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Abstract: Parkinson’s disease is a neurodegenerative condition initially characterized by the presence
of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates
in Lewy’s Bodies the histopathological hallmark of the disease. Although different gene variants are
linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one
of the most frequent causes of Parkinson’s disease related to genetic mutations. LRRK2 toxicity has
been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged
as underlying causes for Parkinson’s disease, such as the imbalance in LRRK2 homeostasis and
the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we
recapitulate the main LRRK2 pathological mutations that contribute to Parkinson’s disease and the
different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review,
we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation,
such as the chaperone network and the protein-clearing pathways such as the ubiquitin–proteasome
system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to
modulate neurodegeneration in Parkinson’s disease through the regulation of LRRK2, using small
molecules or LRRK2 silencing.

Keywords: Parkinson’s disease; LRRK2; proteostasis; chaperones; autophagy; LRRK2 silencing;
α-synuclein

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition that progresses with age
and causes both mental and physical disability [1,2]. It has been classified as the second
most common disorder derived from neuronal degeneration and its incidence will increase
during the coming years due to population ageing and lifestyle. It is expected that it will af-
fect between 12 and 17 million people worldwide in 2040 [3]. After a prodromal period, PD
is clearly recognized by several movement-associated symptoms such as tremor, bradyki-
nesia and postural imbalance. Motor symptoms aggravate with the progression of the
disease and patients also develop non-motor symptoms, including cognitive impairment,
sleep disorders and gastrointestinal or olfactory disturbances [4]. Clinical symptoms are
mostly derived from the reduction of dopamine levels in the striatum, due to dopaminergic
neuronal loss in the substantia nigra pars compacta (SNpc), and the imbalance between
the dopaminergic and cholinergic activity. Like in other neurodegenerative disorders, the
presence of insoluble aggregates, composed by toxic misfolded proteins, is the hallmark
of the disease. In particular, the deposition of α-synuclein (α-syn) in cytoplasmatic in-
soluble inclusions constitutes the characteristic Lewy’s Bodies and Lewy’s Neurites, the
histopathological hallmark of the disease [5].

Int. J. Mol. Sci. 2022, 23, 6808. https://doi.org/10.3390/ijms23126808 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23126808
https://doi.org/10.3390/ijms23126808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0178-173X
https://orcid.org/0000-0001-8928-3681
https://doi.org/10.3390/ijms23126808
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23126808?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 6808 2 of 18

PD affects both men and women, but there are some gender differences in prevalence,
progression of the disease, clinical manifestations and response to pharmacological thera-
pies. On the one hand, men have a higher risk factor for developing PD than women. The
incidence of the disease is higher in men than women and the age of onset is lower, espe-
cially for the range from 50 to 59 years old [6]. As consequence, women are less represented
in PD clinical trials compared to men [7]. However, men live more years following the
diagnosis of the disease while PD progression is faster in women [8]. Moreover, women PD
patients present more side effects associated with pharmacological therapies. Thus, the risk
of developing dyskinesia and the classical on-off episodes is higher in women [9,10]. Addi-
tionally, there are also some gender differences according to clinical symptoms. Although
cognitive decline is more prevalent in men, depression is more frequent in women [11,12].

Etiologically, around 90% of conditions are sporadic forms and only a small propor-
tion of PD cases are related to gene mutations, with a familial origin maintained over
generations. In addition, the exposure to specific environmental substances in combina-
tion with specific pathogenic variants is also considered a likely cause of dopaminergic
neurodegeneration [13,14].

Different gene mutations, in at least 13 different genes, have been identified as PD-
genetic causes [15,16], with single nucleotide polymorphisms (SNPs) in the Leucine-Rich
Repeat Kinase 2 (LRRK2) gene one of the most frequent. LRRK2 mutations are related
to PD with autosomal dominant inheritance and constitute a major genetic risk factor
for idiopathic PD (iPD) [17–20]. Progressive neuronal dysfunction mediated by mutated
LRRK2 has been linked to changes in enzymatic activity, aberrant protein-folding and
protein aggregation [21].

