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Impact of the Number of Iterations in Compressed  
Sensing Reconstruction on Ultrafast Dynamic  

Contrast-enhanced Breast MR Imaging

Hajime Sagawa1, Masako Kataoka1*, Shotaro Kanao2, Natsuko Onishi2,  
Marcel Dominik Nickel3, Masakazu Toi4, and Kaori Togashi2

Purpose:  To assess the impact of the number of iterations of compressed sensing (CS) reconstruction on 
the kinetic parameters and image quality in dynamic contrast-enhanced (DCE)-MRI of the breast, with 
prospectively undersampled CS-accelerated scans.
Materials and Methods:  Breast examinations including ultrafast DCE-MRI using CS were conducted for 
21 patients. Images were reconstructed with different numbers of iterations. The peak enhancement ratio of 
the aorta and wash-in slope, initial area under the curve, and Ktrans of the breast lesions were measured. The 
root mean square error and structural similarity between the images using 50 iterations and images with a 
lower number of iterations were evaluated as criterion for quantitative image evaluation.
Results:  Using an insufficient number of iterations, the contrast-enhanced effect was highly underestimated. 
In all semi-quantitative parameters, the number of iterations that stabilized the parameters in malignant lesions 
was higher than that in benign lesions. At least 15 iterations were needed for semi-quantitative parameters. For 
Ktrans, there were no significant differences between 10 and 50 iterations in both malignant and benign lesions.
Conclusion:  The kinetic parameters using ultrafast DCE-MRI with CS are affected by the number of itera-
tions, especially in malignant lesions. However, if the images are reconstructed with an adequate number of 
iterations, ultrafast DCE-MRI with CS can be a powerful technique having high temporal and spatial 
resolution.
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Introduction
Dynamic contrast-enhanced  (DCE)-MRI is widely used as 
a powerful imaging tool to evaluate breast lesions. For 
DCE-MRI, a contrast agent is injected into the blood stream 
before or during the acquisition of a series of T1-weighted 

images using fast imaging techniques. By analyzing the 
changes of the MR signal intensity over time, semi-quanti-
tative analyses based on the time-intensity curve (TIC) can 
be performed, and quantitative parameters can be estimated 
by fitting pharmacokinetic models. Several studies have 
shown the benefit of qualitative and quantitative kinetic 
parameters for distinguishing malignant from benign 
lesions1–4 and assessing the response of breast cancer to neo-
adjuvant chemotherapy5 and radiation therapy.6 Detailed 
kinetic information, particularly for quantitative kinetic 
parameters, requires high temporal resolutions. On the other 
hand, morphological assessment of the lesion, another 
important feature of lesion characterization, requires high 
spatial resolution. Recently, compressed sensing (CS) has 
become available for the acceleration of dynamic MRI 
acquisitions, which is achieved by enabling the reconstruc-
tion of subsampled data.7 Along with the promising results 
from ultrafast DCE-MRI with much shorter acquisition 
time,8–12 CS is regarded as one of the accelerated methods to 
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use in the clinical setting. Utilization of CS algorithms can 
improve the temporal/spatial resolution of DCE-MRI, and 
several works describing retrospective simulations have 
demonstrated the feasibility of such improvements.9,13,14–16 
Many of the reports on DCE-MRI using CS are retrospec-
tive studies in which fully sampled raw data sets are down-
sampled after data collection. Khalsa and Fessler17 showed 
how the regularization parameters used in CS reconstruction 
affected the TIC. In many studies for optimizing the param-
eters used in the CS reconstruction, the calculation of image 
reconstruction was continued until iterative reconstruction 
converges to get images that satisfy the L1 minimization 
problem. However, because many CS reconstruction tech-
niques are computationally intensive, the generation of 
images using these techniques can take a significant amount 
of time, this not ideal in a clinical settings. With the number 
of iterations in the numerical CS optimization typically 
fixed to avoid prolonged reconstruction times, a careful 
analysis of its effect on the final results is highly desirable, 
in particular to minimize the estimation error in lesion-
enhancement characteristics. The aim of this study was to 
assess the impact of the number of iterations used in CS 
reconstruction on kinetic parameters and the image quality 
in ultrafast DCE-MRI of the breast, with prospectively 
undersampled CS-accelerated scans.

