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Abstract: For cognitive processes to function well, it is essential that the brain is optimally supplied
with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation
and hemodynamics can be modified with physical activity. To better understand the relationship
between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of
state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such
a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on
cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration
of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the
human brain. However, currently there is no clear standardized procedure regarding the application,
data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is
applied in the field of exercise–cognition science. Therefore, this review aims to summarize the current
methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic
responses during cognitive testing (i) prior and after different physical activities interventions, and (ii)
in cross-sectional studies accounting for the physical fitness level of their participants. Based on the
review of the methodology of 35 as relevant considered publications, we outline recommendations
for future fNIRS studies in the field of exercise–cognition science.
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1. Introduction

Availability of oxygen is crucial for cognitive processes to be intact [1–4] and a lack of oxygen in the
brain leads to lower cognitive performance [1,5]. Emerging evidence suggests that oxygen availability
can be enhanced by physical activity. For example, an acute bout of physical activity increases cognitive
performance and is accompanied by higher levels of oxygenated hemoglobin in the prefrontal areas
of the human brain [6–9]. A similar relationship was noticed in cross-sectional studies, which found
that more hours of weekly physical activity [10] and higher cardiorespiratory fitness levels [11–13] are

J. Clin. Med. 2018, 7, 466; doi:10.3390/jcm7120466 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-3453-090X
https://orcid.org/0000-0001-5034-7174
http://dx.doi.org/10.3390/jcm7120466
http://www.mdpi.com/journal/jcm
http://www.mdpi.com/2077-0383/7/12/466?type=check_update&version=2


J. Clin. Med. 2018, 7, 466 2 of 43

associated with higher cerebral oxygenation levels and superior cognitive performance. However, since
physical-activity-induced neurobiological mechanisms (e.g., cerebral oxygen availability), which may
contribute to improved cognitive performance are not fully understood yet [14–16], it seems helpful
to apply state-of-the-art neuroimaging methods in order to foster our understanding of the effects of
physical activity on cognition [17,18]. Based on the crucial role of oxygen availability for cognition
together with findings suggesting that physical activity positively influences oxygen availability and
cognitive performance, neuroimaging tools that can quantify tissue oxygenation (metabolism) and
hemodynamics (blood flow) seem especially suitable to answer emerging research questions in the field
of exercise–cognition science (for review of emerging research questions please see References [17–20]).
While cerebral oxygenation and hemodynamics can be quantified with functional magnetic resonance
imaging (fMRI), positron-emission-tomography (PET) and functional near-infrared spectroscopy
(fNIRS) [21–24], electroencephalography (EEG) is a frequently used electrophysiological technique to
record the electric signals of the brain [25–28]. However, all mentioned neuroimaging techniques have
unique methodological advantages and disadvantages that have to be traded off with regard to the
intended research purpose.

fMRI is often considered as the gold standard for the assessment of brain activity as it offers
the advantage to measure functional changes across the whole brain with a high spatial resolution
(e.g., <4.0 mm) [29–33]. However, fMRI acquisition costs are relatively high, fMRI is susceptible to
movement artefacts (e.g., requires rigorous head stabilization), fMRI is relatively noisy during the
measurements, fMRI provides a relative low temporal resolution (e.g., ≈0.5 Hz), and fMRI cannot be
used in special cohorts (e.g., individuals with metallic implants or claustrophobia) [29,30,32,34–36].
PET allows the assessment of changes in various substances (e.g., glucose), but PET scans are relatively
expensive and repeated measurements within short time intervals are ethically not feasible due to
the use of radioactive tracer substances [22,31]. EEG, which measures the brain activation directly
and non-invasively based on neuroelectric signals of neurons [37], offers a high temporal resolution
(e.g., >1000 Hz) but suffers from a relatively weak spatial resolution (e.g.,≈5.0–9.0 cm) [27,29,30,38–41].
Furthermore, EEG is relative susceptible to artefacts (e.g., due to sweat or muscle activity), is time
consuming in preparation (e.g., when gel is used), and the obtained signals are hard to interpret for
non-experts [27,29,38,42,43]. Hence, fMRI, PET, and EEG have specific restrictions that hamper their
efficient utilization in exercise–cognition settings (e.g., after an acute bout of physical activity).

fNIRS is an optical neuroimaging technique that is based on the theory of neurovascular coupling
and optical spectroscopy (see Figure 1a,b and Figure 2) [44,45]. As shown in Figure 1b, an increase in
neural activity causes an increase in the oxygen metabolism, which is necessary to satisfy energetic
demands of the neuronal tissue (neurometabolic coupling) [40,46,47]. Within the neuronal oxygen
metabolism, oxygen is consumed to produce energy, leading to a decrease in the concentration of
oxyHb and to an increase in the concentration of deoxyHb [46–48]. Neural activity triggers local
changes in cerebral hemodynamics that induce an intensified blood flow to the activated brain regions
(neurovascular coupling) [40,46,49,50]. Since the local supply of oxygen is greater than its consumption,
in activated brain regions, a higher concentration of oxyHb and a decreased concentration of deoxyHb
is to be observed (see Figure 1b) [40,47].
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Figure 1. (a) Schematic illustration of the neurovascular unit and the changes in cerebral hemodynamics 
and oxygenation induced by neural activity. (b) Exemplary illustration of a possible NIRS montage on 
the human head and the assumed banana-shaped course of detected light of “short-separation channels” 
and of “long-separation channels”. fNIRS, functional near-infrared spectroscopy; CMRO2, cerebral 
metabolic rate of oxygen; ↑, increase; ↓, decrease. 

When applying fNIRS, light with different wavelengths in the near-infrared spectrum is emitted 
by a source on the scalp and after the travelling through different layers (skull, cerebrospinal fluid), this 
light reaches neuronal tissue [39,40,51]. Inside the tissue, the light undergoes absorption and scattering 
that contributes to light attenuation [51–53]. During absorption, the energy of the photons is 
transformed into internal energy of the respective medium (see Figure 2, Photon 1 and 2) [40]. Scattering 
forced the photons to deviate from their initially straight trajectories and increase the length of their 
travelled paths (see Figure 2, Photons 3 and 4) [40,52]. The non-absorbed components of the scattered 
light can be measured by a detector placed on the head’s surface (e.g., see Figure 1a) [39,51]. Based on 
the activity-dependent regional increase of oxyHb and decrease of deoxyHb, the light absorption rate 
of the neuronal tissue in the activated brain region changes and influences, in turn, light attenuation 
[40,51,54]. The regional changes in light absorption as a function of neuronal activity and the different 
light absorption spectra of the chromophores (e.g., λ > 800 nm mainly oxyHb, λ < 800 nm mainly 
deoxyHb) allow for the non-invasive quantification of local changes in cortical oxyHb and deoxyHb 
concentration via the modified Beer–Lambert law [39,40,51]. The cortical concentration changes in 
oxyHb and deoxyHb are used as an indirect indicator of regional brain activation (such as in functional 
magnetic resonance imaging) [36,39,54]. The basic principles of fNIRS are summarized in Figures 1 and 
2. We will focus on the description of continuous wave fNIRS because commercially available fNIRS 
devices are mainly based on the continuous wave technology [40,47]. In continuous-wave fNIRS the 
absolute changes in the attenuation coefficient are determined (e.g., difference between the intensity of 
the emitted light and detector-determined light intensity; see Figure 2). Thus, the fNIRS signals obtained 
reflect relative concentration changes (e.g., relative to the first measured values) [47,49,55–57]. A 
detailed description about other types of NIRS devices is given in the supplementary material. 

Figure 1. (a) Schematic illustration of the neurovascular unit and the changes in cerebral hemodynamics
and oxygenation induced by neural activity. (b) Exemplary illustration of a possible NIRS montage
on the human head and the assumed banana-shaped course of detected light of “short-separation
channels” and of “long-separation channels”. fNIRS, functional near-infrared spectroscopy; CMRO2,
cerebral metabolic rate of oxygen; ↑, increase; ↓, decrease.

When applying fNIRS, light with different wavelengths in the near-infrared spectrum is emitted
by a source on the scalp and after the travelling through different layers (skull, cerebrospinal fluid),
this light reaches neuronal tissue [39,40,51]. Inside the tissue, the light undergoes absorption and
scattering that contributes to light attenuation [51–53]. During absorption, the energy of the photons
is transformed into internal energy of the respective medium (see Figure 2, Photon 1 and 2) [40].
Scattering forced the photons to deviate from their initially straight trajectories and increase the length
of their travelled paths (see Figure 2, Photons 3 and 4) [40,52]. The non-absorbed components of the
scattered light can be measured by a detector placed on the head’s surface (e.g., see Figure 1a) [39,51].
Based on the activity-dependent regional increase of oxyHb and decrease of deoxyHb, the light
absorption rate of the neuronal tissue in the activated brain region changes and influences, in turn,
light attenuation [40,51,54]. The regional changes in light absorption as a function of neuronal
activity and the different light absorption spectra of the chromophores (e.g., λ > 800 nm mainly
oxyHb, λ < 800 nm mainly deoxyHb) allow for the non-invasive quantification of local changes in
cortical oxyHb and deoxyHb concentration via the modified Beer–Lambert law [39,40,51]. The cortical
concentration changes in oxyHb and deoxyHb are used as an indirect indicator of regional brain
activation (such as in functional magnetic resonance imaging) [36,39,54]. The basic principles of
fNIRS are summarized in Figures 1 and 2. We will focus on the description of continuous-wave
fNIRS because commercially available fNIRS devices are mainly based on the continuous-wave
technology [40,47]. In continuous-wave fNIRS the absolute changes in the attenuation coefficient
are determined (e.g., difference between the intensity of the emitted light and detector-determined
light intensity; see Figure 2). Thus, the fNIRS signals obtained reflect relative concentration changes
(e.g., relative to the first measured values) [47,49,55–57]. A detailed description about other types of
NIRS devices is given in the Supplementary Material.
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Figure 2. Schematic illustration of light propagation through the neuronal tissue. On the left side of the 
illustration, possible photon paths for different wavelengths are depicted (red colors represent 
wavelengths of λ > 800 nm (mainly absorbed by oxyHb—see Photon 1), whereas yellow colors represent 
wavelengths of λ < 800 nm (mainly absorbed by deoxyHb—see Photon 2). Path 3 represents a photon 
that undergoes some scattering events before being recorded by a detector. Path 4 represents a ballistic 
photon. Path 5 represents a photon that, after some scattering events, is not recorded by a detector (lost 
due to forward scattering). Path 6 represents a photon that is lost due to backward scattering. In the right 
part of the illustration, the formulas to calculate concentration changes in chromophores are shown 
(based on continuous wave NIRS). The symbols have the following meanings: A: light attenuation, or 
ΔΑ(λ): changes in light attenuation at a certain wavelength (λ); ΙΙn: intensity of emitted light; ΙOut: intensity 
of recorded light; ε(λ): the extinction coefficient of the chromophore at a certain wavelength (λ); Δc: 
changes in chromophore concentration; d: separation (distance) between source and detector; DPF(λ): 
differential path length factor (DPF) for a certain wavelength (λ); g(λ): scattering at a certain wavelength 
(λ), where g is cancelled out since it is assumed to be negligible when only light attenuation (as in 
continuous wave NIRS) is considered [45,54,58]. 