Proteostasis plays a key role for the maintenance of cell viability by regulating protein
synthesis and degradation. The imbalance in proteostasis leads to aberrant protein-folding
and the deposition of harmful aggregates in some neurodegenerative disorders, also known
as aggregopathies. The most common protein aggregates include amyloid-beta peptide for
Alzheimer’s disease, Huntingtin protein for Huntington’s disease, and α-syn for PD [22].

In this review, we will describe the relevance of LRRK2 homeostasis imbalance as an
underlying cause for PD. We will also discuss the most important cellular mechanisms
involved in preserving LRRK2 homeostasis, and the main pharmacological and genetic
strategies to modulate neurodegeneration produced by LRRK2 mutations.

2. LRRK2 Structure and Functions

LRRK2 is a large protein of 286 kDa composed by 2527 amino acids, which are
distributed in seven structural domains, defined as armadillo domain (Arm), ankyrin
domain (ANK), leucine-rich repeat domain (LRR), ROC domain (Ras of Complex), COR
domain (C-terminal of ROC), kinase domain (kinase) and WD40 repeat domain (WD40).
Functional studies have revealed that LRRK2 is a complex protein with a dual enzymatic
activity, as kinase and GTPase, associated with the central catalytic core of the protein,
composed by the ROC, COR and kinase domains [23] (Figure 1). LRRK2 kinase domain
phosphorylates serine and/or threonine residues in different well-characterized substrates,
including α-syn, β-tubulin [24], endofilin A1 [25], synapsin I [26], N-ethylmaleimide-
sensitive factor (NSF) [27] and several members of Rab family [28], even LRRK2 itself,
through autophosphorylation of serine 1292 [29], threonine 1491 and threonine 2483 [30,31]
among other residues [32]. On the other hand, LRRK2 GTPase activity, which is critical for
kinase activity regulation, is controlled by the ROC-COR tandem through a GTP binding
site [33,34]. The characterization of LRRK2 architecture has also pointed out the relevance of
terminal domains for LRRK2 functions. The ARM, ANK and LRR domains, located at the N-
terminal region, as well as the WD40 domain, at the C-terminal part of the protein constitute
the assembly points for protein–protein interactions [35,36] (Figure 1). Therefore, LRRK2 is
considered a scaffolding protein with the ability to regulate organelle transport [37], with
the homodimer of LRRK2 the active form [38–40]. The LRRK2 signaling network in PD is
complex [41] and arises from its interaction with several membrane proteins of different
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cellular organelles, including synaptic vesicles [42,43], cytoskeleton [24,44], endo-lysosomal
structures [45,46] or mitochondria [47,48].
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3. LRRK2 Pathological Mutations, Gender Influence and Molecular Mechanisms
Linked to Parkinson’s Disease

