in Figure 2, we could not

find experimentally verified homologs between TCF and Sox-4,

although work by Van de Wetering et al. mentioned that TCF-1

and Sox-4 are highly homologous factors and members of the

same protein family [19].

Another TF, Ceh-16 was reported to be an ortholog of

Engrailed (information is available at http://www.genecards.

org/cgi-bin/carddisp.pl?gene = EN1&search = ceh-16); Hoxa-7

(Mm) was reported as homolog of Ubx (information is available

at http://www.genecards.org/cgi-bin/carddisp.

pl?gene = HOXA7). Three proteins, Ceh-16, Ceh-22 and En,

have homeobox DNA binding domains as annotated in UniProt.

PWM Optimization for TFs in Drosophila
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Hoxa-6 (from UniPROBE) and Hoxa-7 (was not in UniPROBE)

are members of the Antp homeobox family and also have a co-

localized DNA-binding domain, which was confirmed from our

analysis as shown in Figure 2.

During this study we checked if MatchTM would be able to

identify the same TFs as UniPROBE reported on our queries for

the PWM-sites. To address this question, the same kind of analysis

was conducted for Ubx, En and TCF using putative binding sites

predicted by MatchTM. We again queried UniPROBE with

MatchTM predicted sites using the UniPROBE search tool to find

corresponding TFs. Although in both cases close homologs were

found (Figure 2), all PWM-sites for optimized PWM resulted in a

much higher number of hits and smaller E-values to similar motifs

(from UniPROBE collection of TFs) than sequences discovered by

MatchTM. E-values of MatchTM as indicated in the summary

Table 3, are actually very poor.

We then further assessed the biological relevance of the new

predicted TFBSs. To do so, we performed a mutual comparative

Table 2. Three examples of UniPROBE queries with putative PWM-sites, which were discovered using optimized PWMs.

Ubx En TCF Q6

Similar motif Organism Best E-val. Similar motif Organism Best E-val. Similar motif Organism Best E-val.

Hoxa-6 Mm 0.003571 CEH-22 Ce 0.000305 Sox-4 Hs 0.008115

Only the best matches shown for three tested TF Ubx, En and TCF. Abbreviations: ‘‘Ce’’ means C. elegans; ‘‘Sc’’ means Saccharomyces cerevisiae; ‘‘Mm’’ means Mus
musculus; ‘‘Hs’’ means Homo sapiens.
doi:10.1371/journal.pone.0068712.t002

Figure 2. Results of the UniPROBE search using putative TFBSs for three TFs as a query. The search allows checking homology to known
binding sites from different species. The results of sequence alignment are shown for three TFs: En (Panel A), TCF (Panel B) and Ubx (Panel C) with
most similar binding proteins reported from UniPROBE. For Ubx we found ortholog Hoxa-6, which shows perfect similarity with Hox-7 reported by
UniPROBE.
doi:10.1371/journal.pone.0068712.g002

PWM Optimization for TFs in Drosophila
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analysis of DNA motifs and amino acid sequences using a

collection of DNA binding motifs from high resolution protein

binding microarrays. This kind of analysis is limited (therefore

potentially biased) by available information found either in

databases or in publications. Nevertheless, for three TFs we were

able to find evidence from different sources of information that at

least some of the new putative PWM-sites carried binding

properties discovered in homologous or even orthologous TFs.

These findings were obtained from querying the UniPROBE

database by new putative TFBSs and confirmed by aforemen-

tioned publications. For this reason we can consider that the

refined PWMs are reasonable as tool for computational prediction

of new TFBSs. In remaining section, we assess the quality of

refined PWMs as predictors using mostly quantitative comparative

analysis with MatchTM.

Novel sequence content discovered by optimized matrices is

consistent with what was biologically proven for binding affinity.

To illustrate this statement we considered the information

available for transcription factor Zeste (Z). Mutagenesis studies

determined that (T = C = g)GAGTG(A = G = c) is the consensus

Zeste recognition sequence [20]. Similarly, our results partly

confirm this consensus based on both types of the matrices, as we

found nine sequences (out of 92 using the optimized mononucle-

otide matrix) on the set of proximal promoters with clear

Figure 3. The tree shows variability of putative sites discovered using optimized dinucleotide matrix of UBX TF. Entry for UBX was not
present in UniPROBE at the time of analysis, however, proteins Hoxa-7 and YPR015c mapped to queried putative TFBSs for UBX with top E-values
show closest distance to UBX. Hoxa-7, which has UniProt entry Hoxa-6, Mus musculus, is reported as the ortholog of UBX in Drosophila. Proximate
proteins showed unbiased distances to UBX. Notably, UBX was placed in the middle of the tree by the unsupervised method suggesting that our
approach is unbiased.
doi:10.1371/journal.pone.0068712.g003

Table 3. Summary of analysis MatchTM vs. optimized PWM vs. UniPROBE search for similar motifs.

Sequences found
for TF MatchTM num. of hits MatchTM best E-val. OPT PWM num. of hits OPT PWM best E-val. Matched with

En 1 0.0429540 12 0.000305 CEH-22

Ubx 1 0.361303 7 0.003571 Hoxa-6

TCF Q6 2 0.107297 5 0.008115 Sox-4

doi:10.1371/journal.pone.0068712.t003
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(T = C)GAGCG consensus, which differs only by one nucleotide C

from motifs in published study [20]. Consistently, the optimal

dinucleotide matrix gives additional seven sites (out of 31

discovered) supporting the motif with C. Our observations are

supported by two publications [21,22] which found similar sites

with GAGCG motif among the experimentally characterized

binding sites. Hence, the optimized PWMs are able to bring new

insight on binding specificity of TFs that might be consistent with

those examined in literature. The novel binding sites we found

complement four TRANSFAC sequences (among 24 original) that

we used for training. The list of sites mentioned in this paragraph

can be found in Table S2 [in File S1].

