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Abstract
Near-infrared spectroscopy is a widely adopted technique for characterising biological tissues. The
high dimensionality of spectral data, however, presents amajor challenge for analysis. Here, we
present a second-derivative Beer’s law-based technique aimed at projecting spectral data onto a lower
dimension feature space characterised by the constituents of the target tissue type. This is intended as a
preprocessing step to provide a physically-based, low dimensionality input to predictivemodels.
Testing the proposed technique on an experimental set of 145 bovine cartilage samples before and
after enzymatic degradation, produced a clear visual separation between the normal and degraded
groups. Reduced proteoglycan and collagen concentrations, and increasedwater concentrations were
predicted by simple linear fitting following degradation (all p 0.05 ). Classification accuracy using
theMahalanobis distancewas 98%> between these groups.

1. Introduction

Osteoarthritis (OA) is a degenerative joint disease that
carries substantial personal and societal burden in its
later stages. The development ofOA involves a changes
across the whole joint, with the loss of structural
integrity of articular cartilage a central factor in the
early disease process. Damage or degeneration detect-
able by visible light in common diagnostic procedures
such as arthroscopy, however, are generally indicative
of more severe structural degradation. Thus, detection
of early stage degradation in articular cartilage is of
special clinical interest to allow intervention before the
disease burdenmanifests.

Spectroscopy-based techniques have been widely
applied to characterise biological tissues, with Raman and
mid-infrared spectroscopy commonly used [1]. Near
infrared (NIR) spectroscopy, which measures harmonics
and combinations of the fundamental molecular vibra-
tions in the infrared energy range, is gaining popularity
[2–6]. NIR compares favourably with other techniques
for in vivo application [7], and has strong potential as a
clinical tool. As NIR spectroscopy works with standard
xenon light sources andfibreoptics,measurements canbe
taken with minimal instrument modification and with-
out extra radiationdelivered to thepatient.

A major restriction to the use of NIRS, however, is
the difficulty in interpretation in tissues due to the
wide, overlapping spectral bands of the main extra-
cellular matrix components, and thus a lack of inde-
pendent peaks from which to base analysis. The high
dimensionality of spectral data poses a further chal-
lenge to avoid overfitting, and requires very high sam-
ple numbers for robust training. A common and
plausible solution is to pre-select optimal subsets of
the spectrum for training. Selectionmethods based on
wavelet coefficient regression and a genetic algorithm
[8], mutual information and B-spline compression
[9, 10], and mutual information and a modified
genetic algorithm [11] have been successfully
implemented.

Here, we take a relatively simple and physically
based approach, using a Beer’s Law dimensionality
reduction method to resolve spectral measurements
into chemical concentrations. Intended as an input to
more sophisticated predictive tools, this was coupled
with linear least squares fitting, combining the second
derivative spectra of matrix components to estimate
their relative concentrations in the tissue. We tested
our method’s capability to probe matrix composition
in articular cartilage, first using a sample set of normal
and enzymatically degraded bovine cartilage-on-bone.
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2.Methods

2.1. NIR spectroscopy experiment
Absorbance spectra from 145 sample points on 6
macroscopically normal bovine patellae samples were
collected using a Nicolet FT-NIR system (Thermo-
Nicolet, UK) with a standard Michelson interferom-
eter light path. The 4 mm diameter fibre optic probe
was coupled to the FT-NIR system via a Grasby
SPECAC NIR fibre port accessory (SPECAC, Orping-
ton, UK), offset from the surface by ≈1.5 mm, based
on the maximum signal from a diffuse reflectance
standard. The spectrum was acquired from 4000 to
12 500 cm−1, with each measurement averaged over
124 scans ( 40» s). Patellae were immersed in 0.15 M
saline between measurements. Samples were then
enzymatically digested in 0.1 mgml−1 of trypsin (from
bovine pancreas T4665, Sigma–Aldrich, Australia)
dissolved in 0.15 M phosphate buffered saline for 4
hours at 37 °C and retested. Removal of proteoglycans
in the trypsin-treated samples was confirmed by
safranin-O staining [12].

