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Abstract: Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive
production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of
the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways.
Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal
permeability, which allows gut-derived toxic products to enter the liver and systemic circulation,
further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic
diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate,
and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms,
thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as
obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involv-
ing epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along
with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss
potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics,
and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated
with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this
review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in
the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including
histone modifications, DNA methylomics, and RNA interference) and potential interventions that
may prevent or improve metabolic diseases.

Keywords: gut dysbiosis; microbiota; microbiome; oxidative stress; inflammation; epigenetic;
transgenerational; metabolic diseases

1. Introduction

Metabolic diseases are medical conditions caused by abnormal biochemical reactions
in cellular metabolism during which the body converts food into energy and other essential
substances required for a healthy life. Metabolic diseases often have syndromic features
and result from genetic or epigenetic aberrations, enzymatic defects, or dysregulation
of metabolic pathways, leading to the development of an array of symptoms related
to body growth, energy generation, and toxin elimination. The incidence of metabolic
diseases increases with aging. However, several environmental factors, including food
content, infectious diseases, gut dysbiosis, exposure to toxins or contaminants, lack of
physical activity, and chronic psychological stress, also contribute to the development of
metabolic diseases [1,2]. Among genetic factors, mitochondrial disease and higher levels of
cholesterol and lipids are well-known contributing factors [3]. Among non-genetic factors,
gut dysbiosis, which depends on gut microbiota structure, is considered one of the most
important factors in recent years [4].
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The mechanisms through which an inappropriate diet, lack of physical activity, and
exposure to toxins/contaminants induce a metabolic disease have been primarily described
in the last few decades [5]. However, the details of gut microbiota interference in metabolic
diseases pertaining to epigenetic modifications have yet to be adequately described. In
this work, we review the most recent findings related to the impact of gut microbiota in
metabolic diseases and underlying mechanisms through which gut dysbiosis, by inducing
inflammation and oxidative stress through epigenetic alterations, may contribute to the
disease pathogenesis in common metabolic diseases. To explore this subject, we first offer
a brief overview of gut microbiota structure, its development, and its interaction with
food content in a healthy state. We then present recent research findings from the past
five years that examine the link between gut dysbiosis and inflammation, oxidative stress,
and epigenetic alterations in metabolic diseases. This study aims to fill the knowledge
gap regarding how gut microbiota influences metabolic diseases such as diabetes, obe-
sity, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD), which can
transfer to the next generation involving epigenetic mechanisms. Additionally, the study
explores potential therapeutic interventions, such as dietary changes, probiotics, fecal
microbiota transplantation, and physical exercise, which may mitigate oxidative stress and
inflammation associated with metabolic diseases through epigenetic mechanisms. These
interventions offer new avenues for treating these increasingly common diseases in the
context of modern industrialized living conditions.

2. Gut Microbiota Structure and Gut Microbiome Development in Mammals

There is a dynamic ecosystem inside our digestive system where over 100 trillion
microbial elements, collectively containing almost 3 million genes (roughly 100-fold more
than human genes), are living throughout our life in the gut [6]. While gut microbiota
consists of >2000 different types of bacteria, viruses, fungi, and protozoa [7], the total num-
ber of gut microbes surpasses that of human body cells (30—40 trillion), and they produce
numerous metabolites that are largely unknown [8]. A large fraction of these microbial
metabolites can pass through the intestinal wall/barrier and enter the liver or other tissues
via blood circulation. A healthy gut can prevent the entry of toxins and harmful metabolites
into blood circulation while permitting the entry of useful metabolites [9,10]. This gut
barrier has developed and evolved over several millions of years in interaction with gut
microbiota in a species-specific manner. However, the species’ genetic structure, food
composition, age, geographical conditions, etc., also intervene. The gut ecosystem is an
ocean of various components interacting with each other and the host, particularly the
intestinal wall and its resident immune cells (the intestinal dendritic cells), which protect
the host against infiltration/intrusion of bacterial elements or their antigens/toxins into
the blood circulation [11-14]. The functionality of this protective intestinal wall can be
disrupted by many external or internal factors, such as infection, toxins, contaminants,
food components, aging, oxidative stress, inflammation, metabolic diseases, etc. However,
chronic disruption of the intestinal wall’s protective functions can also induce metabolic
diseases. Concerning foreign antigens and infectious elements, a continuous and efficient
functionality of the dendritic cells and macrophages of the intestinal wall is very impor-
tant [12,13,15]. While any tissue directly exposed to the external environment possesses a
type of dendritic cell that surveys the tissue for foreign elements, this protective mechanism
is more sophisticated in the intestinal wall.

Evidence shows that the interaction between gut microbiota and the host intestinal wall
starts even before birth, as newborns” meconium is not germ-free at birth [16]. Although
a more recent study reports the sterility of meconium at birth [17], it is still conceivable
that during pregnancy, some maternal gut microbes may pass through the intestinal wall
and end up homing in the fetus’s gut, potentially leading to health-altering outcomes [18].
Furthermore, prenatal exposure to environmental pollutants, such as di-(2-ethylhexyl)-
phthalate (DEHP), widely used in the plastics industry, may result in gut microbiota
dysbiosis and metabolic syndrome in male offspring, which is attenuated by thiamine [19].
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In mice, in utero exposure to arsenic may also decrease the abundance of gut Firmicutes,
which could have a functional impact on genes related to insulin signaling and NAFLD
in offspring [20].

Human gut bacteria are generally detectable almost 16 h after birth [21]. The newborn
acquires most of the gut bacteria from the mother, but paternal and sibling microbiota
also contribute to the infant microbiota through direct contact, such as touching, kiss-
ing, and sharing the same living environment [22]. There is evidence that SI00A8 and
S100A9 calcium-binding proteins, abundant in human breast milk, further regulate the
development of intestinal microbiota and the immune system reaction in neonates [23].

