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Histone deacetylase inhibitors: targeting 
epigenetic regulation in the treatment of 
acute leukemia
Tong Xiao, Zhigang Chen, Yutong Xie, Chao Yang, Junhong Wu and Lei Gao

Abstract:  Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary 
treatment for AL involves combination chemotherapy as the cornerstone of comprehensive 
measures, alongside hematopoietic stem cell transplantation as a radical approach. However, 
despite these interventions, mortality rates remain high, particularly among refractory/
recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of 
epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent 
studies have highlighted the potential of acetylation regulation as a novel treatment pathway. 
Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation 
and development of tumor cells through diverse pathways, simultaneously impacting 
the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing 
survival rates and achieving a complete response in both acute myeloid leukemia and acute 
T-lymphoblastic leukemia patients. This article provides a comprehensive review of the 
advancements in HDACi therapy for AL, shedding light on its potential implications for clinical 
practice.

Plain language summary 
Histone deacetylase inhibitors represent a method of treating acute leukemia by 
targeting DNA acetylation to regulate genetic information without altering the DNA 
sequence
Acute leukemia (AL) is a rare yet perilous malignancy. Presently, the primary treatments 
for AL encompass combination chemotherapy as the cornerstone of a comprehensive 
approach, and hematopoietic stem cell transplantation (HSCT) as a radical treatment. 
However, despite these interventions, mortality rates remain elevated, particularly among 
refractory/relapsing patients or older adults with a grim prognosis. Epigenetic regulation 
entails altering the expression of genes through pertinent genetic information without 
modifying the DNA sequence. Acetylation modification, as a form of epigenetic regulation, 
has emerged as a promising avenue for AL treatment. Recent studies have underscored 
the potential of acetylation regulation as a novel therapeutic approach. Histone deacetylase 
inhibitors (HDACis) modulate the differentiation and development of tumor cells through 
various mechanisms and impact the maturation and function of lymphocytes. HDACis 
exhibits promise in enhancing survival rates for acute leukemia, among other benefits. 
This article offers a comprehensive review of the advancements in HDACis therapy for AL, 
shedding light on its potential implications for clinical practice.
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Introduction
Among blood system disorders, acute leukemia 
(AL) is a rare and perilous malignancy. This con-
dition involves the malignant clonal proliferation 
of abnormal hematopoietic precursor cells, which 
accumulate within the bone marrow, consequently 
hampering the normal hematopoietic function of 
the bone marrow, and invade other vital organs, 
such as the liver, spleen, and lymph nodes, caus-
ing widespread damage to tissues and organs. In 
China, the incidence of leukemia is 3–4 cases per 
100,000 individuals, and the associated mortality 
rate is notably high. Currently, the primary 
approach to treating AL involves comprehensive 
measures with combination chemotherapy, with 
hematopoietic stem cell transplantation (HSCT) 
serving as a radical treatment. While some patients 
achieve long-term survival through these interven-
tions, the prognosis remains grim for refractory/
relapsed AL patients and elderly AL patients. 
Fortunately, recent advancements in AL treat-
ments offer hope for improved survival rates and 
reduced toxicity.

Acetylation, classified as a form of epigenetic regu-
lation, plays a crucial role in various life processes, 
such as DNA damage and repair, the regulation of 
protein function, and cell cycle control. Such 
effects are achieved by modulating the acetylation 
level of histones. Moreover, acetylation can 
decrease the expression of tumor suppressor genes, 
thus actively participating in the progression of 
tumor development. In 2014, the Food and Drug 
Administration (FDA) approved belinostat, a dea-
cetylase inhibitor, for treating patients with periph-
eral T-cell lymphoma (PTCL) who had undergone 
at least one prior systemic therapy, demonstrating 
a median response duration of 48 months.1 
Consequently, acetylation regulation holds prom-
ise as a novel therapeutic avenue for treating AL, 
with the potential to increase both survival and 
complete remission rates.