Spectra from isolated matrix components were
collected using a Nicolet iS50 FT-NIR system with a
standard SabIR fibre optic probe (Thermo Fisher Sci-
entific, UK), offset from the surface by ≈4 mm, again
based onmaximum signal. Spectra of collagen (C9879,
Sigma Aldrich, UK), chondroitin sulphate (C9819,
Sigma Aldrich, UK) and distilled water were recorded
and averaged over 64 scans ( 10» s). Cartilage and
component spectra were taken in different labora-
tories, thus necessitating the use of different spectro-
meters. All spectra were reduced to the
4000–10 000 cm−1 (1–2.5 μm) region, with 779 data
points.

2.2.Data pre-processing
Data smoothing and derivation
The discrete absorbance measurements were first
fitted with a cubic B-spline as discussed in [13]. The
number of knots and their initial placement were
determined by the uniqueness of each data point, with
two consecutive data points xi and xi 1+ considered
unique if their difference is within a specified tolerance
τ, i.e. x xi i1∣  t-+  . An empirically obtained noise
model and an explicitly defined degree of freedom
were used to preserve desired data characteristics.
Equation (1) is the piecewise cubic B-spline fitting, ci is
a control point derived from the data points and Bi,3 is
the ith cubic basis function
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The use of piecewise fitting allows us to control the
preservation of certain localised features in the data.
Furthermore, since our subsequent dimensionality
reduction method is dependent on the second deriva-
tive of the spectral data, this can be more conveniently

achieved by taking the desired derivative of the basis
function (see equation (2))
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Dimensionality reduction
One of the most challenging aspects of performing
classification on spectroscopic data is its high dimen-
sionality. The NIR spectrum covers the range between
800 and 2500 nm, and a typical input per spectrum is
of the order of 1000 data points. The parameterisation
of each sample over the NIR spectrum inevitably
results in a large feature space. This also increases the
number of training samples required for training a
classifier.

Our approach aimed to reduce dimensionality by
basing our analysis on themain constituents of the tis-
sue: water, collagen and proteoglycan. Given the
absorptivity of each individual component, the rela-
tionship between amixture and its constituents can be
described using Beer’s law. Equation (3) describes the
specific formulation for modelling the absorbance of
cartilage

A c l c l c l 3i i i iw w c c p p( ) ( ) ( ) ( ) ( )  l l l l= + +

A i( )l is the absorptivity at wavelength ;il w , c and

p are the absorptivity of water, collagen and proteo-
glycan respectively; c is the concentration of each
corresponding component, i.e. cw for water, cc for
collagen and cp for proteoglycan; l is the path length.
The second order derivative ofA is:
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If the absorbance of a mixture and the absorptivity its
constituents are known across the NIR spectrum, the
concentration of each component can be calculated by
solving the following linear system:
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The least-square solution of the overdetermined linear
system in equation (5) was obtained using QR
factorisation.

Our use of Beer’s law omitted the path length (i.e.
l = 1.0) because the variance of our bovine cartilage
thickness is small (1.66± 0.25 mm) and thickness
information is unavailable in proposed arthroscopic
applications of the technique. This does imply that the
solution for the component concentration levels is
subjected to scaling. However, we demonstrate in the
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result section that this scaling does not affect the acc-
uracy of our classificationmethod.

By estimating the concentration of individual
components using the aforementioned approach, the
spectral data can be mapped into a lower dimensional
feature space consisting of the primary constituents. In
the case of cartilage, the salient components water,
collagen and proteoglycan allow each sample to be
parameterised by a feature vector c c c c, ,w c p( )=


.

2.3. Classification
Based on results from unsupervised linear fitting
described above, classification into normal and enzy-
matically degraded groups was performed based on
the Mahalanobis distance. For a sample x, this was
calculated as D x S xT2 1( ) ( )m m= - -- , where μ is
themean of each group and S is the covariancematrix.
Samples were classed as belonging to the training set to
which theMahalanobis distancewas shortest.

The data pre-procssing and classification methods
described here were implemented in R 3.1.2 (https://
www.r-project.org).

3. Results and discussion

Spectra of the matrix components (water, proteogly-
can and collagen) are presented in figure 1. Spectra of
cartilage-on-bone samples before and after enzymatic
digestion are provided in figure 2. Raw spectra of
normal and trypsin-treated samples are offset, how-
ever this offset is likely to include systematic exper-
imental variations between measurements. To
circumvent this effect, second-derivative spectra were
used due to intrinsic normalisation as well as the
improved separation of spectral peaks. Even with
second-derivative spectra, the lack of peak indepen-
dence can be observed in figure 2, despite the clear

differences in the isolated component spectra, thus
prompting the mixture approach. The reader is
referred to [4] for a description of peak assignments.