fNIRS provides some advantages that make it well-situated to investigate the effects of physical 
activity on cognitive performance and cerebral oxygenation/ hemodynamics. Advantages of fNIRS 
compared to other neuroimaging techniques (e.g., fMRI and PET) are: non-invasiveness, a relatively 
good spatial (≈ 1.0–3.0 cm) and temporal resolution (normally up to 10 Hz), portability, a low noise level 
during operation, relative low acquisition costs, robustness against motion artefacts that make a strict 
immobilization or sedation of participants unnecessary, the possibility to investigate cortical activity in 
individuals with metallic implants or claustrophobia, and the opportunity to conduct repeated 
measures in short time intervals (since no radioactive tracer substance as in PET is used) 
[21,22,29,30,32,34,38,40,41,52,54,59]. The mentioned advantages make fNIRS eminently suitable for 
application in special cohorts such as children [29,34] or neurological patients [23,60,61]. Furthermore, 
while fMRI mainly relies on the paramagnetic properties of deoxyHb, fNIRS can be used to quantify 
both changes of deoxyHb and of oxyHb [53,54,58,59,62]. The simultaneous assessment of deoxyHb and 
oxyHb allows the quantification of further markers of cortical activation such as tissue oxygenation 
(TOI: oxyHb concentration/total hemoglobin concentration) and cortical hemodynamics (blood volume, 
total hemoglobin concentration (totHb)) [22,30,54,58]. Moreover, fNIRS is even capable of evaluating 
changes in cytochrome oxidase levels, which constitute a marker of the cellular oxygen metabolism [63–
67]. On the downside, fNIRS is limited to cortical layers [32,40,52] because the penetration depth is, in 
general, less than half of the source-detector separation [54,62,68]. Furthermore, fNIRS suffers from its 
vulnerability to changes in scalp blood flow and to changes in systemic physiology (e.g., increase in 
heart rate) [30,32,40,69–72]. Of note, while fNIRS has proven to be a useful and reliable tool in some 
research fields (e.g., motor control) [25,36,73], currently no standardized procedures regarding the 
processing of fNIRS data are available [21,30,38,41,74]. Moreover, the methods used to measure cortical 
hemodynamics during cognitive tasks are diverse [74]. There is no consensus yet regarding a 
standardized methodology (e.g., application, processing and analysis) that limits the comparability 
across studies because numerous parameters vary in the (pre-)processing and analysis algorithms (e.g., 
value of differential path length factor, filter cut-off frequencies). While first attempts were undertaken 

Figure 2. Schematic illustration of light propagation through the neuronal tissue. On the left side of
the illustration, possible photon paths for different wavelengths are depicted (red colors represent
wavelengths of λ > 800 nm (mainly absorbed by oxyHb—see Photon 1), whereas yellow colors represent
wavelengths of λ < 800 nm (mainly absorbed by deoxyHb—see Photon 2). Path 3 represents a photon
that undergoes some scattering events before being recorded by a detector. Path 4 represents a ballistic
photon. Path 5 represents a photon that, after some scattering events, is not recorded by a detector
(lost due to forward scattering). Path 6 represents a photon that is lost due to backward scattering.
In the right part of the illustration, the formulas to calculate concentration changes in chromophores
are shown (based on continuous-wave NIRS). The symbols have the following meanings: A: light
attenuation, or ∆A(λ): changes in light attenuation at a certain wavelength (λ); IIn: intensity of emitted
light; IOut: intensity of recorded light; ε(λ): the extinction coefficient of the chromophore at a certain
wavelength (λ); ∆c: changes in chromophore concentration; d: separation (distance) between source
and detector; DPF(λ): differential path length factor (DPF) for a certain wavelength (λ); g(λ): scattering
at a certain wavelength (λ), where g is cancelled out since it is assumed to be negligible when only light
attenuation (as in continuous-wave NIRS) is considered [45,54,58].

fNIRS provides some advantages that make it well-situated to investigate the effects of physical
activity on cognitive performance and cerebral oxygenation/hemodynamics. Advantages of fNIRS
compared to other neuroimaging techniques (e.g., fMRI and PET) are: non-invasiveness, a relatively
good spatial (≈1.0–3.0 cm) and temporal resolution (normally up to 10 Hz), portability, a low
noise level during operation, relative low acquisition costs, robustness against motion artefacts that
make a strict immobilization or sedation of participants unnecessary, the possibility to investigate
cortical activity in individuals with metallic implants or claustrophobia, and the opportunity to
conduct repeated measures in short time intervals (since no radioactive tracer substance as in
PET is used) [21,22,29,30,32,34,38,40,41,52,54,59]. The mentioned advantages make fNIRS eminently
suitable for application in special cohorts such as children [29,34] or neurological patients [23,60,61].
Furthermore, while fMRI mainly relies on the paramagnetic properties of deoxyHb, fNIRS can
be used to quantify both changes of deoxyHb and of oxyHb [53,54,58,59,62]. The simultaneous
assessment of deoxyHb and oxyHb allows the quantification of further markers of cortical activation
such as tissue oxygenation (TOI: oxyHb concentration/total hemoglobin concentration) and cortical
hemodynamics (blood volume, total hemoglobin concentration (totHb)) [22,30,54,58]. Moreover,
fNIRS is even capable of evaluating changes in cytochrome oxidase levels, which constitute
a marker of the cellular oxygen metabolism [63–67]. On the downside, fNIRS is limited to cortical
layers [32,40,52] because the penetration depth is, in general, less than half of the source-detector
separation [54,62,68]. Furthermore, fNIRS suffers from its vulnerability to changes in scalp blood
flow and to changes in systemic physiology (e.g., increase in heart rate) [30,32,40,69–72]. Of
note, while fNIRS has proven to be a useful and reliable tool in some research fields (e.g., motor
control) [25,36,73], currently no standardized procedures regarding the processing of fNIRS data are
available [21,30,38,41,74]. Moreover, the methods used to measure cortical hemodynamics during
cognitive tasks are diverse [74]. There is no consensus yet regarding a standardized methodology
(e.g., application, processing and analysis) that limits the comparability across studies because
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numerous parameters vary in the (pre-)processing and analysis algorithms (e.g., value of differential
path length factor, filter cut-off frequencies). While first attempts were undertaken to standardize the
application, processing, and analysis of fNIRS in other research areas (e.g., motor control) [36,41], in
the field of exercise–cognition science, so far only systematic reviews summarizing the findings but
not the methodology of fNIRS are available [52,75]. Moreover, a systematic review pooling fNIRS
studies investigating the influence of physical activities (e.g., 10 min of cycling) or assessing the
influence of habitual physical activity on the performance of standardized cognitive tests and the
corresponding cortical hemodynamic responses is completely lacking. Since (i) the recommendations
of previously methodologically focused reviews [36,41] are not fully transferable to the field of
exercise–cognition (e.g., due to differences in biasing factors such as the influence of physiological
artefacts on temporal delay between being physically active and cognitive testing), and (ii) the great
interest from various scientific disciplines in the relationship between physical activity, central nervous
system, and cognition (e.g., sport science, neuroscience, psychology), this systematic review aims to
summarize the methodological details and findings of studies investigating the influence of physical
activity on cognition while measuring cortical hemodynamics with fNIRS. Based on the results of this
systematic literature survey, we derive recommendations for future studies.

2. Methods

2.1. Search Strategy and Process

On the 13 October 2018, two independent researchers performed a systematic literature search
in seven electronic databases to identify all relevant studies employing fNIRS to measure cortical
hemodynamics during a standardized cognitive task (i) prior and after a single bout of physical
activities and/or long-term physical exercise programs (>two exercise sessions), and (ii) linking
cortical hemodynamics to measures of physical activity or physical fitness (e.g., cardiorespiratory
fitness) [76]. In all databases, the following search strings were used:

• exercis* OR fitness OR physical activity OR training OR strength OR endurance OR aerobic OR
agility OR cycling OR running OR dance OR dancing OR walking OR “going outdoor”

• cogniti* OR mental OR executive OR memory OR attention OR “reaction time” OR “response
time” OR processing OR Stroop OR Flanker OR Sternberg OR “Verbal Fluency Task” OR “Tower
of Hanoi” OR “Tower of London” OR “Wisconsin card sorting task” OR “Trail Making Test” OR
“visual search” OR visuospatial OR “decision making” OR oddball OR accuracy OR error

• NIR OR fNIR* OR "functional near-infrared spectroscopy" OR "near-infrared spectroscopy" OR
"functional near-infrared spectroscopic" OR "optical imaging system" OR "optical topography"
OR oxygenation

In PubMed, PsycInfo, CINAHL, and Sportdiscus, no restriction was applied. In Cochrane Library,
we limited the search to “trials,” in Web of Science to “topic,” and in Scopus to “title, abstract,
keywords.” We identified and added four relevant studies [10,77–79] after screening of the references
of the included studies and after searching for further studies of the included workgroups.

Afterwards, the results of the systematic search were loaded in a citation manager, which was
used for further analyses and for removing of the duplicates (see Figure 3).

2.2. Inclusion and Exclusion Criteria

Screening for relevant studies was conducted according to the PICOS-principle [76,80]. PICOS
stands for participants (P), intervention (I), comparisons (C), outcomes (O), and study design (S) [76,80].
All age groups, regardless of pathology, were included given that brain activity had been measured
with fNIRS during a cognitive test prior and after a physical intervention. Furthermore, cross-sectional
studies were included when they had assessed the physical activity level (e.g., via questionnaire) or
the physical fitness level (e.g., cardiorespiratory fitness level) and conducted cognitive testing while
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measuring the cortical hemodynamics with fNIRS. Studies written in a non-English language [81–83],
conducted by performing the cognitive tests without measuring brain activation with fNIRS [84–89],
measuring brain activation during the physical exercises [88–91], and those with a focus on the effect of
nutritional supplement on cognitive performance [92] were excluded from the present literature survey.