The functional and binding properties of LRRK2 can be modified by different muta-
tions along LRRK2 structure. Currently, at least, ten pathological variants within the ROC
(N1437H, R1441C/G/H), COR (R1629P, Y1699C/G) and kinase (I2012T, G2019S, I2020T)
regions have been confirmed as dominant familial genetic causes of PD [49] (Figure 1). The
G2019S mutation is the most extensive in idiopathic PD patients (iPD) [50] and familial
inheritance cases [51–53], with variable penetrance among populations. Apart from ge-
netics, gender influence has been analyzed in iPD patients and G2019S mutation carriers.
Idiopathic patients showed more severe clinical features than G2019S mutation carriers
but there were also some differences according to gender. Although iPD men reported
severe motor symptoms and inability to perform daily tasks more frequently, women suf-
fered more non-motor symptoms and more side effects from pharmacological therapy [54].
Moreover, a higher prevalence of PD in female G2019S mutation carriers than in men with
the same mutation [55] has been described. The main mechanism involved in the cellular
toxicity of G2019S variant is an increase in kinase activity [56–59]. A recent study suggests
the stabilization of the kinase domain of this mutant in a conformation that determines a hy-
peractive state for the full-length protein [60]. Moreover, most of PD-linked LRRK2 variants
share the aberrant hyper-kinase and GTPase activity as the main pathological mechanisms
involved in neurotoxicity [61,62]. In addition, mutations in the catalytic core of the protein
can determine LRRK2 protein destabilization, abnormal folding and turnover [63,64], and
produce protein aggregation and the formation of cytoplasmatic inclusion bodies [65].
On the other hand, the relevance of LRRK2 terminal domains in the pathogenesis of PD
has been shown by the identification and characterization of the G2385R and the E193K
mutations, in the WD40 and the ARM domain, respectively (Figure 1). The pathological
variant G2385R is considered a risk factor for sporadic PD in Asian individuals from China,
Korea and Japan [66,67]. It has been shown that gender influence has no effect in the
prevalence of G2385R-associated PD [55]. However, a recent study has demonstrated that
men present a lower risk of cognitive impairment while women are less prone to suffer au-
tonomic dysfunction [68]. G2385R mutation is located at the C-terminal part of the protein
and modifies the biochemical and structural properties of LRRK2. In particular, G2385R
mutation alters LRRK2 dimerization [69] and reinforces or hampers its interaction with
other proteins in different cell lines. For example, G2385R variant enhances binding affinity
of LRRK2 to Hsp90 and Cdc37 proteins in HEK-293FT cells [70], while overexpression of
the G2385R mutant in the N2a cell line reduces LRRK2 interaction with different proteins
such as synapsin I, β-actin, α-tubulin, and 14-3-3 [71]. Interestingly, mutations around
the 2385 position determine different biochemical and functional properties for LRRK2 in
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different species, which could make the characterization of molecular mechanisms that
cause PD in in vitro models harder [72]. The N-terminal domain of LRRK2 also acts as a
scaffold domain and participates in the protein aggregation phenomenon [73]. The patho-
logical variant E193K inside the Arm region interferes with LRRK2 protein-folding and
the supramolecular LRRK2 organization [74]. In summary, although LRRK2 toxicity has
been mainly associated with hyper-kinase activity, this feature is not present in all LRRK2
pathological variants. Instead, alternative mechanisms, such as the loss of LRRK2 stability
and correct folding as well as the altered ability to bind with different interacting proteins,
could be involved in the pathological mechanisms that trigger PD.

4. LRRK2 Homeostasis and Quality-Control Mechanisms

Proteostasis or maintenance of protein homeostasis involves the correct biogenesis,
folding, and conformation of proteins, its proper cellular trafficking and localization, as
well as its suitable degradation within and outside the cells, to guarantee their right
functionality. The dysregulation of any of these processes, either protein synthesis, folding
or elimination contributes to neuronal degeneration and ageing [75]. There are different
cellular mechanisms that deal with the imbalance of protein homeostasis in PD including
stabilization and refolding of target proteins by the chaperone system [76,77], degradation
of misfolded or aggregated proteins through the ubiquitin–proteasome system (UPS), and
the autophagic-lysosomal pathway (ALP) [78,79]. If these strategies fail or are insufficient to
restore protein balance, dangerous insoluble proteins accumulate into intracellular deposits
named aggresomes.

4.1. Chaperone System: Refolding and Degradation of LRRK2 through the
Ubiquitin–Proteasome System

There are several approaches to restore protein homeostasis in the CNS, but chaperones
are recognized as an essential regulatory element of the proteostasis machinery, either under
normal conditions or stressful situations [80]. The chaperone network is composed of highly
conserved and ubiquitously expressed proteins whose main functions include ensuring
correct protein-folding, after de novo synthesis or denaturation, and the stabilization of
target proteins by acquiring their native stable conformation. Moreover, chaperones control
the intracellular transport of proteins to locations where they are functional and promote
the assembling of protein complexes [81–84]. Although there are more than 100 chaperones
already characterized, the heat shock proteins (Hsp) group constitutes the most important
one. Hsp comprises the families Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and small Hsp
(sHsp). These proteins perform different functions to regulate protein homeostasis. For
example, some of them, such as Hsp70, are responsible for stabilizing unfolded proteins by
promoting native refolding, while other chaperones, such as Hsp110 or Hsp104, produce
protein disaggregation and refolding and even a slow aggregation process [85–88].