Following the initial development, the gut microbiota and its metabolome exhibit
diurnal rhythmicity that provokes the oscillation of the host transcriptome, metabolic state,
and epigenetic programming [24]. However, antibiotic treatment could perturb the brain’s
circadian metabolic cycles, primarily involving the suprachiasmatic nucleus [25]. Another
study revealed that gut microbes that produce short-chain fatty acids (SCFAs) orchestrate
intestinal epithelial circadian rhythms, and histone deacethylase (HDAC) inhibitors can
reduce this effect [26]. Interestingly, butyrate, one of the most potent gut-produced SCFAs,
also regulates circadian clock genes in muscle tissue and attenuates high-fat diet-induced
obesity. This is associated with increased gut abundance of Firmicutes bacteria, increased
histone acetylation of the muscle tissue, and upregulation of circadian clock genes [27].
Along with alterations in response to circadian rhythms, the gut microbiota composition is
altered in different seasons due to dietary shifts. For instance, a longitudinal examination
of the stool microbiome from the Hadza hunter-gatherers of Tanzania, whose diet relies on
seasonal foraging for wild plants, fruits, tubers, and hunting, revealed that while some taxa
become undetectable in a specific season, they reappear again in other seasons. Surprisingly,
during the cyclic disappearance of these taxa, their microbiota profiles trend towards the
microbiome composition of industrialized societies [28].

There is also evidence that moderate-altitude alteration affects gut microbiome compo-
sition (increases Bacteroidetes and decreases Proteobacteria abundance) in humans, positively
affecting fasting blood glucose level and serum metabolome. Furthermore, fecal transplan-
tation from these individuals could mitigate the diverse metabolic effects of a high-fat diet
in mice [29].

Aging is another determinant of gut microbiome alterations, immune cell dysfunction,
and the increased incidence of metabolic diseases, along with an increase in reactive oxygen
species (ROS) production, epigenetic alterations, and mitochondrial dysfunction [30-32].
In general, there is a trend toward decreased microbial diversity and increased abundance
of pathogenic bacteria as we age [33,34]. Brunt et al. uncovered that age-related gut
microbial alterations are linked to gut dysbiosis, and plasma level of trimethylamine N-
oxide (TMAOQ, a gut-derived metabolite) is higher in aged versus young mice. Remarkably,
non-absorbent antibiotic treatment was associated with increased antioxidant enzyme
expression, decreased oxidative stress and plasma TMAO levels, and improved arterial
endothelial dysfunction [35], indicating that gut microbiota and ROS are involved in
age-related metabolic diseases. A recent study has also shown that specific microbiome
alterations (e.g., relative abundance of Actinobacteria, Proteobacteria, and Collinsella aerofaciens
in males and Bacteroidetes and Dorea longicatena in females) are linked to the acceleration
of epigenetic aging, while physical fitness, “exercise-related parameters”, and bacterial
species with anti-inflammatory effects (e.g., Fusicatenibacter saccharivorans and Anaerostipes
hadrus) are protective [36]. Regarding the influence of physical exercise, a systematic
review of 28 longitudinal human studies found that moderate- to high-intensity exercise
(3090 min three times per week or 150-270 min per week) for 8 weeks could change the
gut microbiota composition, increasing the abundances of Roseburia, Lachnospira, Dorea,
and Ruminococcus in response to aerobic exercise. However, intensive exercise (90 min and
more than five times per week) may have negative effects [37]. A 12-week physical exercise
program in pediatric patients with obesity also modulated gut microbiota (e.g., increased
Roseburia, Blautia, and Dialister, a profile that resembles that of healthy children) and reduced
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inflammation and NLRP3 expression [38], where the NLRP3 inflammasome activation is
linked to inflammation and ROS generation [39].

3. The Gut Microbiome and Diet Interaction

While diet is one of the significant determinants of gut microbiota structure, experimen-
tal studies have shown that a high-fat or high-sugar diet can rapidly alter gut microbiome
composition in less than four days. This alteration could be reversible by reestablishing
the prior diet, but the memory of previous exposure is also maintained [40]. In another
study, a 12-week high-sugar and high-fat diet induced obesity, increased Firmicutes and
Actinobacteria, and decreased Bacteroidetes phyla associated with altered expression of hy-
pothalamic neuropeptides (e.g., Npy, Gal, and Galrl), anxiety, and impulsive behavior [41].
Meanwhile, a different study in mice revealed that fiber, rather than fat, influences gut
microbiota structure. In this study [38], Morrison et al. have shown that the difference
in the transition from a regular diet to a high-fat diet is the lack of fiber in a high-fat diet.
To elaborate on this hypothesis, they used high- and low-fat diets with the same amount
of soluble fiber and reported no significant difference in the gut microbiota composition.
However, using a low- vs. high-fiber diet led to a decrease in the abundance of Bacteroidetes
and an increase in the abundance of Clostridia and Proteobacteria [42].

In a human study, it has been shown that short-term consumption of animal-based
versus plant-based foods is capable of rapidly altering gut microbiota composition. This
change is associated with a decrease in the abundance of Firmicutes, which metabolize
plant-based polysaccharides, and an increase in the abundance of bile-tolerant bacteria such
as Alistipes, Bacteroides, and Bilophila, the latter of which can induce inflammatory bowel
diseases [43]. Another human study revealed that, although dietary pattern alteration from
animal-based to plant-based food can change gut bacterial structure within 24 h (shifting
from Bacteroides, associated with animal food, to Prevotella, linked to carbohydrates), long-
term dietary modification is essential to consolidate the gut bacteria enterotypes [44]. The
diet promotes the growth of beneficial bacteria, increases microbial diversity, and enhances
the production of SCFAs, which are crucial for gut health. Furthermore, experimental
evidence suggests that the gut microbiota not only contributes to the synthesis and ab-
sorption of nutrients and vitamins [45] but also determines the uptake of energy from
food. For instance, it has been shown that, while obesity is linked to a relative abundance
of Bacteroidetes and Firmicutes and the microbiome of individuals with obesity harvests
energy from the diet more efficiently, the transfer of their gut microbiota to germ-free mice
increases the mice’s total body fat [46].