2.3. Data Extraction

From the 35 studies considered to be relevant, we extracted information about first author,
year of publication, population characteristics including age, gender, health status, cardiorespiratory
fitness level, exercise characteristics (e.g., intensity, duration, type of exercise), and cognitive testing
(e.g., tested cognitive domain, administration after exercise cessation). Furthermore, information about
fNIRS methodology regarding optode placement, source-detector separation, differential path length
factor (DPF), the applied filter methods, the data processing procedures, data analysis (e.g., markers
of cortical activation), and the main findings were extracted. When articles provided an incomplete
description of their methodology, we contacted the authors via e-mail.

Please note that in this review a single session of physical exercise is referred as “physical activity”
rather than ”physical exercise” because “exercise” is per definition a structured and planned form of
physical activity that is intended to improve or maintain a distinct fitness level [17,93–95].
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Figure 3. Flow chart with information about the search, screening, and selection processes, which led
to the identification of relevant articles included in this review.

3. Results

In the following section, information about methodological approaches (e.g., recording, processing,
and analysis of fNIRS data) and findings of the 35 reviewed studies are provided.
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3.1. fNIRS Optode Placement

The majority of the reviewed studies used the international EEG system for the
placement of the optodes [6–8,11–13,77,79,96–109] and set the source-detector separations at
3.0 cm [6–8,12,77–79,96,99,100,102,104,106,107,109–111]. A detailed overview about the used
source-detector separations utilized in the remaining studies is given in Figure 4a. In two studies,
individual fMRI-scans [111,112], and in seven studies, virtual registration (e.g., using 3-D digitizer),
was performed [6–8,12,109,113,114]. In almost all reviewed studies, the optodes were placed over
distinct parts of the prefrontal cortex. A detailed overview is provided in Table 1.
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frequencies, (d) markers of cortical activation, and (e) timepoints of the cognitive test administration
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hemoglobin; Hz: Hertz; min: minutes; oxyHb: oxygenated hemoglobin; s: seconds; TOI: tissue
oxygenation index; totHb: total hemoglobin.

3.2. fNIRS Experimental Paradigms of Data Recording

In almost all studies baseline brain activation was assessed in a sitting position [6–8,11–13,77–79,
96–111,115–120]. The quantification of baseline brain activation lasted from 2 s [6–8,12,77,106,109] to
10 min [97,116,119]. Other commonly used durations for the evaluation of baseline brain activation
were 10 s [13,79,99,100,107], 30 s [102,104,105,108,120], or 120 s [103,111,118]. An overview about
baseline durations is provided in Figure 4b.

A block design was used in eleven studies [11,13,78,99,100,102–104,107,112,113], whereas an
event-related design was applied in ten studies [6–8,12,77,106,109–111,114]. In the remaining studies,
cognitive testing was performed after the assessment of baseline brain activity [79,96–98,101,105,108,115–120].
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3.3. DPF Values

The differential path length factor (DPF) is a dimensionless correction factor that accounts for the
increase in the optical pathlength caused by the scattering of light in biological tissue and is multiplied
with the source-detector separation to estimate the “true” path length that light has travelled [12,121,122].
A constant wavelength-independent DPF was used in six studies [11,97,101,105,118,119]. In those six studies,
DPF values of 4.0 [97,105,119], 5.9 [101], and 5.93 [11,118] were applied. A constant, wavelength-dependent
DPF with the values of 7.25/6.38 (760 nm/850 nm) was used in two studies [103,110]. Two studies [108,120]
used age-dependent DPF values calculated as described in Duncan et al. [123]. In the remaining studies,
arbitrary units [6–8,12,13,77–79,96,100,102,104,106,107,109,111] or saturation index/tissue oxygenation index
(StO2 or TOI = oxyHb/totHb) [10,105,108,115,116,120], which do not rely on specific DPF values [124,125],
were used.

3.4. fNIRS Signal Filtering

In three studies the filtering of fNIRS signals was conducted using a low-pass filer [13,100,107]
or a high-pass filter [11,97,116]. In eight studies a bandpass filter, which consists of low-pass filter
and high-pass filter, was used [6–8,12,96,103,109,110]. The cut-off frequencies of low-pass filters and
high-pass filters are shown in Figure 4c. In addition to low-pass filters, high-pass filters, bandpass
filters, or—in one study each—filter methods based on principal component analysis (PCA) [11],
Gaussian smoothing [119], or moving averages [79] were applied. In two studies, spike artefact
removal [103,110] was conducted, and in four studies, signals from short-separation channels were
used to correct for superficial artefacts [105,113,116,120].

3.5. Final fNIRS Data Processing

In almost all of the studies reviewed, a baseline correction [6–8,11–13,77–79,97–103,105–109,111,117–120]
and averaging (e.g., across channels, trials and/or distinct time periods) were conducted [6–8,10–13,77,96–99,
101–104,106,107,109–111,115,116,119,120].

In 33 studies, the mean (average) values of the measures of cortical activity (e.g., oxyHb,
deoxyHb, or TOI) were calculated over a distinct time period and were used for further statistical
analysis [6–8,10–13,77–79,96–103,105–117,119,120]. In other studies, the median value of the proxies of
cortical activity over a distinct time period [118] or the peak value obtained during the task period [104]
were used to perform the statistical analysis. The fNIRS data of the entire task period were used for
averaging and statistical analysis in 18 studies [11,79,97–103,105,107,108,113,116–120]. As outlined in
the following, 17 studies used different time periods for the subsequent statistical analysis: 4–11 s after
trial onset [6,8,106,109], 6–9 s after trial onset [12,77], 6–10 s after trial onset [114], 6–8 s after trial onset
for oxyHb, and 7–9 s after trial onset for deoxyHb [7], first 10 s after trial onset [115], 2 s before trial
onset to 13.5 s after trial onset [111], 5 to 19.2 s after the onset of stimulation [112], first 4 s of a trial
for the preparatory period and 4–12 s after trial onset for regulatory period [110], time to peak [104],
a 12 s time period [96], 90 s prior onset of cognitive testing [10], last 10 s of task period for regular
statistical analysis and 100-s stimulation windows for slope method analysis [13] and a 6-s delayed
boxcar function convolved with a Gaussian kernel of dispersion of 6-s full-width at half-maximum for
oxyHb [78].

The cortical activity was assessed in twelve studies using soley oxyHb [77–79,96,99,100,103,104,
106,107,111,113]; in eleven studies using oxyHb and deoxyHb [6–8,12,13,98,102,108,109,112,114]; in nine
studies using oxyHb, deoxyHb, and totHb [11,97,101,105,110,117–120], and in six studies using a tissue
oxygenation/saturation index [10,105,108,115,116,120] (for overview see Figure 4d).

In the majority of reviewed studies, statistical inference analysis was conducted using parametric
methods such as analysis of variance (e.g., ANOVA) [6–8,11,13,77,96,97,101–103,105,107–109,113–117,119,120]
or t-test(s) [78,79,98,99,104,111]. To account for the multiple comparison problem, a Bonferroni correction
was used most frequently in the studies reviewed [6,8,77,97,102,105,107,109,110,113,114,116,119].
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3.6. Cortical Hemodynamics during Cognitive Testing in Response to Physical Activity

In the majority of the reviewed studies cortical hemodynamics were assessed during cognitive
tests targeting executive functions. Thereby, in fifteen studies, a Stroop test [6–8,77,79,96–98,101,106,109,
110,115,116,119], in one study a flanker test [102], a Go/No-Go test [78], and in another one, a random
number generation test [13] were used. In two studies, a modified Sternberg task [99,100], or in one
study, a spatial working memory task [111], were applied to assess the cortical hemodynamic responses
during a short-term working memory task. One study utilized a two-back task to quantify the cortical
hemodynamic responses during working memory assessment [117]. Furthermore, in the remaining
studies, a verbal fluency task [104,107], a cognitive reappraisal task [110], a visual search task [108],
a reaction time task [120], and a combination of Go/No-Go task with a spatial delayed response
task [105] were employed to test cognitive functions while assessing cortical hemodynamics. In most
studies, cognitive tests were administered after a temporal delay of 5 min [8,77,98,108,111,113,116,117]
or 15 min [7,97,99,109,114,115,119] after the cessation of acute physical activities (for an overview see
Figure 4e).

While the aforementioned studies assessed prefrontal activity (e.g., via oxyHb or TOI) before
physical activity, eight studies observed a higher activity of the prefrontal cortex after a single bout of
aerobic activities when there was at least a one-minute delay between cessation of aerobic activities
and beginning of cognitive testing [97–99,109,116,117,119,120]. In six studies, a higher cortical activity
(e.g., higher oxyHb concentration) in prefrontal areas was noticed when the cortical activity after
the cessation of aerobic activities was compared to the control condition (sitting) [6–8,98,100,113].
Furthermore, the activation of the prefrontal cortex during completion of cognitive testing was
influenced by the type of physical activity. For instance, a lower TOI was observed during
cognitive testing after high-intensity resistance activities compared to the TOI obtained after moderate
aerobic activities or no physical activities [115]. Cortical activity did not change significantly after
(i) slow aerobic dance [77], (ii) stretching [108], or (iii) 2 min after maximal exercise test [105].
A significantly lower oxyHb concentration during cognitive testing was noticed (i) after cycling under
normobaric hypoxic conditions [114], and (ii) if the cognitive test was conducted after the cessation of
moderate-intensity cycling [78]. A positive neurobehavioral relationship between measures of cortical
activity in prefrontal cortex (e.g., higher oxyHb concentration) and cognitive performance (e.g., faster
response times) was observed in children [119], in healthy young adults [6,8,105,109], and in healthy
older adults [7]. Whereas in younger adults, concentrations of oxyHb in the left dorsolateral prefrontal
cortex [6,8,109] and the left frontopolar area [8] was associated with reaction times, in healthy, older
adults improved reaction times after ten minutes of moderate-intensity cycling were related to the
concentration of oxyHb in the right frontopolar area [7]. In addition, one study observed that right
ventrolateral oxyHb concentration was enhanced in responders (participants that showed improved
task performance in post-exercise cognitive testing) during low-intensity cycling in comparison to non-
responders [111].