Acetylation and deacetylation
In recent years, there has been a growing focus on 
epigenetic events, a series of mechanisms capable 
of regulating gene expression patterns indepen-
dently of DNA sequence mutations.2 Epigenetic 
inheritance plays a vital role in governing gene 
expression, developmental stages, lineage com-
mitment, and cell differentiation through various 
means.3 Epigenetic mechanisms include DNA 
methylation, histone modification, and noncoding 

RNA regulation. These changes are predomi-
nantly orchestrated by enzymes such as DNA 
methyltransferases, histone methyltransferases, 
histone acetyltransferases (HATs), and histone 
deacetylases (HDACs).4 Of particular interest 
lately is HDACs, enzymes responsible for remov-
ing acetyl groups from histones and considered 
pivotal regulators of gene expression. The abnor-
mal expression of HDACs has been shown to be 
associated with cancer, particularly hematological 
malignancies.2

Histone deacetylases
Concept and classification of HDACs.  Acetylation 
occurs through two main mechanisms. First, irre-
versible N-α-acetylation involves the acetylation of 
the N-terminus of histones and is present in 
eukaryotes. The second method is reversible lysine 
acetylation, wherein the acetyl group from acetyl-
CoA is transferred to lysine residues by acety-
lases.5–7 Lysine contains anchorage points that 
recruit specific proteins with unique domains. His-
tone acetylation involves the mediation of acetyla-
tion and catalysis through HATs and HDACs, 
maintaining a balance in histone acetylation levels. 
HATs promote the expression of cancer suppres-
sor genes by altering chromatin structure, catalyz-
ing the transfer of the acetyl group to the ε-amino 
group in the lysine side chain using acetyl-CoA as 
the common acetyl donor. This process neutralizes 
the positive charge of lysine residues and disrupts 
the electrostatic bond between DNA and histones, 
facilitating easier access to the local chromosomal 
region.5–7 Conversely, HDACs counteract the 
acetylation process initiated by HATs, strengthen-
ing the electrostatic force between DNA and his-
tones and inhibiting the expression of cancer 
suppressor genes.8,9 Furthermore, HDACs con-
tribute to the deacetylation of nonhistone proteins, 
regulating various functions, such as DNA damage 
repair and cell cycle regulation.5

In humans, 18 types of HDACs are classified into 
four classes based on homology. Each HDAC 
exhibits a distinct subcellular localization model, 
substrate specificity, and unique enzyme activ-
ity.10 Class I HDACs (HDAC1, 2, 3, 8) are most 
closely related to reduced potassium dependency 
3 (RPD3) and are the most abundant HDACs 
located in the cell nucleus. Class II HDACs 
(HDAC4, 5, 6, 7, 9, and 10) can be further 
divided into class IIa and class IIb HDACs. Class 
IIa HDACs include a highly conserved C-terminal 
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deacetylase catalytic domain homologous to that 
of HDAC, while class IIb HDACs possess two 
deacetylase domains and shuttle between the 
nucleus and cytoplasm with tissue specificity. 
Class III HDACs belong to the sirtuin family 
(SIRT1–7), and the activity of these HDACs is 
dependent on nicotinamide purine dinucleotide 
(NAD+). These enzymes require NAD+ as a 
cofactor, distinguishing them from HDACs that 
bind Zn2+. Some sirtuins play dual roles as tumor 
suppressors and oncoproteins, contributing to the 
ongoing debate on their function in cancer pro-
gression. Class IV HDACs are represented by 
HDAC11.2,11 Class I, II, and IV HDAC active 
sites necessitate Zn2+ as a cofactor and are inhib-
ited by Zn2+-binding histone deacetylase inhibi-
tors (HDACis). Class III HDACs, from a 
homology perspective, are markedly different 
from other classes. The enzymatic activities of 
classical HDACs (classes I, II, and IV) are not 
sensitive to certain inhibitors, such as vorinostat 
and trichostatin A (TSA). Moreover, various 
HDACs exhibit differential expression levels dur-
ing development, growth stages, exposure to envi-
ronmental stress, and hormonal stimulation.3,12