4. Gut Dysbiosis and ROS Production

Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce ex-
cessive production of ROS, leading to inflammation by disrupting gut barrier integrity,
activation of the immune system, and alteration of metabolic pathways. As gut dysbiosis
alters gut microbial metabolites that may induce inflammation, ROS production, and epige-
netic alterations [47], inflammation-induced ROS can also intensify gut dysbiosis [48,49].
Experimental studies in mice have shown that host ROS production alters the gut micro-
biota species diversity and gut microbiome composition [50]. On the other hand, probiotics
that alleviate gut dysbiosis can mitigate gut ROS production, thus reducing ROS-induced
inflammation [51,52]. Similarly, dietary polyphenols can suppress gut dysbiosis by scav-
enging ROS and increasing the abundance of the beneficial Akkermansia muciniphila bacteria,
which is reduced in obese mice, and whose abundance is associated with a decrease in
gut extracellular ROS levels. Notably, among different antioxidants, such as vitamin C,
[-carotene, and grape polyphenols, the latter explicitly reduces gut ROS and promotes the
growth of Akkermansia muciniphila due to its lower bioavailability [53]. It is also important
to note that, despite the harmful effects of ROS on gut health, ROS plays a significant
role in stem cell proliferation through interactions with the gut microbiota in colon ep-
ithelial cells. In this potentially evolutionary adaptive process, gut microbiota activates
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toll-like receptors, which stimulate NOX1 expression, leading to ROS production, activation
of epidermal growth factor receptor (EGFR) signaling, and cell proliferation to preserve
colon homeostasis [54].

5. Metabolic Impacts of Gut Dysbiosis Involving Epigenetic Mechanisms

It has been shown that microbiota metabolites interact with hundreds of G protein-
coupled receptors [55] involved in metabolic diseases [56,57]. Therefore, it is not surprising
that gut microbial dysbiosis is associated with several metabolic diseases, like type 2
diabetes, atherosclerosis, and NAFLD [58-60]. In addition to the contribution of ROS to
inflammation and the disruption in gut barrier integrity mentioned above, this relationship
could be due to altered bile acid metabolism and the pleiotropic effects of metabolites
and inflammatory cytokines produced by the gut microbiota [61]. Figure 1 illustrates the
cascade of events through which gut dysbiosis, associated with an imbalance in ROS-
generating and ROS-decreasing bacteria, contributes to inflammation and the development
or progression of metabolic syndrome.

Brain

Arteries ——— —_ _
Bones ——————] etabolic syndrome involving many tissues> ————==—— kidney
Muscles —————— ' —————=—_ Adipose tissue

| Aberrant function of B-cells
inthe pancreas

Cytokine production
by immune cells

/N

Inflammation ———— ROS producing
Gut ) bacteria

N\

K Gut dysbiosis /

Figure 1. The cascade of events through which gut dysbiosis induces metabolic diseases. While gut

/

dysbiosis increases inflammation, it also expands the presence of ROS-producing bacteria, which
further exacerbates inflammation. Gut dysbiosis is intensified by both ROS and inflammation, which
reduces intestinal wall integrity and allows bacterial antigens and toxic materials to penetrate gut
cells and enter the bloodstream, further amplifying ROS production. This leads to immune cell
activation and the production of inflammatory cytokines. These inflammatory cytokines affect the
function of metabolic genes in the pancreas, liver, and other tissues, leading to the dysfunction of
different tissues observed in metabolic syndrome.

In human studies, an increase in taurine/hypotaurine and lipoic acid metabolism due
to the reduced abundance of Ruminococcus and Bifidobacterium, along with lower vitamin D
intake, has been observed in individuals at higher risk for cardiovascular diseases. However,
a higher intake of vitamins D and A, as well as protein and monounsaturated fat, could
increase the abundance of the Ruminococcus genus [62]. In non-obese type 2 diabetic MKR
mice (which carry a muscle-specific mutation of the Igf-1 receptor gene), gut dysbiosis is
associated with reduced abundances of butyrate-forming bacteria and Bacteroides fragilis,
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which ferment complex carbohydrates for SCFA production. This leads to HDAC3 (histone
deacetylase 3) activity dominance, increased colon permeability, ROS production, NOX4
(a protein catalyzing superoxide generation from molecular oxygen), and IL-1§3 levels but
reduction in IL-10 and IL-17« levels. In contrast, treatment with butyrate (a SCFA which
inhibits HDACS) could restore normal levels of NOX4 and IL-1f3 [63].

Regarding the mechanisms of SCFA actions, while the general viewpoint of the sci-
entific community is that SCFAs inhibit HDAC activities, one study shows that at least
butyrate and propionate (but not acetate), after being converted to acyl-CoAs, activate
the acetyltransferase p300 enzyme, which subsequently induces histone/protein acetyla-
tion [64]. However, acetate, through suppression of the increased circulating and hypotha-
lamic HDACS in fructose-induced type 2 diabetes mellitus (T2DM) rats, may attenuate
metabolic syndrome in the affected animals [65]. Meanwhile, another study reported that
despite transcriptomic alterations, the global hepatic histone acetylation level is not affected
by antibiotic-induced gut microbiota depletion, which is associated with the lack of SCFA
production by the gut microbiota. Furthermore, SCFA supplementation could not affect
global hepatic histone acetylation in the absence of gut microbiota [66], suggesting that
other mechanisms or tissues may be involved in the protective effects of SCFAs in metabolic
diseases. To this end, a study showed that, while gut microbiota dysbiosis of children with
new-onset type 1 diabetes was associated with decreases in butyrate production and bile
acid metabolism and an increase in lipopolysaccharide (LPS) biosynthesis, butyrate could
protect pancreatic islet structure and function and enhance insulin 1 and 2 (Ins1 and Ins2)
gene expression levels in mice [67].