In the long-term physical exercise studies, after a four-week intervention, an increased
concentration of oxyHb in the prefrontal cortex during the cognitive testing was associated with higher
weight loss [96]. Furthermore, distinct cortical hemodynamic responses during executive tests were
observed after training programs with different exercise characteristics [101], but a 24 weeks Tai-Chi
intervention did not significantly change the oxyHb concentration during the cognitive testing [79].

In cross-sectional studies, a higher level of cardiovascular fitness [11–13] or higher level of
habitual physical activity [104,106,107,110,118] were associated with measures of cortical activity
in the prefrontal cortex during the cognitive testing (e.g., higher oxyHb concentration and faster
response times). Furthermore, in young adults, the area under the fNIRS curve (during cognitive
testing) in the prefrontal cortex was associated with total sleep time [104]. In children, high levels
of moderate-to-vigorous physical activity were not linked to higher oxyHb levels during cognitive
testing [103]. A more detailed overview about the findings of the reviewed studies is provided in
Table 1.
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Table 1. Overview about the population characteristics, fNIRS methodology and data processing, exercise characteristics and cognitive testing, and main outcomes of
reviewed studies.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Studies conducting an acute bout of physical activity

Ando et al. [120] Healthy young adults
n = 10 m/25.1 ± 3.4

After cycling vs. prior cycling (normoxia):

- ↑ oxyHb and TOI in rt. PFC during CT
rt. PFC

Bediz et al. [117]
Healthy young adults

HP n = 18 m/21.0 ± 2.6
LP n = 17 m/20.6 ± 2.1

After cycling vs. prior cycling:

- ↑ oxyHb and total Hb in md. PFC during CT in
both groups

- ↑ deoxyHb in md. PFC during CT in HP
- ↑ oxyHb and totHb in lt. and md. PFC during CT in HP
- PP is correlated with oxyHb

lt., rt. and md. PFC

Byun et al. [8] Healthy young adults
n = 25 (12 f, 13 m)/20.6 ± 1.0

After cycling vs. control condition (sitting):

- ↑ oxyHb in lt. DLPFC and lt. FPA during CT
- oxyHb in lt. DLPFC and lt. FPA are associated with RT

in CT

lt. and rt. DLPFC, VLPFC; FPA

Chang et al. [115]

Healthy young adults
HC n = 9 f/21.8 ± 1.4
HIR n = 9 f/21.1 ± 1.6
MIC n = 9 f/20.4 ± 1.5
HIA n = 9 f/22.1 ± 1.4

Post-test (neutral condition):

- ↓ TOI in lt. PFC (HIR vs. CON/MIC)

Post-test (incongruent condition):

- ↓ TOI in lt. PFC (HIR vs. CON/MIC)
- ↓ TOI in rt. PFC (HIR vs. CON/MIC/HIA)

lt. and rt. PFC

Endo et al. [98] Healthy young adults
n = 13 (8 f, 5 m)/23.0 ± 1.0

After cycling vs. prior cycling:

- ↑ oxyHb in DLPFC during CT (40% and 60% intensity)

After cycling vs. control condition (sitting):

- ↑ oxyHb in DLPFC during CT (60% intensity) (results for
15 min exercise condition/test administration 5 min
after exercise cessation)

lt. and/or rt. DLPFC

Faulkner et al. [116] Healthy young adults
n = 17 m/24.6 ± 4.3

After cycling vs. prior cylcing:

- ↑ rSO2 in PFC during CT
lt. and rt. PFC
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Table 1. Cont.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Faulkner et al. [97]
Patients with TIA and HC

TIA n = 11 (2 f, 9 m)/65.0 ± 10.0
HC n = 15 (2 f, 13 m)/62.0 ± 7.0

After cycling vs. prior cycling:

- ↑ oxyHb, deoxyHb and totHb in PFC during CT (for test
administration 1.5 min after exercise cessation)

dominant side of PFC 1

Hyodo et al. [7] Healthy older adults
n = 16 (5 f, 28 m)/69.3 ± 3.5

After cycling vs. control condition (sitting):

- ↑ oxyHb in rt. FPA during CT
- oxyHb in rt. FPA is associated with RT in CT

lt. and rt. DLPFC, VLPFC; FPA

Hyodo et al. [77] Healthy older adults
n = 13 (6 f, 7 m)/69.7 ± 2.7 (f); 69.3 ± 2.8 (m)

Cycling vs. dancing:

- no significant differences between timepoints or groups
lt. and rt. DLPFC, VLPFC; FPA

Kujach et al. [109] Healthy, sedentary young adults
n = 25 (9 f, 16 m)/20.7 ± 1.9 (f); 21.1 ± 1.9 (m)

After cycling vs. prior cycling:

- ↑ oxyHb in lt. DLPFC post-exercise during CT
- oxyHb in lt. DLPFC is associated with RT in CT

lt. and rt. DLPFC, VLPFC; FPA

Lambrick et al. [119] Healthy children
n = 20 (11 f, 9 m)/8.8 ± 0.8

After running vs. prior running:

- ↑ oxyHb and totHb in PFC post-exercise during CT (at all
three time points)

- ↑ oxyHb and totHb in PFC post-exercise during CT (1 min
vs. 15 min and 30 min post exercise)

- total Hb is associated with Stroop completion time (for
intermittent group)

dominant side of PFC 1

Moriya et al. [99] Patients suffering from stroke
n = 11 (4 f, 7 m)/69.6 ± 12.0

After cycling vs. prior cycling:

- ↑ oxyHb in rt. PFC post-exercise during CT
rt. and lt. PFC

Murata et al. [78] Healthy young adults
n = 15 (6 f, 9 m)/21.7 ± 2.4; 21.6 ± 3.0 (f); 21.8 ± 2.2 (m)

After cycling vs. prior cycling:

- ↓ lt. DLPFC and SMA post-exercise during CT (Go-trials)
rt. and lt. DLPFC, SMA

Ochi et al. [114] Healthy young adults
n = 15 (8 f, 7 m)/20.7 ± 2.1 (18-25)

After cycling (normobaric hypoxia) vs. control condition
(sitting/normobaric hypoxia):

- ↓ oxyHb in lt. DLPFC post-exercise during CT
- oxyHb in lt. DLPFC is associated with RT in CT

lt. and rt. DLPFC, VLPFC; FPA
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Table 1. Cont.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Sudo et al. [108]
Healthy young adults

Stretching group n = 8 m/23.9 ± 2.3
Control group n = 8 m/23.8 ± 2.1

After stretching vs. prior stretching:

- oxyHb, deoxyHb and TOI in lt. PFC no significant
differences between timepoints or groups

lt. PFC

Sudo et al. [105]
Healthy young adults

Cycling group n = 18 m/23.2 ± 2.1
Control group n = 14 m/22.3 ± 2.3

After cycling vs. prior cycling:

- oxyHb, deoxyHb, totHb and cerebral oxygenation in rt.
PFC no differences during CT

- ∆cerebral oxygenation (TOI) is associated with ∆
reaction time

rt. PFC

Tsuchiya et al. [113] Healthy young adults
n = 25 (19 f, 6 m)/19.88 ± 0.60 (18-21)

Housework activities vs. control condition:

- ↑ oxyHb (trend) in rt. VLPFC during CT (Stroop
interference score between post- and pre-sessions)

lt. and rt. DLPFC, VLPFC; FPA

Tsujii et al. [100] Healthy older adults
n = 14 (9 f, 7 m)/65.9 ± 1.0

After cycling vs. control condition (sitting):

- ↑ oxyHb in lt. PFC during CT
rt. and lt. PFC

Yamazaki et al. [111] Healthy young adults
n = 14 (6 f, 8 m)/22 ± 0.6

After recumbent cycling vs. prior cycling:

- oxyHb no difference in the ROI’s during CT

Responders vs. Non-Responders 2:

- ↑ (maximum peak) oxyHb in rt. VLPFC during exercise

lt. and rt. DLPFC, VLPFC; FPA

Yanagisawa et al. [6] Healthy young adults
n = 20 (3 f, 17 m)/21.5 ± 4.8

After cycling vs. control condition (sitting):

- ↑ oxyHb in lt. DLPFC post-exercise during CT
- oxyHb in lt. DLPFC is associated with RT in CT

lt. and rt. DLPFC, VLPFC; FPA

Studies conducting long-term physical exercises

Chen et al. [102] Healthy young adults
n = 42 (26 f, 16 m)/22.5 ± 2.0

Post-test vs. pre-test:

- ↑ oxyHb in lt. PFC in BMB (incongruent condition)
lt. and rt. PFC
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Table 1. Cont.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Coetsee et al. [101]

Healthy older adults
HIIT n = 13 (10 f, 3 m)/64.5 ± 6.3
MCT n = 13 (10 f, 3m)/61.6 ± 5.8
ReT n = 22 (15 f, 7 m)/62.4 ± 5.1

CON n = 19 (11 f, 8 m)/62.5 ± 5.6

Post-test vs. pre-test:

- ↑ oxyHb in lt. PFC in CON (naming condition)
- ↑ deoxyHb in lt. PFC in MCT and HIIT (naming and

executive condition)
- ↓ THI in lt. PFC in MCT (naming and executive condition)
- ↓ oxyHb in lt. PFC in ReT (Stroop interference effect)
- ↓ THI in lt. PFC in ReT and MCT (Stroop

interference effect)

lt.and rt. PFC

Wang et al. [79] Healthy older adults
n = 12 (8 f, 4 m)/64.25 ± 3.14 (60 - 68)

Post-test vs. pre-test (after Tai-Chi intervention):

- no significant differences between timepoints
frontal cortex

Xu et al. [96] Obese young adults
n = 31 (12 f, 19 m)/18.2 ± 3.2

Participants with higher weight reduction vs. participants
with lower weight reduction:

- ↑ oxyHb in lt. and rt. DLPFC, VLPFC; FPA during CT
lt. and rt. DLPFC, VLPFC; FPA

Cross-sectional studies

Albinet et al. [13]
Healthy older adults

n = 40 f/60-77
(low-fit group n = 17/high-fit group n = 17)

High-fit group vs. low-fit group:

- ↑ oxyHb in rt. DLPFC
Low-fit group:

- ↑ oxyHb in rt. DLPFC compared to lt. DLPFC
Correlation between hemodynamic responses during CT
and physical fitness:

- relationship between aerobic fitness (assessed via VO2
max) and cognitive performance is partly mediated by
slope coefficient of oxyHb in the rt. DLPFC (at 1.5 s
pace condition)

lt. and rt. DLPFC
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Table 1. Cont.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Cameron et al. [118] Healthy young adults
n = 52 f/20.7 ± 2.3

Correlation between hemodynamic response during CT
and measures of physical activity or cognition

- higher chronic physical activity level is linked to higher
oxyHb and superior cognitive performance

- correlation between oxyHb and deoxyHb with RT
(difficult condition)

rt. PFC

Dupuy et al. [11]

Healthy younger adults
n = 22 f/24.6 ± 3.6 (19-34)

Healthy older adults
n = 36 f/62.9 ± 5.4 (55-72)

High-fit individuals vs. low-fit individuals:

- ↑ oxyHb in rt. inferior frontal gyrus during CT (naming
and executive condition)

- ↑ totHb in rt. inferior frontal gyrus during CT (naming
and executive condition)

lt. and rt., ant. and post. DLPFC
and VLPFC

Fabiani et al. [112]

Healthy, high-fit older adults
n = 20 (11 f, 9 m)/70.3 ± 4.2
Healthy, low-fit older adults
n = 24 (13 f, 11 m)/72.2 ± 5.2

High-fit older adults vs. low-fit older adults:

- VO2 peak is correlated with oxyHb but not
deoxyHb changes

lt. and rt. occipital cortex

Giles et al. [110] Healthy young adults
n = 74 (50 f, 24 m)/19.55 ± 0.27

Correlation between hemodynamic responses during CT
and habitual exercise level:

- greater habitual exercise level is associated with↓
oxyHb and totHb during CT (negative and neutral
pictures/during preparatory period)

ant. PFC and DLPFC

Hyodo et al. [12] Healthy older adults
n = 60 m/70.3 ± 3.2

Correlation between hemodynamic responses during CT
and physical fitness or cognition:

- activation in lt. DLPFC is positively associated with VT
- activation in lt. DLPFC is negatively associated with

Stroop interference time

lt. and rt. DLPFC
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Table 1. Cont.

First Author Sample Characteristics—Number of Participants
(n)/ Mean Age in Years ± SD Main Findings Region of Interest (ROI)

Kato et al. [104] Healthy young adults
n = 23 (10 f, 13 m)/22.0 ± 2.2

Correlation between hemodynamic responses during CT
and measures of physical activity or sleep duration:

- exercise amount is associated with the AUC during CT
- exercise amount is correlated with reaction time

on fNIRS
- percentage of correct responses in CPT-IP are correlated

with peak oxyHb
- total sleep time is associated with the AUC during CT

lt. and rt. frontal areas

Makizako et al. [107] Healthy older adults
n = 20 (10 f, 10 m)/76.1 ± 6.7 (66-89)

Group with high physical activity level vs. group with
low physical activity level:

- ↑ oxyHb in lt. and rt. IFG during CT
lt. and rt. IFG

Matsuda et al. [106] Healthy young adults
n = 40 (15 f, 25 m)/20.4 ± 1.1

Group with high physical activity level vs. group with
low physical activity level:

- ↑ oxyHb in lt. DLPFC during CT (Interference condition)
lt. DLPFC

Mücke et al. [103]
Healthy children

n = 50 (24 f, 26 m)/10.6 ± 0.3
(low MVPA n = 20/high MVPA n = 30)

Group with low MVPA vs. group with high MVPA:

- no significant differences in cortical activity between
group with low MVPA and group with high MVPA

lt. and rt. ant. PFC; lt. and rt.
intermediate and md. frontal

region

Suhr and
Chellenberg [10]

Healthy, older adults
n = 22 (17 f, 5 m)/68.26 ± 8.39 (54-89)

Correlation between hemodynamic response during CT
and measures of physical activity or cognition:

- hours of physical activity are associated with rSO2
- memory performance is correlated with rSO2

lt. and rt. DLPFC

Ant: anterior; AUC: area und the curve; BMB: Baduanjin Mind-Body Intervention; CON: control group; CPT-IP: continuous performance test-identical pairs; CT: cognitive testing; deoxyHb:
deoxygenated hemoglobin; DLPFC: dorsolateral prefrontal cortex; f: female; FPA: frontopolar area; HC: healthy controls; HIA: high-intensity aerobic exercise; HIIT: high-intensity aerobic
interval training; HIR; high-intensity resistance training; HP: high performer; IFG: inferior frontal gyrus; LP: low performer; lt.: left; m: male; MCT: moderate continuous aerobic training;
md.: middle; MIC: moderate-intensity exercise combining resistance training and walking; min: minute; MVPA: moderate-to-vigorous physical activity; n = number of participants; oxyHb:
oxygenated hemoglobin; PFC: prefrontal cortex; post.: posterior; PP: peak performance in exercise test; ROI: region of interest; ReT: resistance training; rt.: right; RT: reaction time; s:
second; SD: standard deviation; SMA: supplementary motor area; THI: total hemoglobin index; TIA: patients with transient ischemic attack; TOI (or rSO2): tissue oxygenation index;
totHb: total hemoglobin; VLPFC: ventrolateral prefrontal cortex; VO2 max/VO2 peak: maximal oxygen uptake; vs.: versus; VT: ventilatory threshold; ↑: significant increase; ↓: significant
decrease / 1 In right-side dominant participants the probe is placed over right prefrontal cortex while in left-side dominant participants the probe is placed over left prefrontal cortex. /
2 Responders are participants who showed improved task performance in cognitive testing conducted at 5 min after cycling. Non-responder showed no significant improvement in
cognitive functions after performing the acute bout of cycling.
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4. Discussion

In the following section, we summarize and discuss the methodology and findings of the 35 studies
reviewed. With regard to (i) our discussion of the obtained findings, and (ii) general considerations
concerning the application and data processing in fNIRS, we derive methodological recommendations
for future studies using fNIRS to investigate the influence of physical activity on cognitive performance
and cortical hemodynamics (see Table 2).

4.1. How Should the fNIRS Optodes be Placed?

A crucial point in neuroscience is the exact localization of functionally active parts of the human
brain [126]. While fNIRS does not provide anatomical information per se, a standardized placement
strategy is important to ensure (i) the comparability between studies (and neuroimaging methods,
e.g., fMRI), and (ii) a reproducible data assessment of the same cortical structures when conducting
repeated measurements [127–130]. The gold standard for anatomical localization of fNIRS optodes is
the co-registration with fMRI [29,131]. The co-registration procedure using fMRI scans may ensure
high accuracy but is often not feasible because it (i) requires an fMRI scanner, (ii) is costly, (iii) is
time consuming, and (iv) may not be used in special cohorts (e.g., children, individuals with metallic
implants or claustrophobia) [131]. Alternatively, a digitizer can be used to register 3-D coordinates of
the fNIRS channels and project their positions onto an anatomical atlas [131,132].

The most common and practical strategy is to use the EEG 10–20 (or 10–10; 10–5) system to
place the optodes [36,61,131,133]. Nearly all fNIRS studies reviewed here used this approach (see
Table 1). The standardized EEG positions can be used for a virtual spatial registration of fNIRS
optodes [132,134–138]. This procedure allows the probabilistic estimation of the most likely MNI
(Montreal Neurological Institute) coordinates of the corresponding fNIRS channels [132,133,136].
Furthermore, EEG positions can be used in conjunction with IBCM (International Consortium for
Brain Mapping) head model to accurately place optodes [139,140]. Freely available toolboxes, such as
the “Optodes Location Decider (fOLD)” [141] or “Array Designer” [142], can support the placement
of the optodes according to the desired cortical region-of-interest (ROI; e.g., derived on the basis
of previous fMRI studies). These approaches enhance the anatomical specificity and sensitivity of
the probe arrangement [141,142]. Another software package, the “ATLAS-viewer” (downloadable
for free), can be applied (i) to ensure that the optodes are placed over a predefined ROI, and (ii) to
calculate a spatial sensitivity profile of the distinct probe arrangement assuring that the used probe
setup is capable of measuring the cortical compartment of the ROI [143]. In order to achieve highly
reproducible hemodynamic responses and to substantially reduce the commonly observed spatial
reposition error [144], it can be advantageous to use a neuronavigation system. Indeed, the spatial error
significantly decreased when neuronavigation was employed, for instance, in transcranial magnetic
stimulation studies [145], but also in fNIRS placing optodes with a neuronavigational device showed
promising results regarding applicability and accuracy [146].

Another crucial point in fNIRS is the separation distance between the source and detector because
the source–detector separation influences the measurement depth [31,54,62,68,147–149]. Most of
the studies reviewed here employed a source–detector separation of 3.0 cm (see Figure 4a). In the
literature, 4.0 cm [147] or 3.0 cm [131,150] are recommended as an optimal source–detector distance for
adults. For children or infants, source–detector separations below 2.0 cm are recommended [29,131].
In general, longer source–detector separations enhance the contribution of cerebral layers to the
obtained hemodynamic signal with the result that with a source–detector separation of 4.0 cm (3.0 cm),
the cerebral tissue contributes to 69% (55%) to the optical signal [151]. Given (i) that at longer
source-detector distances the contribution of cerebral layers to the signal is larger [148,152–154],
(ii) that “too long” source-detector separations (exceeding 4.0–5.0 cm) may degrade the signal quality
because of noisier and weaker light input to the detectors [131,149], and (iii) that application of
“too long channels” reduces spatial resolution (as less channels can be used) [149], we recommend
a source-detector separation of 3.0 to 5.0 cm in adults to ensure (i) that the signal quality is high,
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and (ii) that the fNIRS signal mainly depicts cortical activity. In addition, the freely available toolbox
“Phoebe” can be used, which allows to calculate an objective measure of the signal-to-noise ratio of
the optical signal (based on optode–scalp coupling of the distinct optode) before data recording [155].
These measures can improve the optode–scalp coupling and can, therefore, ensure that the fNIRS data
are recorded with an appropriate signal-to-noise ratio. Furthermore, we recommend the usage of
long-separation and short-separation channels (also known as “short-distance channels”; see “4.4.2.
How should physiological artefacts be removed?”).