Mechanisms and application of HDACs.  The dif-
ferent structures and classifications of HDACs 
endow them with a variety of capabilities. HDACs 
actively participate in various cellular activities, 
playing a crucial role in epigenetic events by influ-
encing DNA synthesis regulation, chromatin 
packaging, DNA repair, and interactions with 
nonhistone proteins and nucleosomes.13–15 One 
primary domain of impact is the regulation of 
human blood cell production, where HDACs 
maintain stem cell characteristics, control the 
proliferation and differentiation of hematopoietic 
stem cells (HSCs), and guide lineage orienta-
tion.2 HDACs modulate the expression of essen-
tial genes, promoting HSC differentiation into 
granulocyte–monocyte lineages, red blood cell 
lineages, megakaryocyte lineages, and lymphatic 
genealogies. Researchers widely acknowledge that 
normal blood production is contingent on the 
activity of HDACs.2,16–20 Evidence suggests that a 
decrease in certain HDACs can lead to blood dis-
orders such as anemia and thrombocytopenia. 
Furthermore, the expression levels of HDACs 
may play a regulatory role in hematopoiesis.2 An 
illustrative example is the continuous presence of 
HDAC1 throughout all stages of hematopoiesis. 
Maintaining low levels of HDAC1 ensures the 
survival and differentiation of HSCs into mature 

bone marrow cells, while moderate levels guide 
HSC development into mature red blood cells 
and T lymphocytes.16

Furthermore, the upregulation of HDAC expres-
sion has been implicated in malignant tumors. 
Elevated levels of HDACs impede the expression 
of tumor suppressor genes, promoting tumor angi-
ogenesis and migration, and ultimately resulting in 
the increased proliferation, invasion, and metastasis 
of tumor cells. For example, HDAC8 induces the 
deacetylation of p53, expediting the transformation 
of leukemia stem cells (LSCs) mediated by CBFβ-
SMMHC (core binding factor β and the smooth-
muscle myosin heavy chain), with the goal of 
sustaining self-renewal capacity and resistance to 
chemotherapy drugs. HDAC3 induces DNA dam-
age and enhances drug resistance in acute myeloid 
leukemia (AML) cells. Consequently, inhibiting 
HDAC3 activity renders cells more responsive to 
chemotherapy drugs, reducing the likelihood of 
AML recurrence and progression. In summary, the 
mechanisms of histone acetylation are important in 
the context of malignant tumors. The targeted inhi-
bition of histone acetylation may emerge as a prom-
ising avenue for tumor therapy.21–23

Histone deacetylase inhibitors
Concept and classification of HDACis.  HDACis, 
which are recognized as potential therapeutic tar-
gets, are currently undergoing clinical trials for vari-
ous diseases; they can be specific to a particular 
type of HDAC or can act on all HDACs. HDACis 
can be classified based on their chemical proper-
ties.23 The hydroxy acid group, comprising com-
pounds such as suberoylanilide hydroxamic acid 
(SAHA), TSA, LBH589 (panobinostat), and 
PXD101 (belinostat), can block all HDACs.24,25 
The short-chain fatty acid group, widely used in 
clinical trials due to ease of synthesis and applica-
tion in diseases, specifically targets Class I and II 
HDACs, with examples including valproic acid 
(VPA) and butyrate. However, these compounds 
show relative nonspecificity, with low efficacy and 
certain toxicity, posing challenges in achieving clini-
cally relevant inhibitory doses.22 The benzamide 
group includes MS275 (entinostat) and FK228 
(romidepsin). Tetracyclic peptides can inhibit Class 
I, IIa, and IV HDACs.23 Diverse structural combi-
nations endow HDAC inhibitors with distinct 
chemical properties, facilitating a range of mecha-
nisms to inhibit tumor cell proliferation, differentia-
tion, and other processes (Table 1).
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Table 1.  The HDACi family: classification, HDAC apecificity, mechanism, targeted genes/pathway and clinical tast.