Interestingly, the gut microbiota of these children transplanted to germ-free mice
could increase fasting glucose levels and decrease insulin sensitivity. Additionally, LPS
was shown to increase pancreatic inflammation with destructive effects on the structure
and function of pancreatic islets [67]. Trichostatin-A, another HDAC inhibitor, could also
mitigate weight loss and intestinal injury by increasing the gut Firmicutes/Bacteriodetes
ratio and reducing the expression of NF-xB, Cox-2, and iNOS in the intestine of 15 Gy-
irradiated mice [68]. In addition to these genes, Mmp-12 and Fabp4 play significant roles in
small intestine-mediated metabolic diseases. MMP-12, as a transcriptional factor, promotes
Fabp4 transcription through an epigenetic mechanism in the small intestine and mediates
high-fat diet-induced obesity. However, small intestine-specific knockdown of this gene
improves metabolic disorders and intestinal homeostasis, decreases inflammation, lipid
transportation, and bile acid reabsorption, and restores gut microbiota composition [69].

In addition to SCFAs, other gut microbiota-produced metabolites, such as choline (the
main source of methyl groups), and some vitamins (in particular, vitamin B12 and folate)
can also act as substrates or cofactors for enzymes involved in histone modifications and
DNA methylation [70-72]. Lactate, in addition to being a byproduct of glycolysis, which is
affected in metabolic diseases, is another product of the gut microbiota that induces gene
expression through histone lactylation [73].

6. Gut Microbiome, Inflammation, ROS, and DNA Methylome Interactions

A multi-omics study revealed that host microbiota and DNA methylome interactions
affect gene functions linked to inflammation, metabolic diseases, and oxidative stress in
the intestinal wall and blood cells in Crohn’s disease [74]. Still, several other factors may
contribute to these interactions. For example, hyperglycemia, which induces ROS and im-
pairs antioxidant defense systems [75], impacts gut microbiome structure and metabolism
and intensifies drug-induced dysbiosis and energy catabolism [76]. Nevertheless, the gut
microbiome is also involved in intestinal maturation by directing postnatal DNA methyla-
tion of glycosylation genes at its 3’ CpG islands in intestinal stem cells [77]. Furthermore,
whole-genome bisulfite sequencing in germ-free versus conventionally raised mice un-
covered that the exposure of the intestinal epithelium to commensal microbiota directs
TET2/3-dependent DNA methylation alterations at the regulatory elements of a set of
genes to maintain intestinal homeostasis. While this microbiota-induced epigenetic repro-
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gramming might be essential for maintaining proper intestinal homeostasis, in acute gut
inflammation (induced by dextran sodium sulfate, DDS), the exposure of the intestinal
epithelium to microbiota leads to aberrant DNA methylation and chromatin modifica-
tions at regulatory elements, resembling those observed in colitis [78]. Similarly, early-life
inflammatory stressors could trigger a sustained epithelial injury and increase gut perme-
ability due to downregulation of E-cadherin expression (an epithelial junction protein),
mediated by increased expression of miR-155, secondary to its promoter histone hyper-
acetylation [79]. However, compounds with antioxidant and anti-inflammatory properties
(e.g., cinnamon) may have protective effects by increasing E-cadherin-2 expression [80].
Selenium-containing amino acids, such as selenocysteine and its derivative selenocystine,
could also ameliorate DSS-induced oxidative stress and intestinal inflammation in mice [81].
In humans, a correlational gut microbiota and DNA methylation study in individuals
undergoing a 3-month behavioral weight loss procedure uncovered that Ruminiclostridium
abundance was correlated with DNA methylation of COL20A1, COL18A1, and NT5E genes
at the baseline. A three-month intervention changed this pattern, and Ruminococcus gnavus
was positively correlated with DNA methylation of the CA3 gene. Additionally, the abun-
dance of Akkermansia was inversely correlated to DNA methylation of CRYL1 (implicated
in antioxidant defense mechanisms), C9 (involved in immunity and inflammation, which is
linked to ROS), as well as GUSB and GMDS (involved in carbohydrate metabolism and gly-
cosylation processes, respectively). The same was true for Lachnospiraceae UCG-001, which
had an inverse correlation with DNA methylation of NR5A2 (involved in the oxidative
stress response and redox regulation), HES1 (also involved in the oxidative stress response),
as well as PCLO, and LRAT genes. Since none of these correlations had relationships with
dietary intake, the authors concluded that “microbes linked to mucin degradation, SCFA
production, and body weight are associated with DNA methylation of phenotypically
relevant genes” [82]. Another human study of individuals affected by metabolic disease
showed that allogeneic (vs. autologous) fecal microbial transplant (from lean donors) leads
to a gut microbiota shift and modulation of the plasma metabolome and the epigenome
of blood mononuclear cells. Specifically, Prevotella abundance was associated with DNA
methylation of the AFAPI gene that affects mitochondrial function and insulin sensitiv-
ity [83]. Figure 2 illustrates how the interaction between the gut microbiota and food
produces various components or substrates that can influence different mechanisms of
epigenetic modulation, leading to changes in gene expression and protein synthesis.

UAltered amount of protein synthesis

7~

| Gene expression alterations ‘

DNA methylation Histone methylation, acetylation and lactylation RNA interference

- Folate _ siRNAs
-Vitamin B12 SCFAs (butyrate, acetate, propionate) and lactate .
_Choline - miRNAs

Gut microbiome —— Food components(

Figure 2. The cascade of events where gut microbiota and food interaction produce different metabo-
lites, vitamins, and bioactive compounds as well as miRNAs. The gut microbiota products influence
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DNA and histone methylation, or histone acetylation and lactylation, which in turn affect gene
expression levels. Additionally, miRNAs and siRNAs produced by gut microbiota or cells of the
digestive tract induce RNA degradation or inhibit viral RNA and transposons, respectively. While
DNA methylation and RNA interference commonly inhibit gene expression, histone methylation
has dual functions (depending on the methylation of specific amino acid residues of the histone tail
proteins). Histone acetylation and lactylation generally stimulate gene expression. Arrows indicate
directionality, while T-shaped marks indicate suppression.