4.2. How fNIRS Data be Recorded?

Pivotal for neuroscience experiments assessing task-evoked brain activations is the selection of
an appropriate baseline condition [21,23,156]. Based on the results of the reviewed studies, baseline
brain activation should be assessed in a sitting position to ensure comparability across studies because
spontaneous physiological oscillations (e.g., Mayer waves with a period length of about 10 s), which
could influence the fNIRS signal quality [69,157], are posture dependent [158,159]. Indeed, substantial
changes in oxyHb and deoxyHb concentration [160], as well as in TOI [161], were observed with
changes in body position, which, in turn, possibly limits the comparability across studies using
different body positions for data acquisition (e.g., supine vs sitting). Consequently, it seems also clear
that caution should be paid when findings from fNIRS (e.g., mainly obtained in sitting position) are
compared to findings of fMRI (e.g., mainly obtained in supine position).

However, regarding the duration of baseline data assessment, there are two different approaches
to be found in the reviewed studies (for an overview, see Figure 4b). In one approach, a relatively short
baseline with a maximum of 30 s is used [6–8,12,13,79,99,100,102,104,106,108,109,113,117,120]. Other
studies employ relatively long baseline measurements with more than 1 min duration [11,101,103,118].
For the choice of baseline duration, it is crucial to keep in mind that fNIRS is sensitive to mind
wandering [162]. Mind wandering occurs in approximately half of the wakening hours [163],
especially during situations with low perceptual requirements [164]. Hence, during the baseline
period, which constitutes a situation with low perceptual requirements (e.g., still sitting), it is likely
that mind wandering will occur. The wandering of the mind leads to the processing of task-unrelated
thoughts [165,166] and induces stronger activations in the so-called default network [167]. Activation
of the default network changes the recruitment of the prefrontal cortex [162,168] and may influence
further analytic steps [36]. To prevent mind wandering, Holtzer and colleagues [169,170] incorporated
a simple counting task during the baseline period. This approach could eventually minimize the
potentially disadvantageous effects of mind wandering on the analysis of brain activation. However,
before such a simple counting task can be recommended, its influence on brain activity and the
reproducibility, have to be examined [36].

In addition to mind wandering, it should also be considered that relatively short baseline
durations (e.g., 2 s) are assumed to be more affect by random physiological fluctuations and, as
consequence, previous reviews recommended a baseline duration of ≈10–30 seconds to ensure
appropriate signal-to-noise ratio [68]. Furthermore, especially in studies utilizing block-designs, it
seems preferable to use baselines (and inter-stimulus durations) with approximately the same duration
as the stimulus because (i) the refraction time (time period with reduced responsiveness) is almost
as long as the stimulation phase [171], and (ii) a certain time is required to let the stimulus-evoked
cortical hemodynamic responses return to the baseline level [149]. In contrast, in event-related designs,
shorter time periods are used for the analysis of the baseline (e.g., 2 s before trial onset) than for the
analysis of the cortical hemodynamic responses (e.g., 4–8 s after trial onset) [149,172–174]. Furthermore,
since age affects neurovascular coupling and, in turn, the time-shape of the cortical hemodynamic
response and its return to baseline levels [149,175], age should be considered as a moderating factor
regarding optimal baseline duration. Moreover, it should be considered that the baseline periods
between the tasks should not be a multiplier of the Mayer-wave (e.g., n × 0.1 Hz). Consequently, it is
more appropriate to use, for instance, 15 s than 10 s for a baseline period. In addition, the duration
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of the baseline between trials should vary in their length (e.g., 12–18 s instead of a consistent 12 s) to
diminish possible resonance effects.

However, so far, only the required minimum duration for the assessment of connectivity measures
in fNIRS studies was investigated [176,177], while, to our knowledge, no study has investigated the
optimal duration for baseline brain activity in fNIRS assessment yet. Hence, further investigations
are needed to define optimal characteristics (e.g., duration) for baseline brain activity assessment in
fNIRS [21,36]. Based on the currently available knowledge, the appropriate baseline duration should
be chosen carefully and influencing factors, such as (i) mind wandering, (ii) random physiological
fluctuations, (iii) study design (block design versus event-related design), and (iv) age of participants,
should be taken into account [149].

In the reviewed studies, both block and event-related designs were commonly applied. The block
design provides, for instance, the advantage of an adequate signal-to-noise ratio [178–180]; the obtained
results are robust [181] and statistical power is high [179,182]. Disadvantages of the block design
are (i) the impossibility of performing a trial-to-trial analysis as in event-related designs [181,183],
and (ii) the occurrence of cancelling effects [184]. However, a detailed discussion of the advantages
and disadvantages of different study designs in neuroimaging is beyond the scope of this article and
the interested reader may find valuable information in the referenced literature [181,183,185].

4.3. How Should the “Optimal” Value for the DPF be Found?

DPF is a dimensionless correction factor that accounts for the increase in the optical pathlength
caused by the scattering of light in biological tissue and is multiplied by the source–detector
separation to estimate the “true” path length which light has travelled [23,52,121,122]. In the modified
Beer–Lambert law, the DPF is used to calculate chromophore concentrations (e.g., oxyHb and deoxyHb;
see Figure 2) [186,187]. If the DPF is calculated inaccurately, serious cross-talk error could occur in
the determined fNIRS parameters [188], which, in turn, alter the findings and negatively affects the
conclusion drawn. Given that the DPF is an such important factor, it is obviously that he should be
precisely determined [47,122,123,188–192].

The usage of constant DPF values seems less-than-ideal because DPF values vary largely across
individuals [122,123,193,194] and depend on (i) the wavelength used [122,123,192,194], (ii) the cortical
area measured [122,123,190,192,195,196], (iii) the participants’ age [122,123,192,197], (iv) the size of the
detector area [189], and (v) the source–detector separation [189]. Furthermore, as recently observed,
the DPF can also change during the experiment [198]. Hence, we recommend the use of formulas
allowing the calculation of individual, age-specific (and wavelength-specific) DPF values [122,123]
or the direct quantification of the DPF value using frequency- or time-domain fNIRS (optimal
solution) [36]. Arbitrary units and saturation or tissue oxygenation indexes, which has also been used
in the reviewed studies, provide the advantage that they do not rely on specific DPF values [124,125].

4.4. How Should the Artefacts from the fNIRS Data be Removed?

In the fNIRS signal, three main sources of noise are present: (i) instrumental noise (e.g., low
frequency drifts and short noise produced by light instabilities of light sources), (ii) motion-related
artefacts (e.g., baseline shifts evoked by movements), and (iii) physiological oscillations (e.g., due heart
beats—0.5 to 2.0 Hz, Mayer waves—0.07 to 0.13 Hz; and respiration—0.2 to 0.4 Hz) [47,69,199–203].
To remove those artefacts and physiological components, low-pass filters (e.g., to remove heart rate
artefacts) and high-pass filters (e.g., to remove instrumental noise) are employed [29,36,47,69,204].
In most of the reviewed studies, band-pass filters (consisting of low- and high-pass filters) with
a cut-off frequency of 0.7 Hz or 0.3 Hz for the low-pass filter and 0.04 Hz for the high-pass filter
were applied (Figure 4c and Table S1 in Supplementary Material). Recent reviews recommend cut-off
frequencies in the range of 0.5 Hz for low-pass filters and 0.01 Hz for high-pass filters [36,56,205,206].
However, the selection of appropriate filter frequencies in functional neuroimaging also depends on
the stimulus protocol [207,208]. Hence, we recommend choosing the cut-off frequencies for (band-pass)
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filtering with care in order to avoid the unintended removal of task-evoked cortical hemodynamic
responses [204].

As an alternative to the FIR/IIR bandpass filter, we recommend the use of the Savitzky-Golay
filter [209], which is widely applied in fNIRS studies [210–212] and ensures that mostly non-related
components of the evoked hemodynamic response could be removed, whereas task-related
components are preserved [213]. Furthermore, the data obtained from resting-state functional
connectivity could also be used to substantially reduce trial-to-trial variability (e.g., arising from
low-frequency spontaneous fluctuations) in fNIRS studies [214]. In addition, it is advisable to use
more sophisticated filter methods to remove physiological and motion-related noise [36,204–206],
which cannot be removed by simple band-pass-filtering (e.g., respiration [204,215]). Examples of such
advanced filter methods for the removal of motion-related and physiological noise are given in the
next sections.

Additionally, open-source toolboxes such as “HOMER” [204], “NIRS Brain AnalyzIR” [216],
“POTATo” [217], “FC-FNIRS” [218], “NIRS-SPM” [219] or “NIRS Analysis Package” [220],
“NeuroDOT” [221], or “NIRSTORM” [222] could be used to process and analyze fNIRS data.

4.4.1. How Should Motion-Related Artefacts be Removed?

To remove motion-related artefacts in fNIRS data, a collection of methods is available [199]
including task-related component analysis [223–225], correlation-based signal improvement [226],
autoregressive algorithm based filters [227], Kalman filter [228], Wiener filter [229], wavelet
based filters [201,230–233], accelerometer-based filter methods [234], principal component
analysis [201,235,236], Temporal Derivative Distribution Repair method [237], and/or methods based
on signal reconstruction using an artificial neural network [238].

Interestingly, sophisticated filter methods like principal component analysis (PCA) were only
used in one study so far [11], leaving the potential to optimize data quality with these filter methods
in future studies. Wavelet filters or spline interpolation seem especially favorable to remove motion
artefacts (e.g., produced by speaking during the cognitive tests) [36,205,206], whereas sudden shifts in
fNIRS data (baseline shifts) could be removed using the approach developed by Scholkmann et al. [202].
Remarkably, hybrid filter techniques (e.g., combining spline interpolation method and Savitzky–Golay
filtering) provide reasonable improvements in motion artefact removal (e.g., compared to existing
approaches such as wavelet filters) [239]. Hence, the application of high-performing filter methods
(e.g., hybrid filter methods) should be considered in future studies [239]. Furthermore, movement
artefacts can also be reduced by applying multi-distance configurations of the NIRS channels, resulting
in a more stable acquisition of the signals [240].