Class of HDACi HDACi HDAC 
specificity

Mechanism Targeted genes/pathway Clinical test26

Short-chain 
fatty acid

Valproic acid27,28 Class I, IIa Apoptosis Intrinsic pathway pH II

Modulation of immune 
response

MHC genes
Genes involved in mitosis

Hydroxamic 
acids

Trichostatin A29–31 Pan Cell cycle arrest p53 Preclinical

Apoptosis Intrinsic pathway

Modulation of immune 
response

MHC class I

Suberoylanilide 
hydroxamic acid/
vorinostat32–34

Pan Cell cycle arrest p21 FDA approved CTCL; 
polycythemia vera

Autophagy induction Akt/mTOR

Apoptosis JAK2V617F

PXD101/
belinostat35,36

Pan Modulation of immune 
response

TLR2/MyD88 and HDAC3/ 
NF-κB p65

FDA approved peripheral 
T-cell lymphoma

Apoptosis Caspase 3

LBH589/
panobinostat37

Pan Modulation of immune 
response

MHC class I FDA approved multiple 
myeloma (MM); 
myelofibrosis

Inhibit tumor angiogenesis

Abexinostat38 Pan Promote the differentiation of 
adipocytes and osteoblasts

Osteoblast-related genes 
(COL1A1, SPARC, VCAM1, 
TGFB2, ALPL, and NOG)

pH II—B-cell lymphoma

Givinostat38,39–42 Pan Cell cycle arrest G0/G1 phase pH II—relapsed leukemia 
and MM; Duchenne 
muscular dystrophy in 
children; polycythemia vera

Apoptosis JAK2V617F

Quisinostat43 Pan Apoptosis Caspase, p53 pH I—MM

Rocilinostat44 Class II Cell differentiation JAK2 signaling pH I—MM

Benzamide MS-275/
entinostat5,45,46

Class I Inhibit the growth of 
xenograft

pH II—Hodgkin’s 
lymphoma

Cell death Intrinsic pathway, death 
receptor

Autophagy induction NF-κB

Mocetinostat47 Class I, IV Apoptosis Pro-apoptotic microRNA 
(miR-31)

pH II—Hodgkin’s 
lymphoma

Antiapoptotic protein (E2F6)

Cyclic 
tetrapeptide

Depsopeptide/
romidepsin48,49

Class I Cell killing Protein kinase/c-Jun 
N-terminal kinase signaling 
pathway, PI3K/AKT/mTOR, β-
catenin pro-survival pathways

FDA approved CTCL

DNA damage reaction, 
apoptosis

ROS

Apicidin50 HDACs1 
and 3

Apoptosis Death receptor —

CTCL, cutaneous T-cell lymphoma; HDACi, histone deacetylase inhibitor; MHC, major histocompatibility complex; ROS, reactive oxygen species; 
TLR, toll-like receptor 4.
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The mechanism of HDACis.  Research indicates 
that HDACis can hinder the proliferation of vari-
ous transformed cells in vitro, including lym-
phoma, myeloma, and leukemia cells. Moreover, 
they exert inhibitory effects on the progression of 
specific solid tumors and hematological malig-
nancies.12,51 HDACis actively counteract the 
growth and development of tumor cells by induc-
ing apoptosis through diverse mechanisms, 
thereby achieving therapeutic goals in cancer 
treatment (Figure 1).