Materials and Methods
Patients
The study was approved by the Institutional Review Board 
with waiver of informed consent, because of the retrospec-
tive collection of the clinical breast MRI data. High-temporal 
CS-accelerated examination was part of the hybrid protocol 
with conventional DCE-MRI with the same total image 
acquisition time as our standard clinical breast DCE-MRI 
protocol. The dataset includes 21 DCE-MRI examinations 
acquired from 20 female and one male (mean 53.9 years; 
range 33–82 years) who underwent clinical breast DCE-
MRI with a high-temporal CS-accelerated examination for 
either the evaluation of suspicious lesions on mammog-
raphy/ultrasonography or preoperative evaluation, from 
December 2015 to March 2016. The raw data of each CS-
accelerated examination were saved and available for pro-
spectively testing various CS reconstruction parameters. 
The diagnosis was pathologically confirmed based on the 
histopathology of surgically excised specimens and/or 
needle core biopsies. There were 18 breast cancers: nine 
invasive carcinomas of no special type, two invasive lob-
ular carcinomas, one mucinous adenocarcinoma, and six 
ductal carcinomas in situ (DCISs). There were three benign 
lesions pathologically confirmed as papilloma (n = 1), 
fibroadenoma (n = 1), and fibroepithelial neoplasm (n = 1). 
The remaining five lesions were diagnosed as benign on 
MRI and followed-up for at least 12 months without 
showing any sign of malignancy. The study population of 

the current analysis was partially overlapped with the  
previous study18 which aimed to visualize breast vessels 
associated with ipsilateral breast lesions.

MRI acquisition
Bilateral breasts were scanned using a 3T system (MAG-
NETOM Skyra, Siemens Healthcare, Erlangen, Germany) 
and an 18-channel dedicated breast coil, with patients in the 
prone position. The DCE-MRI consisted of ultrafast MRI 
using the prototype sequence (from 13 s before to 60 s after 
contrast injection), followed by standard DCE-MRI 
sequence of initial phase (60–120 s), delayed phase  
(300–360 s) and high spatial resolution post-contrast 
images between these two phases (120–300 s). The ultrafast 
DCE-MRI data used for the current analysis were acquired 
using a prototypical non-fat-suppressed 3D volumetric 
interpolated breath-hold examination (VIBE) sequence 
using a variable-density sampling in the phase-encoding 
plane obeying a Gaussian distribution with the following 
imaging parameters: TR = 5.04 ms, TE = 2.46 ms, flip angle 
(FA) = 15°, slice thickness = 2.5 mm, 60 partitions, matrix 
size = 384 × 269, FOV = 360 × 360 mm2, CS acceleration = 
16.5, and temporal resolution = 3.65 s. DCE-MRI was 
sequentially acquired at 20 consecutive time points  
(preceded by 2 s preparing time) with a total acquisition 
time of 75 s. Thirteen seconds after scan commencement, 
0.1 mL/kg gadoteridol was injected at 2 mL/s, followed by 
20 mL of saline flush injected at 2 mL/s. For the analysis of 
the quantitative parameters, pre-contrast T1 maps with B1 
field inhomogeneity correction using the dual-FA method 
(2° and 15°) were acquired.

Compressed sensing image reconstruction
Compressed sensing reconstruction was conducted with the 
following minimization problem:

		  F ( )x Ax y Wx= - +2
2

1l � (1)

where A represents the system matrix including undersam-
pled Fourier transform and coil profiles, x is the reconstructed 
image, y is the measured k-space data, W is a linear operator 
that first performs a Haar wavelet decomposition in both spa-
tial and temporal dimension with a regularization parameter, 
λ. The regularization in this CS reconstruction is done for 
low- and high-frequency components in wavelet space. In 
this study, these regularization parameters were chosen for 
each frequency, 0.002 and 5.000, respectively. The number 
of iterations for a fast iterative shrinkage-thresholding 
algorithm19 optimization using a time-averaged starting  
point = 1, 2, 3, 5, 10, 15, 20, 25, 30, 40, and 50.

The reconstruction was implemented in C++ and inte-
grated into the scanner reconstruction pipeline. Reconstruc-
tions with a varying number of iterations were performed 
retrospectively within the scanner environment on CPU 
system. Reconstruction time per each number of iterations 
was recorded and compared.
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Data analysis
DCE-MRI parameters
Semi-quantitative parameters were derived voxel by voxel 
from the TIC and analyzed using a custom-made Matlab 
(The MathWorks, Inc., Natick, MA, USA) program. The 
semi-quantitative parameters were as follows: wash-in slope 
(WIS) between arrival and peak enhancement time, peak 
enhancement ratio (PER) along the kinetic curve, and initial 
area under the curve (IAUC), which was defined as the area 
from contrast arrival to after 5th phase.