4.4.2. How Should Physiological Artefacts be Removed?

Since a vast amount of literature shows that fNIRS is vulnerable to physiological noise, such
as blood flow changes in the extracerebral compartment [30,70,210,211,241–252], which may cause
false positive results [69], these artefacts should be reduced. A powerful tool to reduce extracerebral
physiological noise is to use a combination of NIRS light channels with a short source–detector
separation and with a long source–detector separation [61,152,210,211,253–260]. The integration
of short-separation channels is suggested based on the following facts. The penetration depth
of light is almost half the source–detector distance [148] so that channels with short separations
(around 1.0 cm) mostly detect signals from non-cerebral layers [61,68,243,256,261] (see Figure 1a).
The signals from these extracerebral layers can then be used to filter the signals of the “long-separation
channels” (e.g., 3.0 cm source–detector separation; see Figure 1b). The optimal separation for the
short-separation channels may vary across different cortical regions [253,256], but it is generally
accepted that short-separation channels (i) should have a source–detector separation of < 1.0 cm [256],
and (ii) should not be located further away than 1.5 cm from the standard fNIRS channel [253].
While both short-separation channels and long-separation channels were measured only in four
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reviewed studies [105,113,116,120], the application of additional short-separation channels should be
the standard procedure in future studies [61]. However, it should also be noted that short-separation
channels could be more prone to motion artefacts and that the use of “too noisy” short-separation
channels as regressors could introduce additional error in the data analysis [262].

In addition, we recommend the usage of a heart rate monitor. Assessment of the heart rate can be
helpful for the interpretation of the cortical hemodynamic changes measured with fNIRS since (i) the
heart rate is associated with systematic changes in blood flow (blood pressure) [69], (ii) the heart rate
variability provides additional information about the state of the autonomic nervous system [263,264],
(iii) the heart rate variability is associated with cognitive performance and mental workload [265–267],
and (iv) the heart rate is suggested to be a potential marker for the optimal timing of post-exercise
cognitive test administration [268]. Furthermore, devices measuring electrodermal activity, respiration,
or mean arterial pressure may be useful tool for the assessment of systemic changes in bodily functions
that could alter the fNIRS signal [30,69,71,72,249,269,270]. Mean arterial pressure is important in order
to identify the real source of the observed oxygenation changes over the head and to avoid false
positive results (for a review, please see Reference [69]), and future studies should measure fNIRS
signals in parallel with multiple physiological parameters [72,270–272]. The combination of fNIRS
neuroimaging with the parallel measurement and analysis of systemic physiological signals has been
termed “systemic physiological augmented fNIRS” (SPA-FNIRS) recently [72,271].

4.5. How Should the fNIRS Data be Processed after Filtering?

As almost all studies reviewed in this work did so, and based on another methodological fNIRS
review [36], we recommend performing a baseline correction/normalization and averaging across
channels and/or trials after filtering the data. Baseline correction/normalization accounts for the
individual variability of fNIRS data [118,273], while averaging across channels and/or trials enhances
the reproducibility of fNIRS measurements [130,274–276]. However, we strongly recommend reporting
on which criteria the averaging procedures are based (e.g., selected channels belong to the same ROI).

Furthermore, the majority of reviewed studies used mean values calculated over a distinct time
period to analyze cortical activity. The usage of mean values is preferable compared to the use of
peak values because peak values are more dependant on the accurate removal of motion and other
artefacts [277]. In one study the median values over the whole task period were used for statistical
analysis [118]. The median values calculated across a distinct task period are less influenced by outliers
as compared to mean or peak values [278]. As frequently shown [72,210–212,271], median values
are best suited in fNIRS studies with small sample sizes that are otherwise prone to statistical effects
driven by outliers [278]. However, Khan and colleagues [279] propose that several measurement
parameters should be provided (e.g., mean signal value, signal peak, and the sum of peaks) in order
to best describe the brain state [279]. In addition, future studies may use the variability of brain
signals (e.g., oxyHb or deoxyHb) to study the effect of exercise on cognitive performance because the
investigation of variability may allow a deeper understanding of the functioning of the central nervous
system [280–285].

Regarding the temporal window for the analysis, it should be considered that there is
in general a certain delay (e.g., ≈6 s) after stimulus representation and the peak of the
cortical hemodynamic [34,41,59,131,286–288], whereby this latency is influenced by the performed
task [289,290], and that the temporal courses of deoxyHb and oxyHb concentration changes are
different [290–295]. The cortical hemodynamic response does not normally go back to the baseline
level before≈10 s (≈16 s) after stimulus presentation [296,297]. However, a consensus about an optimal
temporal window for analysis has not been achieved yet [131] because what temporal duration is
suited best depends on the used paradigm and the participants’ characteristics (e.g., age).

Regarding the analysis of fNIRS data, there is an ongoing debate regarding which
measure (e.g., oxyHb, deoxyHb, totHB) is the optimal proxy of neuronal activation in the
cortex [29,58,147,298,299]. We recommend assessing and reporting the changes of at least oxyHb
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and deoxyHb because (i) typically neuronal activity is assumed to be mirrored by an increase of
oxyHb and a decrease in deoxyHb [34,48,49,58]; (ii) in deoxyHb signals, less physiological noise is
present [58,70,144,298,300–302], but oxyHb signals have a higher signal-to-noise ratio as compared to
deoxyHb signals [298,303]; (iii) the decrease in deoxyHb [304–307] and the increase in oxyHb [303,308]
are both related to an increase in the BOLD contrast obtained in fMRI; (iv) oxyHb exhibits an
acceptable high reproducibility [127,128,275,309], but deoxyHb is spatially more focused [144,310,311];
(v) deoxyHb sometimes shows an arbitrary and paradoxical signal changes [196,312–315], whereas
oxyHb is assumed to be the more sensitive marker of regional blood flow changes [195,316];
(vi) pathologies may influence neurovascular coupling so that an decrease in deoxyHb does
not necessarily reflect an increase in neural activity [48]; and (vii) single measures (oxyHb or
deoxyHb) may not be sufficient to characterize the neurovascular response of neuronal tissue [293].
Noteworthy, sometimes researchers are confronted with atypical changes in oxyHb and deoxyHb
concentration (e.g., decrease in oxyHb and increase in deoxyHb). There are several explanations for
this phenomenon. Atypical changes in fNIRS signals can be caused in part by systemic physiological
noise [69,71,249], by partial volume effects (e.g., caused by the mixing of signals from different tissue
types) [303,306,317,318], or by the presence of certain pathophysiological changes (e.g., where the
inverse response is perhaps a sign of brain activation) [48]. Furthermore, such inverse hemodynamic
responses (e.g., decrease oxyHb and increase deoxyHb) could also be related to subject-specific
factors (e.g., individual cognitive processes) [318]. However, as of today, this phenomenon is only
partially understood, and an in-depth discussion of current explanative approaches can be found in
Holper et al. [318].

While the optimal way to statistically analyze fNIRS data is still discussed and no standardized
procedure has been established yet [36,69,319,320], the majority of studies reviewed used ANOVAs
to statistically analyze their fNIRS data. If an ANOVA is used for statistical analysis of fNIRS data,
setting ROIs as a factor should be avoided because the optical properties vary systematically across
different ROIs, which could cause systematic biases in the statistical analysis of the data [6–8,109,114].
Furthermore, most studies reviewed used a Bonferroni correction to account for the multiple
comparison problem. Notably, Singh and Dan [321] recommend the use of the false discovery
rate (FDR) instead of the Bonferroni correction since FDR is less conservative than a Bonferroni
correction [322,323]. Hence, future studies using fNIRS to investigate the exercise–cognition interaction
should consider the application of FDR instead of a Bonferroni correction. Moreover, some authors
favor the use of general linear models (GLM) to analyze fNIRS data statistically [219,319,320].
A GLM offers the possibility (i) to take the temporal shape of the hemodynamic response into
account [319], and (ii) to incorporate multiple regressors (e.g., confounding signals such as scalp
blood flow or heart rate) into a single statistical framework [69,320]. The latter point is especially
interesting in (statistical) analysis of fNIRS data since fNIRS signals can be affected by a variety of
artefacts (e.g., motion artefacts or systemic physiological artefacts) influencing the analysis and results
negatively. For instance, if fNIRS data are preprocessed inappropriately (e.g., inappropriate filtering),
so that the statistical assumption is violated, this will increase the type-I error substantially [262,320].
Consequently, an approach to achieve more trustworthy results is the use of sophisticated filter
methods (e.g., describe in Sections 4.4, 4.4.1, and 4.4.2), which appropriately remove artefacts so
that they will no longer violate the assumptions of the statistical model [320]. A second approach
is the application of statistical model correction methods (e.g., adopting the GLM by using “noise
prewhitening”) to ensure that artefacts do not violate any statistical assumption of the used model,
which, in turn, helps to obtain more reliable results [320]. From another point of view, multiple and
different experimental conditions (crossed) and/or multiple measurements per experimental condition
(nested) are regularly used to study the human brain [324,325]. Moreover, researchers are faced with
(i) unbalanced and/or incomplete data sets, and (ii) categorical or continuous confounding variables
(e.g., gender, educational level, responsiveness, genetic background), which have to be considered in
the statistical analysis [324,326,327]. Hence, further fNIRS studies should also consider the application
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of sophisticated statistical methods such as linear mixed-effect models to account for the mentioned
issues [324,325].

To sum up, in general, the statistical methods used should depend on the research question(s)
and the experimental design [36,328]. For instance, whereas in event-related designs, the GLM is
an appropriate method [328], simple statistics (e.g. t-tests) are commonly used in block-design
studies [36,319]. Finally, the statistical methods and procedures applied to analyze fNIRS data
should be chosen carefully and should consider, for instance, the experimental design, data recording
and processing characteristics as well as the distribution of the recorded data (e.g., normal versus
non-normal distributed data) [36]. Since a complete discussion of statistical analyses is beyond the
scope of this review, the interested reader will find valuable and more detailed information in the
referenced literature [219,319,320,329].