Unsupervised linear fitting of the three comp-
onent spectra to sample spectra using equation (4)
produced a clear visual separation of normal from
enzymatically degraded samples. Using theMahalano-
bis distance, normal and enzymatically degraded
groups were classified with one false negative (0.34%)
and four false positives (1.4%).

To examine the influence of omitting the thickness
of individual sample, a path length randomly drawn
from a normal distribution 1.66, 0.25( )m s= = was
assigned to each cartilage sample. This is equivalent to
applying an arbitrary scaling to the solution of
equation (5). This test was repeated N=100 times
where N was chosen to be 2/3 of the sample size in
each cluster. Table 1 shows that a small variance can be
observed from the centre of each cluster in the feature
space when path lengths were factored in. However,
this variance has a negligible impact on the stability of
our classification method as shown in table 2. The
mode of false positive and false negative count
remained identical to the results where the path length
was postulated to be one. It should be noted that
degradation by trypsin has a negligible effect on sam-
ple thickness [14].

Visual trends (figure 3) for proteoglycan and water
predictions conformed to expectations: enzymatic
degradation reduced predicted proteoglycan content
and increased predicted water content (both p 0 ),
filling the space left by proteoglycan removal. Pre-
dicted proteoglycan and water content was negatively
correlated (r=−0.74) for pooled sample groups. Pre-
dicted collagen content also decreased after enzymatic
degradation (p 0 ). We interpret this as a secondary
effect of trypsin on collagen by either restructuring in

Figure 1.TheNIR spectral data for the three primary constituents of articular cartilage: (a) absorbance; (b) second derivative.

3

Biomed. Phys. Eng. Express 2 (2016) 017002 CPBrown andMChen

https://www.r-project.org
https://www.r-project.org


the absence of proteoglycan affecting scattering or
cleavage reducing collagen content.

It should be noted that study is limited by a lack of
ground truthmeasurements of constituent concentra-
tions in each sample. Safranin-O staining confirmed

loss of proteoglycan content following enzymatic
degradation, however this was not quantified and pre-
degradation staining was not possible. Solution stabi-
lity in least squares fitting of bovine samples was con-
firmed by subsampling with spectral windows.
Negligible fluctuation was observed in estimated con-
centrations, however, the optimisation and minimisa-
tion of spectral range for prediction was not explored
here. Spectral optimisation and comparison of predic-
tions with ground truth biochemical data will be
undertaken in futurework.

Applying Beer’s law to second derivative spectra,
we have developed a preprocessing technique with a

Figure 2.TheNIR absorbance of articular cartilage frombovine knee jointsfitted using cubic spline: (a), (b) the original and second
derivative absorbance fromnormal samples; (c), (d) the original and second derivative absorbance from enzymatically degraded
samples.

Table 1.The influence of scaling on themean of each clusterN=100.

Cluster Mean cw Mean cc Mean cp

Normal 0.1418±0.0169 0.5949±0.0446 0.5571±0.0517

Degraded 0.4052±0.0346 0.2486±0.0316 0.2237±0.0237

Table 2.The influence of scaling factor on the stability of classi-
fication performance; theworst case for false positive is 2.1%
and for false negative is 1.7%N=100.

classification Mode Min Max

False pos.# (%) 4 1.4%( ) 3 1.1%( ) 6 2.1%( )
False neg.# (%) 1 0.34%( ) 0 0%( ) 5 1.7%( )
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physical basis for dimensionality reduction to estimate
concentrations of tissue matrix components from
spectroscopy. Demonstrating its application to NIR
spectroscopy of cartilage, we found that simple linear
fitting of isolated second derivative spectra of water,
proteoglycan and collagen could be used to separate
normal from enzymatically degraded cartilage. We
propose that this approach will provide a physically-
based, low dimensionality input into more advanced
classification strategies [15] such as an artificial neural
network to predict absolute concentrations of matrix
components. This approach may further be used in a
range of soft tissues, such as cornea, skin, inter verteb-
ral disk and tendon, in which themainmatrix compo-
nents are near infrared-active.
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