Chaperones also prevent protein aggregation by increasing protein clearance by UPS
and ALP. On the one hand, misfolded defective soluble proteins that are not correctly
folded are selected for UPS elimination [89]. In a first step of the pathway, the chaperone
Hsp70 [90] and the ubiquitin ligases E1, E2 and E3 tag client proteins by the addition of
ubiquitin motifs on lysine residues [91], and then ubiquitinated proteins are identified by
the 19S proteasomal subunit to eliminate ubiquitin chains, by the specific deubiquitinating
enzymes (DUB): USP14, UCH37 and RPN11 [92]. Finally, the specific protein is unfolded
and destroyed by the proteolytic 20S subunit in small peptides.

It is important to highlight the crucial stabilizing role of the chaperone system un-
der physiological conditions, where LRRK2 wild-type is expressed, and in pathological
situations derived from point mutations along the LRRK2 structure. Most of the LRRK2
variants share defects on structural conformation and therefore strategies oriented to
correct aberrant LRRK2 folding or aggregation are an appropriate alternative to restore
LRRK2 homeostasis. Based on chaperone function, Hsp70 overexpression decreases LRRK2
aggregation, without modifying soluble protein levels, suggesting that Hsp70 could con-
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trol LRRK2 pathological accumulation [93]. The C-terminus of Hsp70-interacting protein
(CHIP) is a chaperone with E3 ubiquitin ligase activity. CHIP expression plays a key role
in LRRK2 folding, accumulation and toxicity. CHIP binds to LRRK2 and ubiquitinates
it to regulate LRRK2 protein-folding and protein levels through proteasomal-dependent
degradation of wild-type and familial mutated forms [94,95]. The variant G2385R LRRK2
shows an increased protein turnover because of the higher affinity for proteins that control
proteasomal degradation, such as Hsp70 and CHIP [96]. Additionally, different studies
have identified the chaperone Hsp90 among the proteins that interact with LRRK2 [97,98].
Hsp90 is essential for controlling LRRK2 stability and steady-state levels of both wild-type
and G2019S mutant. Disruption of Hsp90 activity promotes LRRK2 G2019S proteasomal
degradation, reducing LRRK2 accumulation and neuronal toxicity derived from the hy-
peractivity of G2019S mutation [94,95,99]. Moreover, the regulatory function of Hsp90 to
manage LRRK2 stability has been also demonstrated for the G2385R variant. The inhibition
of Hsp90 leads to the destabilization of the complex and promotes intracellular degradation
of the G2385R mutant [96]. However, this mutation shows a different binding affinity
for the chaperones Hsp90, Hsc70, and CHIP in several species. Both human and mouse
G2385R LRRK2 variants interact with Hsp90, Hsc70, and CHIP, but the mouse mutation
binds strongly to these proteins, which could suggest altered LRRK2 folding and stability
in this specie [72]. Apart from the classical Hsps, the chaperone complex formed by BAG2
and HSC70 binds to LRRK2 and controls its localization in C. elegans [100]. In summary, the
regulating role of molecular chaperones in LRRK2 homeostasis seems to be fundamental to
keep the right balance between LRRK2 folding and degradation by UPS (Figure 2).
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Figure 2. LRRK2 homeostasis and quality-control mechanisms. There are several approaches to
control LRRK2 homeostasis: chaperone system (1), chaperone-mediated autophagy (CMA) and
macroautophagy (2) and the ubiquitin–proteasome system (UBP) (3). LRRK2 dysregulation con-
tributes to α-synuclein (α-syn) aggregation (4), which is also recognized as CMA substrate.

4.2. LRRK2 and the Autophagic-Lysosomal Pathway

Although the proteasomal system is an efficient quality-control mechanism for main-
taining proteostasis in most situations, there are some limitations that require additional
control systems to avoid neuronal degeneration. For example, large aggregates that are not
able to access the proteasomal catalytic core by steric hindrance or situations with deficient
proteasomal function require alternative mechanisms such as the autophagic-lysosomal
pathway (ALP) to guarantee neuronal homeostasis [101].