From the DCE-MRI data sets, the quantitative parameter 
Ktrans (the transfer constant of contrast from the plasma to the 
tissue extracellular extravascular space [EES]) was calcu-
lated based on the Tofts20 model using the DCE Tool plug-in 
for Osirix (http://kyungs.bol.ucla.edu/software/DCE_tool/
DCE_tool.html).21 The pharmacokinetic analysis was per-
formed using the population-based arterial input function 
reported by Walker, et al., modified by Frits-Hansen.22 Semi- 
quantitative and quantitative parameters were obtained for 
the selected set of number of iterations.

Quantitative image evaluation
The reconstructed images were evaluated by the root mean 
square error (RMSE) and structural similarity (SSIM). The 
RMSE was calculated as follows:
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where X are the reference images, which were reconstructed 
with the maximum number of iterations (in the present study, 
50), and Y are the images reconstructed with the other 
selected number of iterations.

The SSIM index compares local patterns of pixel intensi-
ties that have been normalized for luminance and contrast.23 
It is based on the idea that the human visual system is good 
at extracting information based on structure:
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where X and Y are the local windows for the reference and 
reconstructed images, respectively, mX and mY are the aver-
ages of X and Y, respectively, sX and sY are the variances of 
X and Y, respectively, and sXY is the covariance of x and y. c1 
= (K1L)2 and c2 = (K2L)2 are the two variables to stabilize the 
division with a weak denominator, where L is the dynamic 
range of the pixel-values, K1 = 0.01 and K2 = 0.03. The SSIM 
index was measured between the images using 50 iterations 
and the remaining selected iterations by the formula above 
using a custom-made Matlab program.

Statistical evaluation
All P-values were two-sided and P ≤ 0.05 were considered 
statistically significant. All statistical analyses were performed 
with EZR software (Saitama Medical Center, Jichi Medical 
University, Saitama, Japan), which is a graphical user inter-
face for R (The R Foundation for Statistical Computing, 
Vienna, Austria). More precisely, it is a modified version of R 
commander designed to add statistical functions frequently 
used in biostatistics. The Dunnett’s test was performed to 
compare DCE-MRI parameters (WIS, PER, IAUC, and Ktrans) 
and the image evaluation values (RMSE and SSIM) between 
images using 50 iterations and the remaining selected 
iterations.

Results
Reconstruction time
The reconstruction time was prolonged as the number of 
iterations increases. DCE-MRI images reconstructed using 
50 iterations required approximately 35 min (Fig. 1).

Effects of the numbers of iterations on  
signal intensity
The images of example lesions reconstructed with different 
numbers of iterations at the different time points are shown 
in Fig. 2. The signal of the aorta (dashed arrow) using one 
iteration pre-contrast (Phase 1) was higher than that using  
50 iterations. Conversely, the signal of the aorta using one 
iteration post-contrast (Phases 10 and 20) was lower than that 
using a higher number of iterations. This tendency was sim-
ilar in the malignant lesion (arrow).

Exemplary results of the TIC for the aorta (a) and malig-
nant lesion (b) for different numbers of iterations are shown 
in Fig. 3. The signal intensity pre-contrast decreased as the 
number of iterations increased. In comparison, the signal 
intensity post-contrast increased as the number of iterations 

Fig. 1  The reconstruction time with different numbers of iterations. 
In total, 1200 images (60 slices × 20 phases) were reconstructed 
with each number of iterations.
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Fig. 2  Images reconstructed using differ-
ent numbers of iterations (top row: one 
iteration; middle row: 15 iterations; bot-
tom row: 50 iterations) at different time 
points (left column: phase 1 [pre-con-
trast]; middle column: phase 10; right 
column: phase 20). On the pre-contrast 
images (Phase 1), the signal of the 
regions of interest, such as aorta (dashed 
arrow) and malignant lesion (arrow) 
using one iteration shows high intensity, 
despite the phase before contrast arrival. 
On the post-contrast images (Phases 10 
and 20), the signal of these regions using 
one iteration is lower than that using 15 
or 50 iterations. compressed sensing (CS) 
reconstruction used in this study was L1 
minimization problem in both spatial 
and temporal direction. In small number 
of iterations, the reconstructed images 
were strongly affected by the regulariza-
tion in time domain. As a result, the error 
in pre-contrast phase and the reduction 
of contrast-enhanced effects occurred.