7. Transfer of Gut Microbiota-Related Metabolic Diseases to the Next Generation
through Epigenetic Mechanism

In human studies, it has been shown that the neonatal blood metabolome correlates
with the maternal fecal metabolome and that altered gut microbiota in maternal gestational
diabetes mellitus may increase the risk of neonatal inborn metabolic errors [84]. In a
more recent study, Duan et al. reported that antibiotic-induced maternal gut dysbiosis
impacts the embryonic development of the enteric nervous system (ENS) by altering a
signaling pathway involving propionate (a HDAC inhibitor) and Gpr41 (a gene encoding a
receptor for SCFAs), Gdnf, Ret, and Sox10 genes in mice [85]. The ENS is a key component
of the gut-brain axis, significantly influencing the body’s metabolic state. It regulates
gastrointestinal functions and interacts with the gut microbiota to affect energy balance
and nutrient absorption, impacting metabolic health [86,87].

Several other lines of evidence indicate that gut microbiota-induced metabolic dys-
functions can be transferred to the next generation through epigenetic alterations. As an
introduction to this topic, it is important to note that a recent landmark study has demon-
strated that induced epigenetic modifications in mouse embryonic stem cells—specifically,
the addition of methyl groups to the CpGs of the promoter regions of two metabolic genes,
Ldlr and Ankrd26—can suppress the expression of these genes. Remarkably, both the
DNA methylation marks and the associated phenotypes, such as obesity, were found to
be heritable, transferring to four subsequent generations of mice [88]. In relation to gut
microbiota involvement in this context, a previous study by Romano et al. uncovered that,
as some bacteria utilize choline, which is required for DNA methylation in mammals, mice
on a high-fat diet and possessing elevated levels of choline-consuming bacteria are at a
greater risk of metabolic diseases associated with global DNA methylation alterations in
both the affected mice and their offspring, along with behavioral changes [89]. Maternal
consumption of a Western-type diet during pregnancy in baboons could also affect the off-
spring’s microbiome. This type of diet not only alters the maternal gut microbiome (increase
in Clostridiales and Lactobacillales abundance and decrease in alpha diversity) and lipid
metabolism, along with increasing inflammation and ROS, but it also induces epigenetic
changes in the placenta (miR-182-5p and miR-183-5p downregulation) and the offspring’s
liver (miR-204-5p and miR-145-3p down-regulation), accompanied by dyslipidemia and
systemic inflammation [90]. In another study in mice, Kimura et al. demonstrated that
maternal microbiota during pregnancy shapes the offspring’s metabolic system, as SCFAs
of the maternal microbiota direct intestinal, pancreatic, and neuronal cell differentiation
mediated by embryonic SCFA receptors (GPR41 and GPR43), helping an efficient postnatal
energy homeostasis. However, the offspring of germ-free pregnant mice exhibit increased
susceptibility to metabolic syndrome [91], further confirming that maternal microbiota
contributes to the maturation and functionality of the offspring’s metabolic system, medi-
ated by the production of SCFAs by the maternal gut microbiome. Notably, in adult mice,
similarly, SCFAs from a high-fiber diet or SCFA-producing microbiota are cardioprotec-
tive, mediated by the SCFA receptors GPR43/GPR109A, with important roles in the body
metabolic and anti-inflammatory ROS responses [92].

A maternal low-protein diet during lactation also alters the gut microbiome in female
F1 offspring, associated with diminished early-life growth rate and metabolic health, which
can be transmitted to the following two generations. The oocytes of the F1 generation also
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exhibit DNA methylome alterations, which are partly transmitted to the oocytes of the
F2 generation [93].

It has been shown that a paternal preconception diet (high-protein vs. high-fat/sucrose)
also has protective metabolic effects in rats’ offspring by improving insulin sensitivity, circu-
lating satiety hormones, and intestinal SCFA production. This was associated with altered
intergenerational Dnmt1 and Dnmt3b expression, an increase in the paternal bacterial diver-
sity, and higher abundances of Bifidobacterium, Akkermansia, Bacteroides and Marvinbryantia
in their male or female adult offspring [94]. In another study, supplementing a cocktail
of methyl donors to a paternal high-fat/sugar diet in rats improved both paternal and
offspring metabolic health and gut microbial signature, which was associated with de-
creased expression of Dnmt3a in paternal adipose tissue and miR-34a in hepatic tissue,
upregulation of miR-24, miR-33, miR-122a, and miR-143 in adult male offspring, and down-
regulation of miR-33 in female offspring [95]. A paternal oligofructose-supplemented diet
in rats could also induce changes in both paternal and offspring metabolic states and gut
microbiota, such as increased abundance of Bacteroidetes in female and Christensenellaceae in
male offspring [96].

In a more recent study in mice, preconception paternal gut microbiota perturbation by
non-absorbent antibiotics has been linked to growth restriction, decreased birth weight, and
premature mortality in their offspring. This is mediated by alterations in the testis histology,
testicular metabolites, leptin signaling, and sperm small RNAs, mediating placental insuf-
ficiency in utero [97]. Harris et al. have also shown that in germ-free and T cell-deficient
mice, the resulting defect in sebum secretion carries on to the next generations “despite
microbial colonization and T cell repletion”. Interestingly, these trans-generationally in-
herited phenotypes are observed in progenies conceived by in vitro fertilization using
the sperm and eggs of germ-free mice, indicating the involvement of non-genetic [likely
epigenetic] inheritance [98]. A paternal Western-type diet in mice also indices phenotypic,
gut microbiota, and behavioral changes in F1 offspring, such as higher body weights, asso-
ciated with an increase in the gut abundance of Actinobacteria, preference for the Western
type of food, and increased dominant behavior in male mice [99]. Paternal exposure to
inorganic arsenic, known to induce widespread epigenetic alterations [100], could also lead
to inter- and transgenerational metabolic and gut microbiome changes in F1, F2, and F3
male offspring [101].