ALP is an essential quality-control mechanism for the clearance of dysfunctional or-
ganelles and long-lived molecules to ensure the renewal of cellular components. It is a
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complex and tightly regulated catabolic pathway, whose last step involves the lysosomal
degradation of intracellular material. ALP is essential to control protein homeostasis in
the CNS [102]. Suitable autophagic activity is especially relevant for neuronal protein
homeostasis, because neurons are postmitotic cells that are not able to decrease intracellular
toxic content by cell division [103]. The reduction of autophagic activity is one of the major
causes for generating aberrant protein clearance, and contributes to continuous accumu-
lation of dangerous misfolded proteins into cytoplasmatic protein aggregates [104,105],
which are a common pathological feature of the neurodegenerative disorders classified
as proteinopathies, such as PD. Moreover, autophagic efficiency declines with age [106],
which could facilitate the accumulation of proteins in the form of aggregates and potentiate
the spread and progression of PD [107]. For this reason, the stimulation of autophagy has
been proposed as one of the main therapeutic strategies to reduce insoluble intraneuronal
inclusions in PD [108].

ALP can be classified in three different ways according to the initial step of the path-
way: microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy [109].
Microautophagy is the less explored autophagic process, where cytoplasmatic material is di-
rectly engulfed and digested by the lysosomes [110]. A specific version of microautophagy
that requires late endosomes, which are responsible for sequestering and degrading cy-
tosolic proteins in multivesicular bodies (MVB) has been also described [111]. However,
the relationship between LRRK2 and microautophagy has been little explored until now.
On the other hand, CMA is an autophagic pathway that performs lysosomal degradation
of cytosolic proteins that contain the common recognition motif Lys-Phe-Glu-Arg-Gln
(KFERQ) [112]. The cytosolic chaperone heat shock cognate 70 (Hsc70) drives the substrate
translocation to the lysosome through the interaction with the transmembrane receptor
lysosome-associated membrane protein type 2A (LAMP2A) [113], which multimerize
to internalize the substrates into the lysosomes [114]. The relevance of CMA has been
demonstrated in PD [115]. LRRK2 shows eight pentapeptide motifs and it is a classical
substrate for CMA degradation (Figure 2). LRRK2 wild-type levels increase after LAMP2
silencing [116]. Moreover, the G2019S LRRK2 variant and high levels of LRRK2 wild-type
interfere with LAMP2A dynamics, which slow CMA activity and decreases degradation
and clearance not only of LRRK2 but of other CMA substrates such as α-syn, whose
detrimental accumulation potentiates neuronal toxicity [117]. Similar results were con-
firmed for LRRK2 R1441G knock-in mice, where LRRK2 mutant altered CMA, decreasing
α-syn oligomers clearance [118]. These findings highlight that LRRK2 mutants and LRRK2
wild-type overload disrupts protein homeostasis through CMA.

The best characterized autophagic route is macroautophagy, also referred to as au-
tophagy henceforth. It is mainly characterized by the formation of exclusive LC3-BII
tagged-double-membrane vesicles called autophagosomes that finally deliver sequestered
cytosolic cargo to the lysosomes. The multi-step process involves the generation of an
isolated membrane or phagophore that progressively elongates to trap cytosolic material
in a non-selective way (bulk macroautophagy) or after specific recognition and label of
intracellular waste (selective or canonical macroautophagy) [119,120]. Based on the nature
of intracellular cargo sequestered in the autophagosome, autophagy can be classified in
mitophagy (selective degradation of mitochondria) [121], pexophagy (specific degradation
of peroxisomes) [122], and the fashionable lipophagy, lysophagy, reticulophagy, nucle-
ophagy or aggrephagy [123]. Defects on these specialized autophagic alternatives have
been related to PD [124]. The involvement of the LRRK2 native protein, as well as the
contribution of LRRK2 pathogenic mutations in the control of the autophagic pathway,
has been extensively studied in several cellular models [125–130], animal models, such
as Drosophila [131] or mice [132–134] and human tissue [135]. Despite the strong efforts
to characterize how LRRK2 modifies autophagic activity, the results are controversial or
conflicting sometimes in similar models. This fact highlights the huge troubles faced in
obtaining a conclusion about the molecular mechanism that links LRRK2 to autophagy in
PD, therefore this topic remains under discussion [136–138].
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5. Aggresomes and Role of LRRK2 in Spreading α-Synuclein Toxicity