Providing two types of optimized PWM in this study we are not

engaging them in a contest. In turn, the final example shows that

using both types cooperatively is able to shed an extra light on a

research.

Using a mononucleotide optimized matrix, we detected En

putative binding sites upstream of the TSS in a number of

promoters. Computational discovery of these sites using PWM is a

challenging task because at least three nucleotides in the consensus

En binding motif coincide with those in the following overlapping

sequence TCAGT, also known to be one of the overrepresented

sequences in Drosophila genome, mostly at Initiator (Inr) sites [23].

Nevertheless, both optimized matrices recognized noisy matching

signal from En TFBS upstream of the Inr site, in agreement with

prior work [24]. Comparing dinucleotide with mononucleotide

PWM versions, one may see that ‘‘G’’ is eliminated in putative

binding sites obtained by the dinucleotide matrix. Figure 1 shows

the routine dependency analysis between mono- and dinucleotide

occurrence frequencies for En compared with Zeste TF. This

figure shows that adjacent nucleotide positions are mostly

dependent and hence the dinucleotide matrix predicts such motifs

better, in agreement with experimentally obtained sequences.

Optimized PWMs show an increased accuracy in
simulations

The sequence Logos obtained in Figure 1 revealed that we

could find new putative PWM-sites that might be relevant to TF-

DNA binding. However, this analysis did not provide us with a

comprehensive examination of predictive performance of the new

refined matrices. To fill this gap we constructed tests on synthetic

sequences, a popular de facto instrument for testing of new

computational methods [16].

In the Introduction we discussed the MatchTM software,

supplied with TRANSFAC commercial database and used with

its original PWMs. Predictions from the application of mono- and

dinucleotide optimized matrices (further indicated with the prefix

‘‘OPT’’) were compared separately with generic mononucleotide

matrices used in MatchTM. The goal of such a testing was to

compare the number of sites predicted by each method at

expected locations. A summary of all test results is shown in

Tables 4 and 5. We split results into two tables because the

MatchTM distinguishes the high and low quality matrices

presented in Table 4 and Table 5, respectively.

As was mentioned, all synthetic test data were constructed from

the JASPAR collection of sequences. The JASPAR collection of

TFs is smaller than that of TRANSFAC. MatchTM and OPT

PWMs were applied in parallel for each of these synthetic samples

and the results are summarized in Tables 4 and 5.

Since MatchTM proposed three distinct types of the cut-off

profiles optimized for different criteria we performed tests for each.

The rationale for these three cut-off values was three-fold: 1) to

minimize the number of biologically relevant binding sites missed

by MatchTM (min FN), 2) to minimize the number of random

matches found (min FP), and 3) to minimize these combined error

rates (min (FN+TP)). To address these three search criteria we

used precompiled profiles supplied with MatchTM and extended

synthetic test sequences to the equal length of 300 nt. At this stage

TLL TF was excluded because of an absence of TLL profiles in

MatchTM collection. We also excluded Hb TF because in

presented JASPAR collection all sequences were redundant with

TRANSFAC Hb sequences that we already used for matrix

training process.

The impact of the sequence background was reduced by taking

ten replicates, each of which obtained by the random reshuffling

(30 times) of the nucleotide background surrounded the inserted

flanks. Unaligned parts were preserved in replicates, although we

were able to permute them at each position (‘‘green’’ nucleotides

in Figure 4). To include possible shifted matches, we enlarged the

search area in favor of MatchTM during hit counts. This means

that if MatchTM detected a hit within a half of the motif length

61 nt from closest motif edge we considered this hit as correct.

The focus of our experiments with synthetic tests was to examine

which matrices predict TFBS locations better – the OPT PWMs

or generic TRANSFAC matrices which MatchTM uses. Unlike

OPT PWMs, MatchTM locates the hit position at the first position

of five consecutive the most conserved positions within the matrix.

This key difference might cause a shift which was accounted

during the hit count.

It was a challenging goal itself to compare the results of low

quality PWM because we could not be certain about an origin of

their low quality classified by MatchTM. For the same reason we

cannot suggest that those matrices became good or not now,

however, our analysis showed that the total averaged predictive

performance of OPT PWMs significantly improved. Another extra

challenge was to find the statistics to measure the predictive

performance when we expected overwhelming or missing data for

low quality matrices.

To integrate differences in predictions of two methods on

synthetic tests we computed indexes described in Method part,

which also includes Mathews correlation coefficient which

consolidated TP, FP, true negatives (TN) and false negatives

(FN) from each test in one index of predictive quality of OPT and

MatchTM methods. Table 4 and Table 5 also include character-

istics complementary to precision and known as recall (sensitivity).

As seen from Table 4 for high quality PWMs, the optimization

results in at least equal or better characteristics of predictability

than MatchTM method based on generic TRANSFAC high

quality matrices. We compared the hits found by the optimized

matrices with optimized cut-offs on the synthetic tests with the hits

obtained by MatchTM with its accustomed profiles. Noticeably,

both mono- and dinucleotide optimized matrices give better results

comparing to Match.

Table 5 contains the result for low quality PWMs. We were

unable to break through the low performance of AP Q6 matrix

and produce any improvements. KNI matrix tests showed a better

performance for MatchTM method. It was not surprising at all

because as we found the length of optimized matrix for this TF was

much longer than length of sequences presented in JASPAR and

this result means that we should exclude this TF from analysis.

Unlike the results for high quality matrices, the mononucleotide

matrix in Table 5 was not undoubtedly better than MatchTM, but

dinucleotide matrices still remain better almost through all tests.