HDACis can regulate the cell cycle by diminish-
ing cell differentiation or the release of the 
HDAC1 protein.12 For instance, SAHA treats 
leukemia by inducing the apoptosis of leukemia 
cells at the G0, G1, and S stages. The hyperacety-
lation of histones 3 and 4 in promoter nucle-
osomes stimulates the genes involved in 
differentiation, leading to cell differentiation, 
apoptosis, and cycle arrest.22 HDACis are also 
described as inhibitors of tumor regulation. The 

acetylation-mediated ubiquitylation of p53 results 
in cell cycle arrest and programmed death, imped-
ing the growth and development of tumor cells. 
HDACis induce cell apoptosis through two 
mechanisms: reducing the expression of vascular 
endothelial growth factor receptor 2 (VEGFR-2) 
and influencing the VEGFR-2 signaling pathway 
to regulate angiogenesis. Unlike chemotherapy 
drugs, HDACis target both proliferating and 
nonproliferating cells.52

HDACis induce apoptosis in tumor cells by acti-
vating both exogenous and endogenous apoptotic 
pathways. In the endogenous pathway, HDACis 
inactivate or inhibit antiapoptotic proteins while 
activating proapoptotic proteins. This process 
involves the release of mitochondrial intermem-
brane proteins due to mitochondrial destruc-
tion, ultimately leading to caspase activation.52 
Furthermore, HDACis upregulate the expression 
of death receptors and their ligands in transformed 
cells both in vivo and in vitro, while leaving their 

Figure 1.  Mechanism diagram of HDACis regulating tumor cells.
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expression unchanged in normal cells. Research 
by Borbone et al.53 demonstrated that the selec-
tive inhibition of HDAC1 and 2 reduces the 
degradation of tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) proteins, 
inducing apoptosis in fully transformed thyroid 
cancer cells through the ubiquitin-dependent 
pathway. By downregulating the expression of 
antiapoptotic proteins such as caspase inhibi-
tors and cellular FLICE-like inhibitory proteins 
(c-FLIP) and upregulating the expression of 
proapoptotic proteins such as the Bcl-2 family 
members Bim and Bmf, HDACis activate the 
death receptor pathway, leading to cleavage 
and activation. This connection bridges the 
endogenous and exogenous pathways of 
apoptosis.54

HDACis have been found to induce the accumu-
lation of reactive oxygen species (ROS) in tumor 
cells, leading to cell death. Studies such as that 
conducted by Ungerstedt et al.55 revealed that 
specific HDACis, such as SAHA and MS-275 (a 
benzamide), promote ROS accumulation and 
cysteine activation in transformed cells while 
sparing normal cells. The distinctive mechanism 
underlying these effects involves increasing 
thioredoxin (Trx) levels in normal cells, a phe-
nomenon not observed in transformed cells that 
lack Trx. In normal cells, HDACis elevate the 
levels of Trx, which serves as a reduced antioxi-
dant scavenging agent for ROS. However, in 
transformed cells, the Trx content decreases as 
HDACis upregulate the expression of thiore-
doxin-binding protein 2 (TBP-2) and bind to 
Trx.56 The impact of this interaction is signifi-
cant, as observed when transformed cells were 
transfected with Trx small interfering RNA. In 
this scenario, Trx protein levels notably decreased, 
ROS levels increased, cell proliferation decreased, 
and sensitivity to SAHA-induced cell death 
increased.56 This intricate interplay between 
HDACis, Trx, and ROS highlights a potential 
therapeutic avenue for selectively targeting trans-
formed cells while preserving the viability of nor-
mal cells.