The aggregation of proteins is a phenomenon that usually happens under physio-
logical conditions during ageing, but in some pathological situations such as PD, its rate
accelerates and becomes a key feature of the disease [139]. Aggresomes are cytoplasmatic
insoluble complexes emerged from hydrophobic interactions among defective proteins.
They are considered a type of extra lysosomal waste and initially they are small protein
aggregates that evolve to large cytosolic inclusions [140]. Although aggresomes were
initially considered a protective neuronal strategy to isolate harmful proteins and keep po-
tentially neurotoxic proteins well localized in hydrophobic structures, progressive protein
accumulation in these insoluble deposits can become detrimental for neurons and trigger
neurodegeneration [141,142].

More than 20 years ago, the main component of the classical Lewy’s Bodies and Lewy’s
Neurites, the protein α-syn [143,144]—more precisely, the phosphorylated form at serine
129 (pS129) [145]—was characterized. Intraneuronal inclusions in Parkinson’s patients
are complex structures that also contain LRRK2 [146–148] and a large number of LRRK2
interacting proteins such as the chaperones Hsc70 and Hsp73 [149]. Protein deposition in
cytoplasmatic inclusions is dangerous for neurons for two reasons: on the one hand, the
physiological protein function is lost when the protein is trapped in aggregates and, on the
other hand, individual protein toxicity can be expanded to other neuronal cells in a prion-
like manner [150–152]. Considering this hypothesis, some LRRK2 variants could potentiate
protein transfer to surrounding cells [153]. There is some evidence that corroborates LRRK2
involvement in α-syn aggregation and spread (Figure 2). Interestingly, LRRK2 regulates the
clearance of extracellular α-syn aggregates. G2019S LRRK2 mutated astrocytes showed a
reduced ability to trap and eliminate α-syn compared to LRRK2 wild-type [154]. LRRK2 and
pS129 α-syn co-localize in PD brain samples and LRRK2 promotes its aggregation in some
cellular models [155]. Overexpression of LRRK2 wild-type and G2019S mutant induces
the aggregation of A53T α-syn variant [156], and the LRRK2 G2019S variant enhanced
abnormal α-syn aggregation in Lewy’s Bodies in Parkinson’s patients [147], in human-
induced pluripotent stem cell-derived (iPSC) neurons, and PD mouse models [157–162],
confirming the involvement of LRRK2 itself and the importance of kinase activity of
the LRRK2 G2019S mutant in phosphorylation and the progression of α-syn pathology.
Moreover, LRRK2 increases α-syn accumulation upon the induction of aggregation with
extracellular α-syn preformed fibrils (PFF) in different models. Two different studies
in hippocampal neuronal cultures from non-transgenic and transgenic G2019S LRRK2
mice showed that LRRK2 G2019S variant slightly increases the aggregation of pS129 α-
syn [158,163]. However, a recent report shows a high increase of pS129 α-syn accumulation
in cortical neurons containing a LRRK2 mutant, and LRRK2 knock-out neurons are resistant
to pS129 α-syn aggregation induced by PFF [164].

The symptoms and clinical course of familial PD, caused by different LRRK2 point mu-
tations, is similar and indistinguishable from idiopathic cases [165]. Progression of motor
symptoms is faster in iPD patients, but some risk-variant carriers such as LRRK2 G2385R
progress faster than sporadic cases [166,167]. LRRK2-mutated PD patients also show the
classical dopaminergic neuron lost characteristic of PD [168] but, surprisingly, there is no ev-
idence of α-syn aggregation in Lewy’s Bodies in some LRRK2-mutated PD cases [169–172],
with α-syn levels even lower compared to idiopathic PD patients [173]. Instead of typical α-
syn aggregates, different proteins are the principal components of protein inclusions, such
as accumulated Tau tangles [174–176] or TAR DNA-binding protein 43 (TDP-43) [177,178].
In this scenario, LRRK2 promotes neurodegeneration by amplification and spreading patho-
logical proteins such as Tau. The propagation of Tau aggregates, influenced by LRRK2,
has been demonstrated in murine models [179]. These pleomorphic neuropathological
presentations of protein aggregates hamper the understanding of the role of LRRK2 in PD
pathophysiology [180].
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6. LRRK2 as a Therapeutic Target for PD