Noticeable to mention about an ambiguity in counting hits from

MatchTM results. Unlike the high quality matrices, for low quality

matrices it was not easy to identify the systematic shift (originated

from the MatchTM detection method) directly from the hits report.

Although this shift associated with a certain position within PWM

PWM Optimization for TFs in Drosophila
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and should be invariant of selected PWM (by MatchTM) we are

not able to estimate the shift without direct computations.

To resolve this situation we accounted all positive hits within

matrix length in favour of MatchTM. As a result, Table 5 collected

a bigger number of TPs than it actually should do. Even so, from

Table 5 we see that in all cases Matthews correlation coefficient

gives bigger values for all optimized dinucleotide matrices and for

almost all optimized mononucleotide (with exception of En) when

they compared to results of MatchTM with its cut-off profiles

accustomed for minimum of TPs and FPs. The same comes from

the precision characteristics. JASPAR testing collection for En has

seven overlapping sequences with sequences from TRANSFAC

and this is why the Match discovered them easily.

Nevertheless, the generalized pattern of predictability is better

for OPT matrices. We performed unpaired right-tailed t-test for

available Matthews correlation values from Tables 4 and 5, and

found that they are significantly bigger for OPT PWM predictions

(with 90% and 95% confidence values for mono- and dinucleotide

respectively).

The conclusion from this analysis is that optimized PWMs work

better on new promoter sequences. In addition, based on the

structure of our synthetic tests used we can assume that OPT

PWMs are a better choice for in silico TFBS prediction than

MatchTM, in mapping of TF binding positions.

Discussion

Results of our computational experiments show that optimized

matrices can successfully detect binding sites on a test data set

constructed independently of the training data sets. This

demonstrates that our machine learning approach resulted in

PWMs with better predictive performance than generic TRANS-

FAC matrices.

Another insight from our results is the demonstration that our

adjusted heuristic framework makes the optimization approach

implementable in a large scale for TRANSFAC TFBSs collection

for Drosophila and it results in a better global performance

compared to the conventional approach [25,26].

The further development of the refinement technique was a

logical continuation of the previous work of Gershenzon et al.

which implemented the core idea for the PWM of the GC-box

binding site for Sp1 TF [4]. Its application to a larger scale was,

however, limited by the manual inspection of promoter area for

the presence of signal and demanded converged optimization

process. As a result, this heuristic procedure was applicable only

for a limited number of suitable PWMs. In our improved

algorithm, which included the biological signal detection part

and controlled steps over all optimization process, we provided a

set of heuristic rules combined into one stable and recyclable

model. Optimized matrices were used to predict up to a thousand

new putative binding site candidates in the SIB-EPD set of

promoter DNA sequences for Drosophila (as shown in Table 1,

columns 6 and 7). The resulted method described here involves the

Table 4. A summary of experiments with synthetic data tests for high quality TRANSFACTM matrices.

Name Measures MatchTM MatchTM MatchTM OPTmatr & opt. cut-off Test size

min FP min FN both crit. mono di

KR TP 2 21 12 15 11 31

FP 0 19 2 3 0

Precision 1 0.525 0.857 0.833 1

Recall 0.065 0.677 0.387 0.484 0.355

CC 0.575 0.624 0.595

SuH TP 0 10 6 10 10 10

FP 0 1 1 1 1

Precision n/a 0.91 0.857 0.91 0.91

Recall 0 1 0.6 1 1

CC 0.716 0.953 0.953

Z TP 6 21 20 14 14 41

FP 1 144 82 17 2

Precision 0.857 0.127 0.196 0.452 0.875

Recall 0.146 0.512 0.488 0.341 0.341

CC 0.305 0.391 0.529

E74A TP 3 16 9 11 0 17

FP 1 38 6 1 0

Precision 0.75 0.296 0.6 0.917 n/a

Recall 0.17 0.941 0.529 0.647 n/a

CC 0.562 0.77 n/a

The results for MatchTM and optimized matrices (OPT) are organized in blocks. MatchTM consists of three tested types of settings: ‘‘min FP’’ - minimum number of false
positives; ‘‘min FN’’ - minimum number of false negatives; ‘‘both crit.’’ - min of sum of both criteria; ‘‘m’’ and ‘‘di’’ - refer to the number of hits after the application of
mono- and dinucleotide matrices, respectively. TP rows show the number of retrieved TP hits (out of number showed in test size). Cut-off values for optimized matrices
were selected as they appeared after optimization.
doi:10.1371/journal.pone.0068712.t004
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training of PWM on novel biological sequences which extend a set

of available TFBSs by using statistical similarity. Unlike in

sequence alignment, which is central to comparative studies, the

similarity we are exploiting in the algorithm comes from the

possible statistical variability of positionally dependent nucleotides

in predicted proximal areas of promoters (in detected functional

window).

It is worth mentioning that the number of sequences predicted

by optimized dinucleotide matrices is roughly half the number of

sequences predicted by optimized mononucleotide matrices (two

last columns in Table 1). In terms of nucleotide counts, it means

that the optimized mononucleotide matrices gain as many as twice

more nucleotides per TF compared to nucleotides in sequences

discovered by the dinucleotide matrices. In contrast, the count of

Table 5. A summary of experiments with synthetic data tests for low quality TRANSFACTM matrices.