4.6. Cortical Hemodynamics during Cognitive Testing in Response to Physical Activity

In general, a higher activity of cortical structures (during cognitive testing) was observed after
the cessation of an acute bout of physical activity (e.g., aerobic activities such as cycling) when
compared to the cortical activity (i) measured before being physically active, or (ii) in a control
condition (e.g., sitting). Since fNIRS signals are substantially affected by systemic physiological
artefacts [70–72,241,242,247–249,251,252,271], it could be assumed that effects of physical activity on
measured cortical oxygenation levels (after being physically active) are mainly caused by the systemic
physiological artefacts (e.g., higher heart rate or superficial blood flow). Indeed, the findings of
a methodological study suggest that fNIRS signals after the cessation of ten minutes of cycling are
influenced up to approximately eight minutes by systemic physiological artefacts (depending on the
intensity of the physical activity) [87]. Hence, the results of studies performing cognitive testing in
close succession to physical activity (<~ 8 min) [8,77,78,97,98,105,108,111,113,116,117,119,120] should
be treated with caution because the observed fNIRS signal changes could be, at least partly, influenced
by systemic physiological artefacts. However, based on the following findings, it also becomes evident
that changes in neuronal activity contributed to the measured fNIRS signal, too. For example, one
study tested cognitive functions after the cessation of cycling and noticed a significantly lower cortical
activity in the prefrontal cortex as compared to cortical activity before cycling [78]. Such decreased
cortical activity after the cessation of moderate-intensity cycling stands in contrast to the to-be-expected
effects of systemic physiological artefacts occurring after being physically active (e.g., higher heart
rate). The latter would presumably induce a higher (but “false positive”) cortical activity. Hence, it
seems reasonable to assume that at least a certain degree of the observed fNIRS signal is of neuronal
origin if during a cognitive test, which was performed after the cessation of moderate-intensity cycling,
a lower cortical activity is noticed [78]. Furthermore, if the observed higher cortical activity after
an acute bout of physical activity was mainly caused by systemic physiological artefacts, the whole
prefrontal cortex should be affected by the systemic physiological changes. Notably, higher cortical
activity was observed only in distinct parts rather than in the whole prefrontal cortex [6–8,109,114]
supporting the notion that the fNIRS signal is at least partly of neuronal origin. This assumption
is further supported by the observation of a positive neurobehavioral relationship between cortical
activity in distinct parts of prefrontal cortex and cognitive performance [6–8,105,109,119]. In addition
to systemic physiological changes, it could be speculated that the commonly observed increase in
cortical activity after being physically active is attributable to learning effects, which may occur in
a repeated-measures design. However, a significantly higher cortical activity during cognitive testing
was even observed in studies employing a counterbalanced order of conditions (e.g., cycling versus
sitting) [6–8]. Hence, it is unlikely that the pronounced cortical activation seen after physical activity is
predominantly caused by learning effects. This assumption is underpinned by findings of decreased
cortical activity in response to learning (e.g., motor learning) [330–332].

The observations that (i) oxyHb concentration did not increase significantly after slow dancing [77],
stretching [108], or after maximal exercise testing [105] is likely to be related to the moderating effects
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of (i) the characteristics of the physical activities (e.g., to low intensity (dancing, stretching)), and (ii) the
study methodology (e.g., time point of cognitive test administration; i.e., 2 min after maximal exercise
test), which are known to influence cognitive performance [17,333–335]. The lower concentration of
oxyHb in DLPFC after cycling under normobaric hypoxic conditions [114] may explain why cognitive
performance is commonly found to be lower after exposure to hypoxia [336].

Regarding long-term exercise studies and cross-sectional studies, the link between a higher
level of cardiorespiratory fitness and/or physical activity and higher levels of cortical
activity [10–13,96,101,104,106,107,112,118] is in accordance with the cardiorespiratory fitness
hypothesis, which claims that cardiorespiratory fitness has a positive influence on cerebrovascular
structure and function [90,337–339]. However, in none of these longitudinal and cross-sectional
studies (e.g., using continuous-wave NIRS), physiological artefacts were corrected by measures of
systemic physiological changes (e.g., extracerebral noise via short-separation channel regression).
While the relationships between measures of cortical activity and cognitive performance [10,12,104,118]
suggest that the fNIRS signals stem to a certain degree from neuronal activity, the application of,
for instance, short-separation channel regression, allowing for a more accurate localization of the
signal origin (extracerebral changes versus neuronal activity changes). As a consequence of the
improved signal quality (e.g. through short-separation channel regression), the conclusions derived
from fNIRS-measured proxies of cortical activity (e.g., oxyHb and deoxyHb) become more valid and
reliable, which, in turn, fosters our understanding of the relationship of physical activity, cortical
hemodynamics and cognition.

To sum up, based on the evidence that (i) systematic artefacts may contaminate fNIRS signals up
to 8 min after being physically active [87], and (ii) higher effect sizes were evident after a temporal
delay compared to cognitive testing immediately after being physically active [333], we recommend
that future studies aimed at investigating the effects of an acute bout of physical activities incorporate
a temporal delay (e.g., ≈8 min) between the cessation of the physical activity and the beginning of
cognitive testing. Furthermore, we recommend the assessment of multiple physiological measures
(see Section 4.4.2 “How Should Physiological Artefacts be Removed?”) to improve the signal quality
and, in turn, validity of the observations.

Additionally, in future studies, follow-up measurements should be undertaken because only
four of the reviewed studies performed follow-up testing [97,98,111,119], which limits our knowledge
about the temporal course of the relationship between physical activity, cortical hemodynamics,
and cognition. Finally, the following general recommendations should also be considered when
designing studies investigating the influence of physical activity on cognition while measuring cortical
hemodynamics with fNIRS:

(i) Chronobiological effects (circadian variability) affects cognitive performance [340–342], although
it is reported that the hemodynamic response is relatively unaffected by circadian variability [343].

(ii) Cognitive tasks that necessitate (inner) speech could induce hypocapnia (i.e. a decrease in
the arterial carbon dioxide (CO2) concentration in the blood), which provokes a cerebral
vasoconstriction and lower cerebral blood flow that results in a reduced concentration of total
hemoglobin and thus also oxygenated and deoxygenated hemoglobin [270,344–346]. Exemplarily,
if the task is changing the respiration (rate or depth) of the subject, the fNIRS data will likely be
influenced by this CO2 effect and will not represent changes in neurovascular coupling primarily.

(iii) Participants should be familiarized with the cognitive test to avoid (or at least minimize) learning
effects [347,348] and to increase the reproducibility of the observed cognitive effects [349].

(iv) The biological sex of the participants influences the relationship between physical activity and
cognition [350–353]. Sex-specific changes are also noticed in fNIRS signals obtained during
cognitive testing [354,355]. Hence, the biological sex of the participants should be considered as
a moderating factor in future studies.
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Table 2. Recommendations for fNIRS application, fNIRS data processing and fNIRS data analysis

fNIRS recording

Optode placement

Optimal solution:

� Use a neuronavigational approach

Alternative solution:

� Use 10-20 (10-10 or 10-5) international EEG-system
â If MRI scan is possible→ Co-registration
â If MRI scan is not possible→ Registration via 3-D-Digitizer or

→ Virtual spatial (probabilistic) registration

Source–detector separation � At least 3.0 cm for “long-separation channels”
� Around 0.8 cm for “short-separation channels”

Baseline recording
� Record baseline in sitting position
� Choose an appropriate baseline duration (e.g., with regard to study design)
� Ensure that the fNIRS channels have a good SNR (e.g., look for blood volume pulsation)

fNIRS data processing: conversion and artefact removal

Conversion of optical density changes into concentration changes of
chromophores (e.g. oxyHb, deoxyHb, totHb)

� Apply modified Beer–Lambert law with appropriate µa and DPF values

- DPF value determination

Optimal solution:

� Direct quantification of DPF values using frequency- or time-domain fNIRS

Alternative solution:

� Use formulas allowing the calculation of individual, age-specific, and wavelength-specific DPF values

Artefact removal
Removal of motion artefacts *

� Use of high-performing methods (e.g., Wavelet filtering or hybrid filter methods)
Removal of physiological artefacts

� Use of high-performing methods (e.g., SDS regression to filter out extracerebral signal components)
General artefact removal � Use a band-pass filtering with appropriate cut-off frequencies (e.g. considering stimulus or task paradigm)

fNIRS data processing: further analysis

Detrending � Perform baseline correction or normalization

Analysis
� Perform averaging across channels and trials or perform GLM analysis #

� Choose an appropriate temporal window (e.g., consider delay in hemodynamic responses)
� Use at least oxyHb and deoxyHb for statistical analysis

deoxyHb: deoxygenated hemoglobin; DPF: differential path length factor; EEG: electroencephalography; fNIRS: functional near-infrared spectroscopy; GLM: general linear model; µa:
absorption coefficient; MRI: magnetic resonance imaging; oxyHb: oxygenated hemoglobin; SDS: short-separation channel (also known as short-distance channel); SNR: signal-to-noise
ratio/* Filtering of motion artefacts can also be conducted on optical density data (before conversion into concentration changes) depending on the used filter methods and/or software
solution. / # Please note, if distinct types of GLM are used (e.g., GLM with model correction methods) the processing steps are divergent from those shown in the table and some of the
given recommendations do not apply in this particular case.
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5. Conclusions

All in all, the application of neuroimaging tools (e.g., fNIRS) is pivotal to better understand the
influence of physical-activity-induced mechanisms on cognitive performance. Based on the advantages
of fNIRS, this neuroimaging method is a promising tool to shed light on physical-activity-induced
functional brain changes (e.g., changes in cortical hemodynamics during cognitive testing). However,
currently no standardized procedures with respect to the application of fNIRS and processing of fNIRS
data in exercise–cognition science have been established which clearly limits the comparability across
studies. To come closer to more standardized protocols, this systematic review aims to summarize
the methodological details of studies applying fNIRS to investigate the influence of physical activity
on cognitive performance and underlying neurobiological processes (e.g., cortical hemodynamics).
Therefore, 35 fNIRS studies were carefully reviewed and based on our finding’s, methodological
recommendations for further fNIRS studies in the field of exercise–cognition were derived (see Table 2).
Hopefully, this methodology-focused, systematic review encourages further research in this field which
is strongly needed to better understand underlying neurobiological mechanisms of exercise–cognition
interaction. A growing knowledge in exercise–cognition interaction may contribute to the development
of more efficient physical intervention approaches [356] aiming to prevent (or deaccelerate the onset of)
age-related cognitive decline which is associated with neurological diseases such as dementia [357–359].

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/7/12/466/s1,
Figure S1: Overview on (a) number of subjects investigated, (b) sampling frequencies (c) wavelengths, (d) number
of channels, (e) differential pathlength factors (DPF), (f) types of physical activities/exercises and (g) durations of
physical activities/exercises. Table S1: Overview about data recording (e.g., used sampling frequency, wavelengths,
number of measurement channels, fNIRS devices, optode placement and source-detector separation), data
processing (e.g., filter frequencies, DPF values, markers of cortical activity) and characteristics of physical activities
(e.g., type, duration and intensity of the physical activity) in the studies reviewed.
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