Moreover, HDACis can induce the death of 
tumor cells by disrupting mitosis, interfering with 
DNA damage repair, and altering gene expres-
sion. Although HDACis, as a method of epige-
netic regulation, do not directly participate in 
DNA damage or gene changes, they do cause 

structural changes in chromatin. The exposure of 
DNA to damaging agents such as ultraviolet light, 
radiation, cytotoxic drugs, and ROS results in 
DNA double-strand breaks (DSBs), preventing 
cell division and differentiation.52 Recent studies 
suggest that HDACis can directly induce DNA 
damage through oxidative stress and significant 
changes in chromatin structure rather than solely 
through DSBs.54 Furthermore, HDACis disrupt 
the function of chaperone proteins, particularly 
heat shock protein 90 (Hsp90), by inhibiting 
HDAC6, leading to the HSP70-mediated protea-
somal degradation of Hsp90 “client” oncopro-
teins.54 HDACis can inhibit tumor cells and 
promote apoptosis through various pathways, 
and many of these effects are not manifested in 
normal cells. This selective impact offers a poten-
tial advantage for disease treatment.

Regulation of lymphocytes by HDACis.  In contem-
porary cancer therapy, the field of lymphocyte 
immunity development is flourishing. Immuno-
therapy, including programmed cell death pro-
tein-1/programmed cell death-Ligand 1 (PD-1/
PD-L1) inhibitors and chimeric antigen receptor 
T-cell immunotherapy (CAR-T) cell therapy, has 
become increasingly important for patients with 
advanced or refractory cancers. Histone acetyla-
tion plays a pivotal role in lymphocyte growth, 
development, proliferation, and differentiation, 
thus having significant implications for acetyla-
tion regulation in clinical antitumor therapy, par-
ticularly when combined with immune therapy 
(Figure 2).

Antigen-presenting cells (APCs) are primarily 
immune cells that include mononuclear phago-
cytes, dendritic cells (DCs), B-cells, Langerhans 
cells, and target cells of viral infection or tumor 
cells, among others. LBH589, a novel panhistone 
deacetylase inhibitor, influences the expression of 
surface molecules in both immature and mature 
DCs, reducing DC uptake of protein antigens 
and inhibiting polysaccharide antigen uptake.57 
In macrophages, HDACis alter toll-like receptor 
4 (TLR4)-dependent activation and function. 
HDACis promote the transformation of inflam-
matory macrophages (M1) into tolerogenic M2 
cells and reduce TLR signaling.57–59 After HDACi 
treatment, the production of Th1 cytokines 
(IFN-γ and IL-2) and Th2 cytokines (IL-4) by 
invariant natural killer T (iNKT) cells is signifi-
cantly reduced, leading to the impaired activation 
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Figure 2.  Mechanism diagram of HDACis regulation of lymphocytes.

of iNKT cells, which is crucial for maintaining 
immune homeostasis.57,60,61 Second, T-cells serve 
as crucial mediators of tumor destruction.62 
HDACis exert their effects on the development 
and function of T-cells at various stages through 
different mechanisms. Treatment with TSA leads 
to histone acetylation at the IFN-γ gene locus in 
naïve Th0 cells and decreases the expression of 
CD28 in naïve CD4+ cells, significantly affecting 
T-cells.63,64 Multiple studies have shown that 
HDACs regulate initial CD4+ T-cell differentia-
tion and cytokine release.65,66 A deficiency of 
HDAC1 and HDAC2 in TH0 and TH1 cells 
leads to the generation of CD4+ helper T-cells 

expressing CD8 lineage genes and a loss of the 
ability to inhibit runt-related transcription factor 
3-core-binding factor subunit-β (Runx-CBFβ) 
complexes, which are crucial transcription factors 
for normal T-cell growth and leukemia suppres-
sion, suggesting the potential importance of com-
bination therapy with HDACis.67 In the context 
of cytotoxic T lymphocytes (CTLs), the constitu-
tive non-TCR (T cell receptor) -regulatory path-
way of CTLs targets HDAC7, controlling the 
expression of cytokines, cytokine receptors, and 
genes encoding adhesion molecules that deter-
mine CTL function.68 Effector memory T-cells 
exhibit a pattern of cytokine gene acetylation 
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under TH1 or TH2 conditions, while central 
memory T-cells exhibit low acetylation of cytokine 
genes at baseline, with increased acetylation upon 
stimulation, enhancing functional activity against 
tumors.69–71