Name Measures MatchTM MatchTM MatchTM OPTmatr & opt. cut-off Test size

min FP min FN both crit. mono di

En TP 0 5 5 2 3 12

FP 1 21 9 60 1

Precision 0 0.1923 0.3571 0.0323 0.75

Recall 0 0.4167 0.4167 0.1667 0.25

CC 0 0.2796 0.3835 0.0663 0.432

Abd-A TP 0 7 2 4 8 23

FP 0 59 12 36 45

Precision n/a 0.106 0.143 0.1 0.151

Recall 0 0.304 0.087 0.174 0.348

CC n/a 0.175 0.109 0.128 0.225

PRD TP 0 13 0 2 1 37

FP 3 183 12 27 5

Precision 0 0.0663 0 0.069 0.167

Recall 0 0.3513 0 0.0540 0.027

CC 0 0.0754 0 0.0582 0.0659

Ubx TP 0 3 1 15 15 20

FP 2 77 27 294 25

Precision 0 0.038 0.036 0.049 0.375

Recall 0 0.15 0.05 0.75 0.75

CC 0 0.0688 0.0384 0.1826 0.5282

Sna TP 0 12 2 0 3 40

FP 2 214 15 0 7

Precision 0 0.053 0.118 n/a 0.3

Recall 0 0.3 0.05 n/a 0.075

CC 0 0.0119 0.0746 n/a 0.1486

KNI TP 1 18 14 4 0 26

FP 0 80 16 4 0

Precision 1 0.184 0.467 0.5 n/a

Recall 0.038 0.692 0.538 0.154 n/a

CC 0.1958 0.3528 0.4994 0.276 n/a

DEAF1 TP 0 4 1 2 2 10

FP 0 11 4 7 7

Precision n/a 0.267 0.2 0.222 0.222

Recall n/a 0.4 0.1 0.222 0.222

CC n/a 0.3238 0.1394 0.2083 0.2083

AP Q6 TP 0 0 2 0 0 20

FP 1 133 26 41 34

Precision 0 0 0.071 0 0

Recall 0 0 0.1 0 0

CC 0 0 0.0714 0 0

The rows and columns specified as in Table 2.
doi:10.1371/journal.pone.0068712.t005
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nucleotides in the initial training sequences (‘‘S.Used:L’’ column in

Table 1) was ten times less than that after the application of

optimized mononucleotide matrices with an optimal cut-off. Since

we used the same functional windows in both matrices, this

phenomenon illustrates that mono- and dinucleotide matrices

complement each other in a way that the mononucleotide matrix

aims to extend the diversity of nucleotide content, whereas the

dinucleotide matrix works to preserve biological relationship

between neighboring positions and thus both goals are achieved

by using both matrices. As a result, dinucleotide matrices predict

sequences that look more similar to the original ones (compare

Logo’s pictures (B to A) vs. (C to A) in Figure 1). The entropy

measure expressed in sequence Logos supports the interpretation

of that similarity.

The method used to construct optimized matrices confirmed its

superior combination of sensitivity and specificity compared to the

conventional approaches. Better specificity compared to the

conventional approaches was reported as a feature of optimized

matrices in earlier publications [4,13] for single TFs. Here we

extend this observation to batch processing of TFs. Low specificity

is a common limitation of conventional TFBS prediction

algorithms, and therefore the improvement in the specificity

(while maintaining a level of sensitivity) of our method is a

significant accomplishment.

From the inspection of discovered sequences, we note that

putative binding sites contain variable nucleotide contents at

certain positions as a result of more or less significant degeneracy

in binding motifs at that position, which can bring additional

insight into the binding affinity of certain TFs. For transcription

factor Z (Zeste), for example, nucleotides next to and immediately

after the GAG pattern are interchangeable (T or C), although the

occurrence of pyrimidines at those positions was confirmed [20].

Figure 1 shows for Ubx that the position after the first T in

TAAT is more degenerate than the remaining nucleotides. For the

Ubx TFs, we predicted sequences with ATTA and TAAT motifs

which were reported as a preferential combination for Ubx

homeodomain protein [27,28,29,30] when it binds in vitro in a

sequence-specific way. This type of motifs is observed in both

dinucleotide and mononucleotide (although shortened) sets of

PWM-sites, which advocates in favor of their biological relevancy.

In this example we capture TAAT and ATTA patterns in the

discovered sites. However, for some reasons they were missed in

the TRANSFAC although we detected such sequences with

refined mononucleotide PWM.

Intuitively, one can expect that a hypothetical method capable

of finding more similarities to the initial binding sequences would

perform more favorably compared to a method that does not find

such similarities. This statement, for example, might be affected by

stochastic irregularity of promoter content, by completeness of

TFBSs collection used for training and their biological degeneracy

(positional variability), and thus, in fact, the declaration is not true

in all cases.

Z-score is used as a tool to detect a promoter area with

significant peak matching scores. Conceptually, the z-score used

for hit counts is similar to the averaged positional distribution of

elements along the aligned promoter sequences published [4],

where the expected occurrence frequency is taken for a

randomized (shuffled) promoter content. Our experiments with

z-scores pointed to the same promoter areas, though indicating

smoother distribution with fewer and more expressed peaks that

facilitate large scale implementation. The number of available TFs

would have increased to 64 TRANSFAC entries at the time of the

study if we also had included the data where only mononucleotide

PFM frequency tables were present. Thus, in our study the

Figure 4. A fragment of the synthetic data test example constructed from JASPAR sequences. Alignment of JASPAR sites is highlighted in
red and start of the alignment is centered at a fixed known position throughout the current promoter set at position 27 in this example. Equally
distributed random nucleotides ‘‘n’’ extend each promoter sequence to achieve equal length.
doi:10.1371/journal.pone.0068712.g004
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presence of TFBSs in the database was a limiting factor in

selection of TFs.

We complemented mononucleotide matrices with dinucleotide

versions of PWMs for the following two reasons:

a) a dinucleotide matrix indicates dependencies between

adjacent nucleotides and infers binding scores from com-

monly used thermodynamic model that minimizes binding

energy of protein DNA-binding motif;

b) a dinucleotide and mononucleotide matrices can be similarly

computed. The pairwise computation allows the assessment

of the computational schema capability to discover similar

putative sites implying mutually complementary concepts:

assuming or discarding the Markovian property between

neighboring nucleotides. An answer was not obvious from the

onset of our analysis; in particular, those similar solutions

could be found for all matrices of interest using both concepts

especially when considering irregular nucleotide background

distributions near TSS. We found more or less similar

patterns for all 33 TFs considered where biologically verified

sequences were available.