8. Dietary and Probiotic Interventions to Modulate Gut Microbiome, ROS, and
Metabolic Diseases

As mentioned before, diets and dietary compounds (commonly considered and prebi-
otics) play major roles in modulating gut microbiota composition and metabolites [102,103].
For example, a five-month nicotinamide riboside (the precursor of NAD") supplement
in twins discordant for body mass index could modify gut microbiota composition and
improve muscle stem cell functions and mitochondrial biogenesis along with DNA methyla-
tion alterations of several genes, including metabolic genes, such as NAPRT and PPARy [104],
which are also involved in redox reactions [105,106]. On the other hand, a high-fat/carbohydrate
diet increased Firmicutes (Clostridium), Prevotella, and Methanobrevibacter but decreased Bac-
teroides, Bifidobacterium, Lactobacillus, and Akkermansia, which are SCFA producers. These
alterations are associated with compromised intestinal epithelial barrier integrity, increased
inflammation (which induces ROS), and dyslipidemia due to a decrease in the expres-
sion of fasting-induced adipocyte factor [107]. However, a diet rich in fiber and acetate
could mitigate gut dysbiosis by increasing the abundance of Bacteroides acidifaciens and
modulating the Firmicutes to Bacteroidetes ratio in hypertensive mice [108]. De Filippis et al.
also found that high adherence to the Mediterranean diet, characterized by a high in-
take of fruits, vegetables, legumes, nuts, and whole grains, and a moderate intake of fish
and poultry, is associated with a beneficial microbiome and the interlinked metabolome
profile [109]. In another study, Ghosh et al. investigated the effects of a 1-year Mediter-
ranean diet intervention on the gut microbiome of elderly individuals across five European
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countries. They found that adherence to the Mediterranean diet resulted in significant
positive changes in the gut microbiome, including increased microbial diversity and the
enrichment of health-associated microbial taxa. The diet also led to a reduction in inflam-
matory markers, increased production of SCFAs, and improvements in health parameters,
such as cognitive function and frailty [110]. On the other hand, ultra-processed foods and
food additives can increase intestinal permeability and inflammation by altering the gut
microbiome community [111]. In addition to diet, the composition of the gut microbiome
(e.g., higher abundance of Akkermansia) affects dietary fiber metabolism, leading to the
production of SCFAs and anti-ROS molecules, such as glutathione, which confer signifi-
cant health benefits [112]. In contrast, reduced levels of SCFAs, like propionate, butyrate,
and acetate, along with purine starvation required for glutathione synthesis have been
observed in longitudinal multi-omics studies of stool samples from patients with irritable
bowel syndrome [113].

Other types of dietary interventions, such as caloric restriction, could also improve
energy expenditure, enrich gut microbial diversity, and alter bile acid metabolism in mice.
Interestingly, microbial transfer from these mice into mice fed an obesogenic diet improves
the bile acid metabolism of the recipient mice and mitigates fatty liver [114].

Probiotic and postbiotic use are other types of interventions to mitigate metabolic
diseases. For instance, in high-fat diet-induced obese mice, gavage of Bacteroides dorei and
Bacteroides vulgatus could attenuate weight gain by improving branched-chain amino acid
catabolism in brown fat tissue, suggesting that Bacteroides probiotics may be helpful in the
treatment of obesity [115]. In a recent meta-analysis of human studies, probiotics could
also significantly reduce the blood cholesterol and lipid levels in patients with metabolic
disease [116]. Another meta-analysis on the effect of Bifidobacterium probiotic supplementa-
tion on fasting blood glucose levels reported no effects in humans but a highly significant
decrease in animal models of metabolic syndrome, type-2 diabetes, and obesity [117]. It
suggests that Bifidobacterium alone may not affect humans’ blood glucose levels. However,
another recent meta-analysis of human studies found that probiotics and synbiotics (a
combination of probiotics and prebiotics) can reduce fasting blood glucose levels, body
mass index, and LDL cholesterol levels in patients with metabolic syndrome [118]. A
recent umbrella meta-analysis of 13 meta-analyses on patients with NAFLD also confirmed
beneficial effects of probiotics, prebiotics, and synbiotics on body mass index [119]. Simi-
larly, a meta-analysis of 97 meta-analysis studies showed beneficial effects of probiotics,
prebiotics, and synbiotics on the overweight/obesity indices [120]. In type-1 diabetes, a
recent meta-analysis reported that probiotic supplementation could moderately decrease
fasting blood glucose levels but had no significant effect on serum HbAlc [121].

Considering postbiotics, dietary supplements containing acetate and butyrate pro-
duced by gut microbiota could improve glucose control in type 1 diabetic mice by upregu-
lating 3-cells’ functional genes and insulin production [122]. SCFA supplementation could
also recapitulate the corresponding microbiota-induced chromatin modifications and gene
expression alterations in germ-free mice [123]. Furthermore, in an in vitro study, vitamin
B12 was shown to play a critical role in sustaining cellular DNA methylation status of genes
linked to cell proliferation and intestinal barrier function, in addition to improving fatty
acid and mitochondrial metabolism, while suppressing the inflammatory response of ileal
epithelial cells [124].

While dietary intervention modulates gut microbiome and metabolic health in adults,
maternal nutritional intervention can also help the offspring’s health status. In a study
in mice, high-fat diet-induced maternal obesity increased the risk of metabolic disease in
offspring. However, maternal use of phlorizin (extracted from apple tree bark or leaves)
improved gut dysbiosis and increased SCFA-producing bacteria (Akkermansia and Blau-
tia), while decreasing LPS-producing bacteria, mitigating not only maternal but also their
offspring’s metabolic disease [125]. Maternal dietary genistein (an isoflavone of soybean)
could also improve offspring metabolic functions, lipid panel aberrations, and glucose in-
tolerance and decrease high-fat diet-induced body fat in offspring [126]. On the other hand,
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prenatal dexamethasone exposure could have harmful effects and impact gut microbiota
composition (e.g., increased Klebsiella but decreased abundance of Akkermansia, Bacteroides,
and Parabacteroides), as investigated in 6-month-old infants, with these changes persisting
for two years in female infants. This is associated with alterations in bile acid metabolism
and a higher risk of cholestatic liver injury. Mechanistic studies in rats and cell analysis
revealed that this effect is due to a decrease in Muc2 (mucin 2) gene expression mediated by
GR/HDACI11 signaling activation, leading to Cdx2 epigenetic dysregulation [127] where
CDX2, a transcription factor, suppresses ROS [128]. Low-dose tetracycline treatment during
the perinatal period (4 days in the embryonic period and 4 weeks postnatally) in mice
also alters gut microbiota in dams, with these changes lasting into adulthood and being
associated with persistent alterations in body weight and growth trajectories [129].