Furthermore, Foxp3+ Tregs play a significant 
role in various immune processes, including 
transplant rejection, autoimmunity, and aller-
gies.72 The presence of HDACs or HDACi com-
plex components in Tregs may contribute to the 
regulation of Foxp3 acetylation, increasing the 
stability of Tregs.73 Among the various classes of 
HDAC enzymes, Class II and Class III HDACs 
have proven to be particularly valuable in this 
context.74 The immunosuppressive nature of 
AML is closely linked to Tregs, particularly those 
expressing tumor necrosis factor receptor 2 
(TNFR2). A study demonstrated a reduction in 
TNFR2(+) Treg levels in both peripheral blood 
and bone marrow after exposure to panobinostat 
and azacitidine for TNFR2(+) Tregs in AML 
patients.75 Zhao et al.76 found that in patients 
with immune thrombocytopenia purpura (ITP), 
low-dose chidamide increased the number of 
Treg cells in a peripheral blood mononuclear cell 
culture system, inhibiting the proliferation of 
effector T-cells, suggesting that low-dose chida-
mide has a significant therapeutic effect on ITP. 
Zuo et al.77 reported that the median fluorescence 
intensity of Treg cells was significantly reduced 
after chidamide combination treatment with chi-
damide and chemotherapy for T-cell non-Hodg-
kin lymphoma. Notably, Tregs can inhibit 
graft-versus-host disease (GVHD). Specifically, 
targeting HDAC6 and HDAC9 can enhance 
Treg function, leading to the clearance of residual 
tumor cells without intensifying the GVHD 
effect. This targeted inhibition is significant for 
managing the delicate balance between GVHD 
and graft-versus-leukemia, improving graft 
acceptance and ultimately increasing the trans-
plantation success rate.78,79

HDACis for AL

HDACis for AML
AML is the most common form of AL in adults 
and typically develops at an older age. The 
median age of onset is approximately 70 years, 
and the survival rate for elderly patients is gener-
ally poor.80,81 The primary treatments for AML 

include standard chemotherapy and allogeneic 
HSCT. However, the effectiveness of these treat-
ments is limited, and resistance to chemotherapy 
drugs often occurs, leading to a high recurrence 
rate.82

In recent years, the role of HDACis in AML 
treatment has become clearer. AML is sustained 
by LSCs, with the core-binding factor (CBF) 
complex being a crucial transcription factor tar-
geted in AML. The inv(16) (p13q22) chromo-
some inversion leads to the formation of the 
CBFβ-SMMHC fusion protein, enhancing muta-
tions in the cytokine signaling pathway during 
leukemia transformation.83 Comprising the 
DNA-bound RUNX protein and non-DNA-
bound CBFβ protein, the CBF complex is vital 
for hematopoietic function. CBFβ fuses with the 
SMMHC protein, forming the fusion protein 
CBFβ-SMMHC (CM), which contains the 
RUNX1 binding interface of CBFβ and the helix-
helix-rod region of SMMHC. Additionally, 
RUNX1 plays a crucial role in HSC production 
and serves as a key transcription factor for hemat-
opoietic cells. HDAC8 binds to CM protein, 
increasing p53 deacetylation, leading to p53 inac-
tivation, reducing the impact of p53 on LSCs, 
and promoting LSC proliferation.80 Therefore, 
inhibiting HDAC8 effectively restores p53 acety-
lation and activity. inv(16) generates the CBFβ-
SMMHC fusion protein, which is prevalent in the 
acute myeloid leukemia M4 subtype with eosino-
philic cells (M4Eo).84 Notably, HDAC8 inhibi-
tion induces apoptosis in AML cells with inv(16), 
significantly decreases AML cell proliferation, 
and eliminates leukemic initiation ability in 
mouse- and patient-derived LSCs while preserv-
ing normal HSCs.85 Another study revealed that 
HDAC1 and CM can form complexes that colo-
calize with RUNX1 and CBFβ-SMMHC on the 
promoters of known fusion protein target 
genes.86 In a mouse model, entinostat, an 
HDAC1 inhibitor, was found to reduce leuke-
mia burden in vivo, inducing leukemia cell dif-
ferentiation and apoptosis. Therefore, HDAC 
has emerged as a promising target for effective 
AML treatment.