To date, there are no disease-modifying therapies (DMT) for PD, but research efforts
have tried to define new strategies to stop or delay the progression of the disease [181]. Sev-
eral of the current anti-Parkinsonian therapeutic strategies include deep brain stimulation
(DBS) to minimize motor symptoms and a variety of pharmacological therapies to restore
dopamine levels [182]. LRRK2-PD patients are effectively treated with DBS and Levopoda
administration, but the beneficial effect of this symptomatic treatment of motor symptoms
is temporally limited and it does not modify the clinical course of the disease. Since LRRK2
variants can be considered risk factors for PD, LRRK2 has become an attractive target to
devise therapeutic compounds to effectively interfere with PD clinical evolution [183–185].
The design of small molecules for controlling LRRK2 kinase activity or the silencing of
LRRK2 expression are the best therapeutic options to achieve neuroprotective effects [186].

6.1. Pharmacological Strategies: LRRK2 Kinase Inhibitors

Most PD patients suffering from LRRK2 mutations show an enhanced kinase activity,
particularly the G2019S mutation carriers. In those cases, small molecules that act like
LRRK2 kinase inhibitors are proposed as an interesting clinical option for controlling PD
(Figure 3) [187,188]. However, preclinical studies with LRRK2 kinase inhibitors have shown
side effects in peripheral organs such as the kidney or lungs, compromising the safety
profile of these compounds [189,190]. Moreover, the inhibition of LRRK2 kinase activity
has failed to prevent neuronal damage derived from α-syn spreading [191], which could
be related to different mechanisms involved in disease pathogenesis. Apart from these
considerations, the LRRK2 kinase inhibitors MLi-2 and PF-066855360 have already been
tested in preclinical studies [192], and there are two candidates undergoing clinical trials
for PD, DNL201 and DNL151. In 2021, it was announced that DNL151 was included in a
last-phase clinical trial with sporadic and LRRK2-PD patients. Although blockade of kinase
activity is to date the most explored therapeutic strategy for PD linked to LRRK2 variants,
not all LRRK2 mutants show an increase in kinase function limiting studies of substrate
phosphorylation. Even in some cases, such as the E193K mutant, LRRK2 kinase activity is
not modified. At this point, inhibition of kinase activity, which emerged as a promising
therapeutic option, might not be the most appropriate pharmacological choice for all PD
cases related to LRRK2 mutations [193] and the development of different strategies seems
to be necessary.
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6.2. Silencing of LRRK2

The concept of gene therapy was defined by Friedman and Roblin in 1972. It is a
therapeutic approach for correcting human genetic diseases through the elimination of
defective DNA and replacement by corrected exogenous DNA. It involves the substitution
or silencing of a specific gene related to the pathological mechanisms of a disease [194].

Loss of function studies of LRRK2 allow the reduction of LRRK2 protein expression
levels to minimal amounts and the mimicking of the blockade of protein function. Con-
sidering the contribution of LRRK2 to α-syn deposition, targeting LRRK2 is proposed as
a potential therapeutic approach to slow the onset and progression of PD derived from
α-syn toxicity.

Among the strategies used to modify gene expression in the CNS, the use of viral
vectors has been explored [195], in particular adeno-associated virus (AAV) [196,197].
in In addition to LRRK2 knock-out mice, recombinant AAVs (rAVVs) were employed
to overexpress α-syn in LRRK2 wild-type and G2019S mutated animal models of PD.
Reduction of LRRK2 protein levels in LRRK2 knock-out animals (Figure 3) protected
against α-syn toxicity [198], and LRRK2 G2019S mutation worsened the neurodegenerative
phenotype in this disease model [199]. Similarly, unlike what happened in LRRK2 wild-
type mice, neuronal degeneration increased after overexpression of A53T α-syn using an
AAV in LRRK2 G2019S 12-month-old mice [161].