Binding sequences used for training are limited in quantity

(Table 1, column 4) for most TFs used. Therefore, one may not

expect good sampling while performing matrix training because

good sampling presumes confident knowledge of the whole range

of binding specificities. Surprisingly enough, in all cases we were

able to reasonably extend the number of sites which show matches

with used proximal promoter source. As an example, for

dinucleotide matrices, we found new putative sites that are in

good agreement with experimentally confirmed patterns. This is

illustrated by the observation of two most abundant nucleotides at

each position. Moreover, the dinucleotide patterns are more often

similar to those derived from the initial sequences. This provides

evidence that additional information brought from dinucleotide

pairs is able to compensate for the scarce information if only a few

binding entries are present in the data. Consistent with this is the

observation that the top of the Logo pattern of the dinucleotide

version is more conserved compared to the initial Logo pattern.

On the other hand, mononucleotide versions often show more

variability at certain positions. Examples of a lesser variability: for

TF Abd-B strong nucleotide T at position 3; for TF Ubx - G at

position 4 (Figure 1); for TF KRQ6 - C at position 5 (see KR Logo

Figures from File S2). (The numbers correspond to the nucleotide

order in the initial TRANSFAC sequences).

We used data from TRANSFAC commercial database for

training purpose and JASPAR binding sequence entries for testing.

Although the JASPAR public data collection is not as large as the

commercial TRANSFAC collection, the former database delivers

smaller numbers of manually curated sites suitable for testing. In

many cases (for example En, Ubx, BRK) we found discrepancies

between the JASPAR and the TRANSFAC sets, as seen in the

sequence Logos, which was the source of an extra challenge for the

optimized matrices to predict sequences listed in JASPAR in such

cases, as our optimized matrices are based on the TRANSFAC

training data. Tompa et al. argued that type of promoter content

greatly impact TFBS predictions [16]. Using their classification of

promoter models as ‘‘real’’, ‘‘generic’’ and ‘‘Markov’’, we can

present our result as follows. Optimized matrices, trained on one

set of binding sequences with ‘‘real’’ promoter content, were able

to identify biologically relevant sequences on an alternative

‘‘generic’’ promoter content. Whereas composition of fair and

effective tests is an extra challenge for computational biologists, the

capability of optimized matrices was significant for all refined

matrices from TRANFAC for which we were able to perform

independent testing.

Quantifying the actual impact on investigating transcription

regulation, such as demonstrating improvement gained from the

new models on both genome wide information, as well as

enhancers in specific regulatory networks, would be a possible

future direction of the PWM refinement proposed in this study.

Materials and Methods

Materials
The quality of the computational predictions of new TFBSs

builds upon the quality and quantity of available binding

specificity information. As in the previous work [4], we used the

Eukaryotic Promoter Database (EPD) (release 105) as source of

promoter sequences (available at http://epd.vital-it.ch). Along

with EPD, to compute a collection of the PWMs for Drosophila

TRANSFAC database (release 2009.4) was used (available at

http://www.gene-regulation.com).

To enable a compilation of both mono- and dinucleotide PWM

types, we utilized 33 TRANSFAC TF entries for Drosophila for

which binding sequences were presented. In addition to EPD and

TRANSFAC used for training of refined PWMs, JASPAR

database was used for PWM testing (available at http://jaspar.

cgb.ki.se/). We occasionally used also other data sources for the

PWM testing and for characterization of few discovered TFBSs.

JASPAR database contains a manually curated, mostly non-

redundant with TRANSFAC sets of profiles, derived from

published collections of experimentally defined TFBSs for

eukaryotes [12]. The JASPAR collection provided us with an

extra challenge when used for PWM testing of predictability

because most of the sequences in JASPAR are longer than just

binding motifs.

Due to differences between sequence contents of TRANSFAC

and JASPAR, the former was mapped against JASPAR’s core

collection. For each of the 33 TF entries (by matrix accession

codes) from TRANSFAC we tested the corresponding TF from

JASPAR core collection. Rare cases of ambiguity in names were

resolved using NCBI official gene names and their aliases. We

found 14 TFs in common and used them to construct our testing

sets, as described in the next subsection.

MatchTM tool of the TRANSFAC was used for benchmarking

the optimized PWMs. An additional benefit of using MatchTM was

a comprehensive access to whole capacity library of mononucle-

otide matrices provided with commercial subscription of TRANS-

FAC.

The EPD database was employed as a source of biologically

confirmed information for searching for new viable binding motif

sequences. The EPD promoter sequences for Drosophila, each

600 bp long (2499 to +100 bp) aligned and centered on the

position of a TSS, were used in two ways: (a) as a target set to mine

new putative TFBSs (these sequences were scanned during PWM

refinement), (b) EPD sequences were reshuffled to simulate

randomized background sequences used in PWM calculation

[4]. Promoter sequences containing unknown nucleotides (denoted

as ‘‘n’’ or ‘‘N’’) were excluded from these computational

experiments and remaining 1919 sequences were used. The length

of proximal to TSSs areas was selected to be able to include

potential locations of all target TFs (binding primarily in a

proximal promoter area) selected for this study. Enhancers situated

in much broader regions of a distal promoter area were not a

subject of the present study.

A structure of synthetic tests from JASPAR data. A

synthetic test set was constructed for each TF (14 in total) used in a
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JASPAR testing set. Each JASPAR sequence candidate for this

testing was assessed for its non-redundancy against the corre-

sponding TRANSFAC sequences. We preserved original sequenc-

es presented in JASPAR with a variable length for each tested TF.