9. Dietary and Microbiome-Induced Health Benefits Mediated by
Epigenetic Modifications

An earlier study in mice uncovered that gut microbiota could regulate host global
histone acetylation and methylation, which appears to be diet-dependent, as, in contrast
to a polysaccharide-rich diet, a Western-type diet could prevent these effects [123]. In a
subsequent human study, long-term use (18 months) of a Mediterranean diet or a low-meat
diet rich in polyphenols could delay epigenetic (DNA methylation) biological aging [130].
In another relatively large recent microbiome and whole-genome DNA methylome study
in humans, the authors reported a correlation between the abundance of Ruminococcus,
obesity, and altered DNA methylation of a region located between the MACROD2 and
SEL1L2 genes, both of which are involved in cellular stress responses [131]. Furthermore,
hypercholesterolemia, a component of metabolic diseases, has been linked to the upregula-
tion of two stool small RNAs (ID 2909606 and ID 2149569) correlated with the abundance
of Coprococcus eutactus (Lachnospiraceae family) and Blautia wexlerae, respectively [132]. In
another study, diet style (e.g., in vegans, vegetarians, or omnivores) not only affected gut
microbiota composition but also altered the expression of 49 stool miRNAs in humans. For
example, the expression of miR-636 and miR-4739, related to lipid metabolism, exhibited
an inverse correlation with the duration of the non-omnivorous diet. On the other hand,
17 miRNAs were directly correlated with animal proteins and lipids. Since the abundance
of Prevotella and Roseburia was higher in omnivores and the abundance of Bacteroides was
lower vs. vegans and vegetarians, the expression pattern of miRNAs was distinctive in
these three dietary groups. Additionally, the plasma and stool expression of miR-362-3p
exhibited positive correlation, but let-7a-1-3p exhibited inverse correlation [133]. Table 1
shows diverse types of dietary interventions involving vitamins, nutritional compounds,
and postbiotics, or the use of probiotics, prebiotics, and metabolic drugs that may mod-
ulate the gut microbiome or the epigenome of genes related to inflammation and ROS
in metabolic diseases. Although some of these studies have not analyzed the influence
of these interventions on both gut microbiota and the epigenome, it is expected that the
research community will uncover these unknown aspects in the coming years.

Table 1. Various interventions that mitigate metabolic diseases by affecting gut microbiota and/or
the epigenetic status.

Intervention Study Subjects Gut Ml.croblota Functional Changes Mechanism Ref.
Alteration
< Boosts immune DNA methylation
5] o . . functions, glucose alterations of 116 genes )
E_ Vitamin C Humans Increases Actinobacteria homeostasis, and cell (13 hypo and 103 [134]
@ metabolism hypermethylated)
Vitamin B12 Stem cells, in vitro Not applicable Boosts cell regeneration Mediates FI3K36me3 [135]

generation
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Table 1. Cont.
Intervention Study Subjects Gut Ml.crObwta Functional Changes Mechanism Ref.
Alteration
§ Vltgn.un B12 M1c.e with DSS (dextran N9 change in normal Reduces DSS-induced
) deficiency sodium sulphate) mice but altered epithelial fissue damage Unknown [136]
g- (4 weeks) challenge abundance of 30 genera P 8
? Decreases « diversity, Immune activation,
Vitamin B12, Clostridia vadin BB60 production of IL-17A
excess amount Mice and Lachnospiraceae and the IL-12/23p40 Unknown [137]
(1000-fold) NK4A136 groups, but subunit cytokines
increases Parasutterella in colon
. . Increase the abundance
R Rats (hyperuricemia, - -
Folic acid . of probiotic bacteria and N
- induced by a . Improve hyperuricemia ~ Unknown [138]
and zinc hi : . reduce pathogenic
igh-purine diet) b .
acteria
g Butyrate Human primary Not applicable Incrgases AR expression Unknown [139]
S liver cells and its target genes
§-: . . Decreases quinolinic
@ Huma.ns .Wlth obesity acid- induced BDNF Increases H3K18ac at
Butyrate and diet-induced Unknown . [140]
obese mice suppression and BDNF promoter
improves cognition
Acetate and . . . Reduces microglia Reduces HDAC activity
In vitro on microglia Unknown . . and NF-kB nuclear [141]
butyrate cytokine production .
translocation
Macrophage exposed to  Enhances Arg1 (a
Lactate Human cells and mouse  lactate-producing metabolic gene) and Histone lactylation [73]
bacteria wound healing
I Long-la§tmg T.GFB . Epigenetic increase of
p40, a probiotic production by intestinal .
. . . Modulate gut s TGFP expression by )
functional In early life of mice . : epithelial cells, expands [142]
microbiota e H3K4mel/3
factor Tregs and mitigates gut T
. . persisting into adulthood
inflammation
~ Fermented . . . Increases species
@ brown vs. Patients with metabolic belonging to the Reduces inflammation Increases blood SCFAs [143]
= o syndrome O
) white rice Clostridia class
=
’ Inulin (a Mice and in vitro Reduces microglia Increase.s gut SC.FA )
. . Unknown . production and its [144]
soluble fiber) studies TNF-« secretion
blood level
E}f;ﬁﬁzsgﬁtﬁiﬁ; Decreases hepatic Yapl
Inulin fiber and  High-fat/sucrose enzvmes fibré)sis and and miR-1205 expression,
multi-strain diet-induced Unknown ZYIES, ¢ and upregulated Lats1, [145]
L s lipid panel; decreases
probiotics steatohepatitis in rats. TGF@1 (a fibroti Nf2 and IncRNA
e SRD5A3-AS1
marker) and IL6
High fiber diet Humans’ NAFLD Pqtentl.ally change gut Reduces liver steatosis Decreases serum SCFAs [146]
microbiome (unexpectedly)
5 . ' Modulates plasma Pijevotella ASV.s correlated
o . . Gut microbiome with methylation of
2 Fecal microbial H lterati includi metabolome and the AFAPI i lved i 33
g3 transplantation umans aterations, Including epigenome of immune mnvolved in 1831
g p Prevotella ASVs Cglli mitochondrial function,
ot %. and insulin sensitivity
=
% E Altered DNA methylation
T, = .
5 &  Lactobacillus . Gut microbiome Potential prevention of of genes linked to neuro
SR . Pregnant mice . . . and synaptogenesis, [147]
o reuteri alterations autism-like symptoms . . .
9] synaptic transmission, reelin
° signaling, etc. in offspring
Reduces hyper-elvcemia Mitigates methylation of
. High fat diet (HFD) Altered gut microbiota oS Wpergy * H3K79me2 and
Lactobacillus . ‘tion in f ¢ hyper-insulinemia, hyper hvlation of )
suplementation induced composition in favor o Tipidemia, and hepatic- demethylation o [148]
insulin-resistant rats Lactobacillus ! H3K27me3 and reduces