Fig. 3  Exemplary results for the time- 
intensity curves in the aorta (a) and malig-
nant lesion (b) for different numbers of 
iterations. The signal difference between 
pre- and post-contrast images is higher for 
larger numbers of iterations. This effect is 
larger for the aorta than for the lesion, and 
the required minimum number of itera-
tions stabilizing the time-intensity curve is 
larger for the aorta.

a b

increased. Therefore, the signal difference between the pre- 
and post-contrast images was higher for the larger numbers 
of iterations. This effect was greater for the aorta than for the 
lesion, and the required minimum number of iterations stabi-
lizing the TIC was larger for the aorta.

DCE-MRI parameters
The boxplot of PER for the descending aorta using different 
numbers of iterations (Fig. 4) demonstrated that the PER 
values with < 25 iterations were lower than the values using 

30 iterations. The PER values were not significantly different 
among those using 30 iterations or above.

The boxplots show the values if the semi-quantitative 
parameters (WIS, PER, and IAUC) obtained using different 
number of iterations in malignant and benign lesions  
(Fig. 5a–5f). In all semi-quantitative parameters, the number 
of iterations, which stabilized the parameters in malignant 
lesions, was higher than that in benign lesions. For malignant 
lesions, more than 10, 15, and 15 iterations were required for 
WIS, PER, and IAUC, respectively. Conversely, in benign 
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iterations. There were no significant differences between 10 
and 50 iterations in both malignant and benign lesions.

Quantitative image evaluation
The RMSE and SSIM between the images reconstructed 
using 50 iterations and images reconstructed using fewer 
iterations are shown in Fig. 6. The SSIM values between 50 
and 40 iterations were above 0.998, and the images were 
considered approximately equal. There were no significant 
differences in the RMSE between 30 and 40 iterations, and  
in the SSIM between 25 and 40 iterations.

Discussion
The current analysis demonstrated that DCE-MRI images 
were strongly affected by the number of iterations. CS recon-
struction used in this study was L1 minimization problem in 
both spatial and temporal direction. In small number of itera-
tions, the reconstructed images were strongly affected by the 
regularization in time domain. As a result, the error in pre-
contrast phase and the reduction of contrast-enhanced effects 
occurred (Fig. 2). In the quantitative image evaluation, the 
number of iterations needed was 30 for RMSE and 25 for 
SSIM. Conversely, the number of iterations that stabilized  
the kinetic parameters was higher for malignant lesions, likely 
due to hypervascularity, even though 15 iterations sufficed.  

Fig. 5  Boxplots of semi-quantitative parameters; WIS (a and b), PER (c and d), IAUC (e and f) and Ktrans (g and h) in malignant and benign lesions 
using different numbers of iterations. In all semi-quantitative parameters, the number of iterations that stabilized the parameters (i.e. minimum 
number of iterations in which parameters do not show statistically significant difference from those of 50 iterations) in malignant lesions was 
higher than that in benign lesions. WIS, wash-in slope; IAUC, initial area under the curve; PER, peak enhancement ratio; Ktrans, the transfer con-
stant of contrast from the plasma to the tissue extracellular extra-vascular space. N.S., not significant.

a c
e g

b d f h

lesions, more than 3, 5, and 10 iterations for WIS, PER, and 
IAUC were required, respectively.

Figure 5g and 5h shows the boxplots of the quantitative 
parameter Ktrans in malignant and benign lesions with different 

Fig. 4  Boxplot of the PER in the descending aorta using different 
numbers of iterations. The PER values with less than 25 iterations 
are significantly lower compared to the result using 50 iterations. 
PER, peak enhancement ratio; N.S., not significant.



CS Parameter on U-DCE Breast MRI

205Vol. 18, No. 3

The inconsistency of the image evaluation and the kinetic 
parameters originated from the inclusion of the aorta shows 
the strongest time dependence and, therefore, required a larger 
number of iterations to achieve temporal fidelity. As recon-
struction time increases linearly with the number of iterations, 
the latter should be optimized and set according to the target 
tissue and purpose.