The original JASPAR local alignment of the TFBS sequences

(marked red in Figure 4) was also preserved. Then, we located all

aligned parts at certain position (for example, position 27 in

Figure 4) and embedded the aligned and non-trimmed sequences

into a random sequence environment. The resulted synthetic test

structure is shown in Figure 4 where ‘‘n’’ indicates random

nucleotide content.

The known location of TFBSs facilitates the count of true and

false TFBS matches during PWM tests.

Methods
We exploit an idea [2] that motifs necessary for transcriptional

cis-regulation should be overrepresented in a particular area of

promoter region for a variety of TFs. We call a particular binding

site over-represented in some promoter area if it occurs there more

frequently than in a respective randomized sequence under

conditions of certain statistical model. Abundance or rarity

assessment of TFBS m comprising L nucleotides can be estimated

by comparing it’s observed to that expected occurrence frequency

in a certain promoter area. While it is generally accepted that the

overrepresentation of specific oligonucleotides is a statistical aspect

of DNA sequences with biological relevancy, ways of quantifying

overrepresentation are quite diverse and vary from exhaustive

direct search to numerical filtering. Unlike exhaustive sequence-

based enumeration [31], PWM approach to counting frequencies

involves calculating z-score for a number of sequence S

occurrences (hits) in that promoter area by applying initial

PWM W with certain matching cut-off c, (all together summarized

as a suite model ,W,c.) in a window of length L gradually sliding

downstream the aligned promoter sequences:

z(S)~
OS{ES

s(OS)
, ð1Þ

where s and E are symbols of standard deviation and expectation

of the positional hit count, respectively. Z-score is a measure of

standardized difference: observed OS minus expected ES over the

standard deviation s(OS). The expected frequency is estimated as

the mean of all hits over all positions in the promoter set divided

by the numbers of these positions and promoters.

Z-score is utilized in a variety of ways in the genome research. It

was recently used to select gene–targets for a particular TF using

PWM and gene expression data [32]. Similarly, we use it here as

to narrow potential location of putative binding motifs to promoter

segment with overrepresented hits which can indicate presence of

majority of functional binding sites and is interpreted as a

‘‘functional window’’ [4]. For this purpose we selected areas with

maximum z-score values 3 and more computed for the initial

mononucleotide PWM.

Thus Equation 1 for z-score was used for search of overrep-

resented binding motifs. Overrepresentation is defined by exces-

sive number of hits in promoters versus those in randomized

sequences when PWM with certain selected cutoff is applied. The

z-score is calculated at each sliding window position using

mononucleotide matrix [4] from source TFBS sequences (which

can be computed from an occurrence frequency table). It shows an

averaged positional distribution of oligonucleotides along the

promoter sequences aligned according to TSS position. That

positional distribution used to estimate a functional window on

scanned promoter sequences.

Weight wbi of nucleotide b at the i-th position in a sequence

motif is a component of mononucleotide 46L - dimensional

matrix of length L calculated as corrected log-odds ratio [4]:

wbi~ln(
nbi

ebi

zsi)zci,b[½1,4�,i[½1,L�, ð2Þ

where

nbi~
1

nm

Xnm

k~1

dk
bi; ebi~

1

np

1

L

X

j[Si
L

Xnp

k~1

dk
bj,

si in parentheses is equal to zero, if nbiw0:01�nni; it is equal to

0:01�nni=ebi otherwise.

�nni~0:25
P4

1 nbi is the expected fraction of bases at position i.

Here b is an index of a nucleotide from ordered set (A,T,G,C), nbi is

the average number of times base b occurs at the i-th position of

motif, ebi is the expected frequency of b base at position i. Limits in

sums nm and np are numbers of binding sites in training set and

number of promoters respectively. For k-th promoter, sequence

symbol dk
bi organizes a counter by index k. dbi equals to one, if

nucleotide b occurs at the position i and equals to zero otherwise.

Value Si
L describes sliding area of sequence of length L which

begins at the current position i and ends at the position i+L21. To

calculate ebi we took the promoter area from 2500 to +100 nt, so

np taken instead of nm; Si
L~SLp

and eb does not depend on a sliding

position i. This helps us with a simpler notation as well, as we

applied in dinucleotide version (Equation 4). We adopted this

PWM model after [4] because it accounts for non-uniform

nucleotide background distribution that improves TFBS predic-

tion. This is important when only small number of binding sites is

available to compute PWM. Position-dependent constants si and ci

are chosen to support positive area of logarithm and to scale the

maximum individual nucleotide score value in each i-column at

zero, respectively. Values si are responsible for position weights of

very rare nucleotides. In our PWM refinement algorithm, instead

of applying similarity between an oligonucleotide and PWM [33,

Formula 2] or rescaling PWM weights [4, Equation 2], we

implemented matching scores S(seq) directly to weights as shown

in Equations 3 and 5. This means that the matching score S(seq)

for specified sequence motif

seq~f(b1,b2,:::,bL)Dbi[(A,T ,G,C),i[½1,L�g is computed as:

S(seq)~
XL

i~1

wbii
,b[seq~fb1,b2,:::,bLg ð3Þ

Thus, Equation 3 is similar to the one used in [4] but does not

use normalization.

The version for dinucleotide PWM is shown below (Equation 5)

and implemented the same principle. Both Equations are used as

scanning tools to compute and process matching scores in

consecutive sliding windows on promoters. Details of the

algorithm are described in the following section.