More recently, non-viral gene delivery systems have emerged as good candidates
to introduce genetic material into animal models of PD, for targeting disease-modifying
genes [200,201]. Several models of synucleinophathy have demonstrated the relationship
between LRRK2 and α-syn, and demonstrated the role of LRRK2 aggravating α-syn aggre-
gation and neurotoxicity. In double-transgenic mice models, the co-expression of LRRK2
(wild-type and G2019S) and A53T α-syn acted synergistically to worsen the pathology, but
LRRK2 knock-out (by deletion of exon 2 through Cre-LoxP system) reduced α-syn deposi-
tion and progression of neuropathological abnormalities [156]. Similar results were found
in LRRK2 G2019S and LRRK2 knock-out mice models upon treatment with artificial PFF of
α-syn. Absence of LRRK2 decreased α-syn deposition, mainly the pS129 form, compared
to LRRK2 mutant [164]. A different strategy was designed to clarify LRRK2 involvement
on α-syn aggregation. LRRK2 knock-out, using short-hairpin RNA (shRNA) molecules
(Figure 3) in H4 cells, did not alter endogenous α-syn accumulation but, surprisingly,
the silencing of LRRK2 in H4 cells co-transfected with α-syn and synphilin-1 enhanced
the number of α-syn intracellular inclusions, reduced the size, and did not modify the
phosphorylation levels of α-syn [155].

A different approach to block LRRK2 function is based on the reduction of LRRK2
protein levels through treatment with antisense oligonucleotides (ASO) (Figure 3). This
methodology allowed the decrease of LRRK2 expression in the nervous system of mice
models of PD and the reduction of α-syn aggregation and dopaminergic neuronal damage
without modifying LRRK2 expression in other peripheral tissues, such as the kidney and
lung, avoiding side effects [202]. The strategy is already in phase I of clinical trials in
the REASON study (NCT03976349), which is focused on the characterization of safety,
tolerability, and pharmacokinetic profile of the ASO BIIB094 administered to PD patients.

However, some studies have demonstrated α-syn toxic propagation regardless of
LRRK2 regulation. The human LRRK2 G2019S variant, as well as the suppression of the
LRRK2 wild-type in transgenic mouse models of PD, did not aggravate the behavioral
problems or neurochemical phenotype derived from human A53T α-syn expression [203].
In a similar study using double-transgenic mice for α-syn (wild-type and A53T) and LRRK2
(wild-type and G2019S), the LRRK2 G2019S variant did not aggravate α-syn pathology and
motor symptoms compared to A53T α-syn phenotype [204]. These findings create doubts
about the protective role of LRRK2 suppression in α-syn propagation [205].
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7. Conclusions

PD is a progressive and chronic neurodegenerative disorder linked to ageing, his-
tologically characterized by damage to and degeneration of dopaminergic neurons and
accumulation of protein inclusions, mainly α-syn. The incidence of PD will increase in
the coming years due to the ageing of population, and it will become an economic and
social problem due to the lack of resolutive clinical therapies. Among the causes that
explain PD development and progression, loss of protein homeostasis is one of the main
pathological mechanisms. Since the discovery of LRRK2 mutants as one genetic cause of
PD, LRRK2 has gained attention when studying the pathological course of the disease, as
well as the cellular mechanisms functioning to maintain LRRK2 homeostasis. Among the
control pathways responsible for the regulation of LRRK2 equilibrium, several molecular
chaperones and the classical clearing mechanism, such as the UPS and ALP, have been
described. The imbalance in LRRK2 homeostasis, linked to several point mutations, also
facilitates the accumulation and spread of toxic aggregates of α-syn. Although research
efforts have demonstrated the relevant role of LRRK2 in PD pathology, new therapeutic
options to guarantee LRRK2 homeostasis should be addressed.
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