intestinal damage

Foxol expression
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Table 1. Cont.
Intervention Study Subjects Gut Ml.crObwta Functional Changes Mechanism Ref.
Alteration
P Eicsre;ljﬁiagﬁversity Increases mitochondrial
@ 3. )
f:,” 2 5 de.ays .Of . Humans Prevotella, Lactobacillus, Improves metabolism DNA’ SIRTI, SIRTS.’ anFl [149]
de £  periodic fasting . miRlet7b-p expression in
s and Christensenella blood cells
abundance
Z Sulforaphane Rats Irpproyes sut mlcrqblal Reduces uric acid level Epigenetic modification of [150]
= diversity and functions Nrf2 gene
H.
g. Saccharomyces DSS-induced colitis in Increase microbial ﬁlélfsgzsnfgzzfamage Modulates the cytokine [151]
2 boulardii humanized mice SCFAs production y profile )
5 responses
*g DNA methylation
IS - . . .
E Black tee HFD feeding mice Reverses.HI.:D induced Prevents obesity filterz?nons, 1nc1uc.hng [152]
a gut dysbiosis imprinted genes in the
® spermatozoa of HFD mice
Modulated eut Decreases body weight,
. . gut . inflammation, ROS,
. HFD obese rats microbiota and in mice . . . [153,
Urolithins . . . insulin resistance and Unknown o
and mice increase population of restores serum 154]
Akkermansia spp. lipid profile
Policantil Gel Increases gut ?;;rszzesx)ec;dﬁ?take Modulates expression of
Retar dp HFD feeding mice Bacteroidetes and improve}s] ghty metabolic genes and [155]
decreases Firmicutes metabolic state rescues Igfbp2 expression
'? h:‘f)iies(s:ier? Srili:cAr;)bes like Decreases colon Increases circulatin;
A Metformin, oral  Mice p 'S . adenocarcinoma . & [156]
=3 Lachnospiraceae, Alistipes, . - propionate and butyrate
3 . proliferation
2 and Ruminococcaceae
E‘ Tauroursodeoxycholic
aq e . Increases acid blocks KEAP1
’ ob/ob mice (geneticall Eﬁg?ﬁiieiiiobactermm tauroursodeoxycholic binding to Nrf2, leading
Metformin & Y acid, which reduces to Nrf2 nuclear [157]

modified obese mice)

Akkermanisia muciniphlia

proportion ROS and intestinal

inflammation

translocation, initiating
antioxidant gene
expression

10. Conclusions

Alterations in gut microbiota composition and, thus, function can exacerbate oxidative
stress, cellular and DNA damage, inflammation, and epigenetic alterations, increasing the
risk of metabolic diseases, such as insulin resistance, dyslipidemia, obesity, and hyper-
tension. Gut dysbiosis promotes ROS production and disrupts the balance of antioxidant
defense systems, initiating a vicious cycle that further promotes gut dysbiosis. Gut-derived
metabolites, such as SCFAs and other microbial-derived compounds and vitamins, can
modulate oxidative stress and improve metabolic function. Gut dysbiosis-induced in-
flammation can also disrupt gut barrier integrity and increase intestinal permeability,
which allows gut-derived hazardous products to enter the liver and systemic circulation,
further triggering oxidative stress, inflammation, and epigenetic alterations associated
with metabolic diseases. As gut microbiota is transferred to close family members, any
microbiome-related disease may resemble genetic diseases. Therefore, more scrutiny on
the potential contribution of the microbiome in the pathogenesis of those familial metabolic
diseases is warranted.

While gut microbiota-induced metabolic diseases could transfer to the next genera-
tion, there are specific therapeutic interventions that may mitigate metabolic diseases both
in affected individuals and their offspring. In addition to current medical therapeutics,
physical exercise, intermittent fasting, dietary modifications, prebiotics, probiotics, post-
biotics, and fecal microbiota transplantation may alter gut microbiota composition and
reduce inflammation, oxidative stress, and epigenetic alterations associated with metabolic
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syndrome. Future research should focus on identification of specific bacterial genera and
species involved in the pathogenesis of particular metabolic diseases and on developing
and optimizing therapeutic interventions to precisely target the responsible gut microbiome
and its metabolic pathways. This includes identifying specific prebiotics, probiotics, and
postbiotics that can effectively modulate the gut microbiota to reduce oxidative stress
and inflammation. Further studies to understand the long-term effects and safety of fecal
microbiota transplantation are crucial, as is exploring its potential to prevent or reverse
familial metabolic diseases. Additionally, personalized approaches considering individual
microbiome profiles and genetic predispositions may enhance the efficacy of these inter-
ventions. Understanding the interplay between gut microbiota, epigenetic modifications,
and metabolic health will be essential in developing comprehensive strategies to mitigate
the transgenerational impact of gut microbiota-induced metabolic diseases.
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