Weight of d-th dinucleotide at i-th position wdi in a sequence

motif according to [4] is a component of 16|(L{1)-dimensional

matrix, which can be formalized in the following way:

wdi~ln(
ndi

ld
zsi)zci,d[½1,16�,i[½1,L{1�, ð4Þ
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where

ndi~
1

nm

Xnm

k~1

dk
di,ld~

1

np

1

Lp

XLp

j~1

Xnp

k~1

dk
dj ,

si is equal to zero if ndiw0:01 �mmi; it is equal to 0:01 �mmi=li otherwise.

More specifically, dinucleotide matrix wdi is composed from 16

rows, each row corresponding to a di-nucleotide in the following

order: AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC,

CA, CT, CG and CC. Parameters ndi, ld, si, dk
di and ci liken

corresponding parameters from mononucleotide case, but taken

for dinucleotide sequence and �mmi~
P16

k~1 nki=16.

For dinucleotide PWM the matching score S of specified

sequence seq calculated as weight score of derived di-nucleotide

sequence dseq, where

S(seq)~
XL{1

i~1

wdii
,d[dseq~fd1,d2,:::,dL{1g ð5Þ

Matthews correlation coefficient Cor has been used in the

optimization procedure as it was done in our earlier publication

[4]:

Cor~
TP:TN{FN:FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN):(TNzFP):(TPzFP):(TNzFN)
p , ð6Þ

where TP, FP, TN and FN are the number of true positives, false

positives, true negatives and false positives respectively. Matthews

coefficient is a convenient form to combine sensitivity and

specificity in one equation [15]. We address a reader to the

Algorithm part which describes applications in more details.

For comparison of our results with other results from synthetic

tests we used the positive predictive value (also known as precision)

- index easily computed as a ratio of TP over test outcome

positives: precision = TP/(TP+FP). A complementary characteris-

tic is the sensitivity (also known as recall): sensitivity = TP/

(TP+FN). In analysis of PWM applications the definition of

components of confusion matrix is the following: TP – is the

number hit positions (one per each test sequence) which coincide

with location of upstream first nucleotide in aligned JASPAR

sequence or shifted within PWM length; FN - number of

sequences from the synthetic test that remained undiscovered

(without hits pointed on them); FP – number of incorrect hits; TN

- number of all possible negative matches for the selected test size,

which is the complement of sum (TP+FP+FN) to the total number

of possible hits in the test.

Algorithm
An assessment of the abundance or rarity of L-nucleotide long

TFBS can be estimated by comparing its observed frequency to

that expected in a certain area on promoters. Unlike exhaustive

sequence-based enumeration [31], our PWM approach to

counting frequencies involves calculating z-scores for a number

of sequence occurrences (hits) in that promoter area by applying

the initial PWM W with certain matching cut-off c, together

summarized as a suite model ,W,c.. This search involves several

biological contents including the matrix specificity model and

localization on promoters.

The implementation of the model for a large-scale application

consists of the following three stages. Second and third stages are

iteratively repeated until a final solution is found.

1. Selection of binding sites and preprocessing: inspection of a

representative list of TFBSs avoiding gaps and sequence

replicates. If necessary, the preprocessing includes sequence

alignment and truncation to a fixed length. The final stage of

preprocessing is compiling the initial PWM which accounts for

the background nucleotide distribution.

2. Biological signal detection: preliminary scanning of promoter

sequences to find potential areas of new TFBSs. This stage

estimates the initial cut-off; cut-off boundary values and the

functional window (or windows).

3. Finding similar motifs in promoter sequences. This is an

iterative processing for similar motifs in the functional window,

using the range of PWM cut-offs; compiling the refined PWMs

from discovered auxiliary new sites; optimizing the functional

window, motif length, and cut-off. Matthews correlation

coefficient Cor (Equation 6) increases monotonically until it

reaches the maximum of 1 or when increase terminates

(whichever comes first).

The first and second stages are the preliminary stages followed

by the third, core stage of the iterative matrix refinement process.

The automated second and third stages are implemented in the

original core MATLAB/Octave code not invoking any specialized

toolboxes. A Perl script computes the PWM matrix using BioPerl

package for sequence handling.

Selection of binding sites and preprocessing. Since our

software is designed to evaluate equally sized binding sites without

gaps, preprocessing consists of mostly manual selection of binding

sequences from the database. We preserved existing TFBSs

alignments if they were published in the database. However, in

cases of E74A, Ubx, Dl (Dorsal), MtTFA, DREF, the TFBSs were

listed with different length so we performed our own alignments.

For some TFs such as Ubx, available in TRANSFAC with 88 sites,

we computed matrices from distinct common aligned parts trying

to preserve most of the known binding specificity, but the

remaining TFs were preprocessed as they were. The preprocessing

stage ends with initial mononucleotide and dinucleotide matrices

that are subjected to further training for optimized performance.

Biological signal detection. The PWM search often results

in a large number of random matches. To limit the number of

false positive TFBSs, we used an additional criterion, the z-score,

in order to (a) locate a functional window and (b) estimate an initial

PWM detection cut-off. We calculated z-scores (Equation 1) from

number of hits detected above the cut-off based on Equation 3 for

the mononucleotide case. The z-score was used as a measure of the

overrepresentation of hits in a window of length L gradually sliding

downstream the aligned promoter sequences.

An area of motif overrepresentation on TSS-centered promot-

ers with qualified outliers has been estimated as an initial

functional window. The length of the initial functional window

is L, which is subject to further optimization. Since the z-score is

sensitive to cut-off value, which is unknown a priori, we performed

simple analysis of outlier distribution around the expected

functional window with a range of consecutive cut-offs to elucidate

the initial matrix cut-off and the most comprehensible functional

window. The heatmap (Figure 5) shows an example for SuH.