Parallel-imaging (PI) techniques were proposed to accel-
erate data acquisition in MRI using arrays of receiver coils 
with spatially varying sensitivities.24–26 Unfortunately, PI is 
intrinsically associated with a loss in signal-to-noise ratio, 
due to the reduction of the number of data samples acquired. 
In 2006, 2D controlled aliasing in parallel imaging results in 
higher acceleration (CAIPIRINHA) was introduced.27 By 
modifying the phase-encoding sampling strategy, aliasing is 
shifted in a way that exploits the underlying receiver array 
more efficiently. The result is improved the image quality, 
with a more robust and homogenous reconstruction. Further-
more, CAIPIRINHA-Dixon-time-resolved angiography with 
interleaved stochastic trajectories (CDT) volumetric interpo-
lated breath-hold examination (VIBE) which is the combina-
tion of parallel imaging, view sharing, and Dixon water–fat 
separation, provided higher temporal resolution (5 s/time 
point) while preserving diagnostic image quality, in DCE-
MRI of the prostate.28

Unlike PI, however, in the CS used in our study, no com-
plementary information is collected. Using a variety of algo-
rithms, medical images can be successfully compressed 
while preserving diagnostic efficacy, even at compression 
ratios from 9:1 to 25:1.29

Several reports have demonstrated the usability of CS in 
breast DCE-MRI. The optimization of undersampling acqui-
sition with 2D Gaussian distribution and radial undersam-
pling was conducted by Wang et al.13 and Chan et al.16 using 
retrospectively collected data. Sung et al.30 and Raja et al.31 
investigated reconstruction methods for solving CS 
problems. In recent years, studies using prospective data 
acquisition in clinical settings have begun to be published. 
Levine et al.32 proposed the combination of a view sharing 
method and CS. However, view sharing methods sometimes 
suffer from artifacts related to the point-spread-function of 

the undersampling scheme, such as ringing for time-resolved 
imaging of contrast kinetics. Kim et al.33 demonstrated the 
relationship between reconstruction parameters and Ktrans 
using the iterative golden-angle radial sparse parallel 
(iGRASP) MRI technique. The GRASP technique is a 
unique method, in which data are continuously acquired for 
a period of time, and image reconstruction is performed with 
flexible temporal information, such that multiple user-
defined temporal resolutions with distinct numbers and posi-
tions of temporal frames can be obtained from the same 
dataset. In addition to breast imaging, studies using GRASP 
DCE-MRI have reported positive results for head/neck, car-
diac, liver, and prostate imaging.34–37

Nevertheless, CS still has several limitations. First, CS 
reconstruction as an optimization problem is computationally 
more demanding than conventional reconstructions and, there-
fore, needs significant computation time. Most of the reports 
regarding CS referred to undersampling strategy, the sparsi-
fying transform, and reconstruction parameters (especially the 
regularization parameter), and there are few reports referring 
to numerical optimization parameters such as the number of 
iterations. Needless to say, the reconstruction time is pro-
longed as the number of iterations increases, so the optimiza-
tion of the number of iterations is of great importance in 
clinical practice. In this study, DCE-MRI images reconstructed 
using 50 iterations required approximately 35 min, which is 
still too long for a clinical routine. Second, images obtained 
with a CS reconstruction are strongly dependent on the regu-
larization parameters used in the reconstruction, and further-
more, optimal values can be substantially different between 
situations, i.e., the target organ and purpose of the imaging 
(MR angiogram, quantitative imaging, and morphological 
evaluation of the lesion). The specific values apply only for the 
specific application in which they have been used and opti-
mized.38 The challenge most often noted by researchers is the 
difficulty of selecting parameters to optimize the performance 
of CS. In the cases where this challenge has been addressed, 
pilot studies or multiple iterations of image reconstruction 
were necessary to select parameters such as the sampling pat-
tern, regularization parameter, and sparsifying transform to 
optimize results.39

Fig. 6  The root mean square error and 
structural similarity between images 
reconstructed using 50 iterations and 
images reconstructed using fewer iter-
ations. RMSE, root mean square error; 
SSIM, structural similarity; N.S., not 
significant.
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Limitations
This study had several limitations. First, few benign lesions 
were included in this study since the MRI examination was 
conducted on patients with high suspicion of malignancy 
based on prior physical examination, mammography, and 
ultrasound. Second, the optimal reconstruction parameters 
can be dependent on the purpose of the imaging study and 
the target organs; therefore, values reported in this study 
might not be appropriate for different applications. Third, 
DCE-MRI scans commenced only 1 min after injection of 
the contrast agent, and total EES volume (Ve) was not calcu-
lated or evaluated in this study. Fourth, we have no ground-
truth DCE-MR images for comparison because the patients 
underwent a single examination using CS DCE-MRI only.

Conclusion
In conclusion, kinetic parameters using ultrafast DCE-MRI 
with CS are affected by the number of iterations, especially 
in malignant regions. However, if the images are recon-
structed with an adequate number of iterations, ultrafast 
DCE-MRI with CS can be a powerful technique having high 
temporal and spatial resolution.
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