There is no one-to-one unambiguous dependency between

matrix cut-off values and qualified binding sites. While we expect

that an accurate TFBS has a high z-score and is obtained under a

stringent cut-off, in reality a more degenerate site can be identified

with a less stringent cut-off [3]. A small number of accurate sites

used to compute an initial PWM might also cause a statistical bias

in score estimates and the resulting cut-off value. Another reason

why it is impossible to establish one-to-one dependency between
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matrix cut-off and matching score is because PWM matching

score is an additive composition of constant weights of individual

nucleotides (Equation 3). In such circumstances, applying a

spectrum of cut-off values helps to find the location of most

sustainable signals. As seen from the example in Figure 5, the z-

score at nucleotide positions 515–516 and 519–520, has the

maximum magnitude, which is sustained up to a cut-off of 211.

Because the distance between these two peaks is smaller than the

motif length (which is 13 nt), stage 2 fuses these positions into a

single widow.

Some authors have suggested the z-score as a measure of

statistical significance to be used as an instrument to search for

putative binding motifs [31,34,35]. Unlike z-scores used to detect

motifs our approach simply uses z-scores to detect overrepresen-

tation (outliers on a promoter area with highest z-score). An

accurate location of a functional window is a big challenge due to

two obstacles: a small number of TFBSs is available in the

database and the short length of binding motifs may result in a

high number of false positive hits. In a case when we detected

more than one functional window we selected the window which

gives the maximum correlation Cor with respect to the hits

detected by the original PWM in this window and PWM after the

first iteration.

Searching for similar motifs. The search for motifs is

implemented as a completely automated routine. The method

deals with mononucleotide and dinucleotide matrices alike and

uses initial PWM W0 within pre-estimated functional window and

matrix cut-off. The goal of motif similarity search is to find new

putative binding sites with maximum value of Cor. It starts from

initial matrix/cut-off suite: ,W 0,c0. and passes through the

following steps:

1. Apply ,W 0,c0. to search for new sites in a functional

window.

2. Extend the initial set of sites with the new sites from step 1 and

compute a new PWM matrix Wi.

3. Apply matrix W i. with cut-offs values c on the grid points

ranging from c1 to c2 and find,W i, ci. with maximum Cor for

initial combination ,W 0,c0..

4. Use the new ,W i,ci. to optimize motif length L. For this

purpose, apply ,W i,ci. and find a functional window for

shorter and longer motifs applying +/2 one nucleotide

variation to original motif length. This step consists of four

sub steps used sequentially, all within the same iteration step:

N Use ,W i,ci. to find hits and take corresponding sites

truncated from left (abbreviated as ‘‘cl’’) by one nucleotide.

Compute W i
cl;

N Use ,W i,ci. to find hits and take corresponding sites

truncated from right (abbreviated as ‘‘cr’’) by one nucleotide.

Compute W i
cr;

N Use ,W i,ci. to find hits and take corresponding sites

extended to left (‘‘el’’) for one nucleotide. Compute W i
el;

N Use ,W i,ci. to find hits and take corresponding sites

extended to right (‘‘er’’) for one nucleotide. Compute W i
er;

Figure 5. Z-score distribution on proximal promoter context of 1919 promoters produced by initial mononucleotide PWM. The
colours show z-scores above three around TSS position of sliding windows for Su(H). Y-axe shows cut-off values ranged from most to less relaxed (top
to bottom). Only a portion of proximal promoter area is shown. This graphical method demonstrates the way how initial PWM matrix cut-off c has
been estimated.
doi:10.1371/journal.pone.0068712.g005
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5. The resulting matrix (with the shorter or longer length) should

be applied to a functional window using variable cut-offs

valued from c1 to c2 to find the one c which yields maximum Cor

with the previous pair ,W i,ci.. Take this best as an initial

matrix with cut-off value for the next optimization cycle, which

repeats all the aforementioned steps beginning from step 1.

6. Reassign ,W i,ci. as the new ,W 0,c0., increment over i and

repeat all aforementioned steps 1–5 until value Cor reaches the

maximum or when increase terminates (whichever comes first).

During the procedure of matrix refinement TP, FP, TN and FN

were redefined at each step. The matrix preserved from the

previous step is dubbed ‘‘old’’ and hits from this matrix are

assigned to be ‘‘true’’ for the current iteration. Respectively, the

matrix employed at the current step plays the role of ‘‘new’’. So,

TP computes as the number of sites (hits) positively identified by

the ‘‘new’’ matrix in the given functional window of length L; FP is

the difference between the number of all sites detected by the new

matrix in the functional window at all considered promoter

sequences and TP. FN is the difference between the number of

sites positively identified by the old matrix in the given functional

window and TP. TN is the complement of sum of TP, FP and FN

to the total expected number of all sites in the average given

interval of the length L for the whole set of aligned promoter

sequences (3).

The final result of this procedure is a PWM with optimized

length and cut-off value copt. The aforementioned refinement

process is continued either until Cor = 1 first time in the cycle or it

reaches its maximum (usually 3 to 8 cycles). Each cycle brings a

portion of new putative TFBSs overrepresented in this particular

window and excludes some non-typical TFBSs. Each cycle

consequently increases the influence of ‘‘similar’’ sites from the

functional window. This influence is strongly supported by the

requirement of keeping the magnitude of correlation coefficient

Cor at a higher level. For functional windows with equally strong

signals, all aforementioned steps are tested for each window and

the window with the highest optimized Cor is selected (an example

is shown in Figure 5).

In cases where the selection of a functional window is

ambiguous, based on the observation of z-score spatial distribution

on the promoters, we performed additional computations with

variable window sizes around the area of potential signal and

selected the window with maximum value of Cor for the initial

,W 0,c0. to prevent a high number of noisy sites at the initial

step. This sort of heuristic was used to estimate the initial cut-off

value as well. Changing the length of the motif is a typical part of

the optimization procedure and its processing was performed

independently from those of the functional window.
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