VPA, a short-chain fatty acid and HDACi, 
induces the differentiation of AML progenitor 
cells in vitro by acting as a proliferation inhibitor 
and apoptosis inducer in AML cells. The combi-
nation of all-trans retinoic acid (ATRA) enhances 
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the effects of VPA.87 VPA/ATRA therapy shows 
promise for transiently controlling disease pro-
gression in AML evolving from myelodysplastic 
disease (MDS). However, a clinical trial in 26 
low-risk AML patients using VPA + ATRA 
yielded no complete responses (CRs), with only 
mild improvement observed in a neonatal AML 
patient.88 Further exploration is required for pri-
mary AML treatment with VPA + ATRA. 
Chidamide selectively induces apoptosis in LSC-
like cells and primary AML CD34+ cells in a con-
centration- and time-dependent manner.89 
Mechanistically, chidamide triggers LSC death 
by activating ROS, disrupting the mitochondrial 
membrane potential, modulating BCL2 family 
proteins, and activating caspase-3, resulting in 
poly ADP-ribose polymerase (PARP) degrada-
tion. Additionally, chidamide activates CD40 and 
regulates the downstream signaling pathways 
JNK and NF-κB, suggesting that chidamide is a 
potential novel LSC-targeted AML therapy. In 
another study, Ma et al.90 explored the impact of 
a novel HDAC inhibitor, I13, on inducing differ-
entiation in M3 and M5 subtype AML cells, t(8; 
21) translocated M2 subtype AML cells, and leu-
kemia stem-like cells. I13 disrupts the cell cycle, 
induces differentiation, and significantly inhibits 
the proliferation and colony formation of AML 
cells. Consequently, I13 has emerged as a poten-
tial alternative compound capable of overcoming 
the blocking of AML differentiation.

While the preclinical results of HDACis show 
promise, the monotherapy effect of HDACis on 
AML is modest. The combination of HDACis 
with multiple drugs represents a novel approach 
to AML treatment. One study assessed the thera-
peutic efficacy and feasibility of combining VPA 
with low-dose cytarabine (Ara-C) for treating 
elderly and frail AML patients.91 Among the 31 
patients, 8 achieved sustained CRs, and 3 
achieved hematological improvement, resulting 
in an overall response rate (ORR) of 35% with 
relatively low toxicity. This treatment option can 
be considered for patients who are unable to 
undergo standard induction therapy. The resist-
ance of AML to conventional therapy signifi-
cantly reduces cure rates, and Khateb et al.92 
reported that the increased expression and abun-
dance of the ubiquitin ligase RNF5 contribute to 
AML development and survival. The inhibition 
of RNF5 can reduce the growth of AML cells in 
culture and in vivo, enhance the sensitivity of 

AML cells to HDACis, and prolong the survival 
of mice. One study reported the effects of a novel 
HDACi, LBH589, combined with adriamycin on 
AML cells.93 Panobinostat exhibited extensive 
anti-AML activity. Additionally, panobinostat 
combined with adriamycin-induced AML cell 
death by increasing mitochondrial outer mem-
brane permeability and releasing mitochondrial 
cytochrome c, leading to Caspase-dependent 
apoptosis. This mechanism is likely to trigger cell 
death through a mechanism that induces DSBs. 
Therefore, the combination of panobinostat with 
doxorubicin may prove to be an effective treat-
ment for acute myeloid leukemia. Vorinostat is 
not effective as a single agent in the treatment of 
AML but has some efficacy in combination ther-
apy.94 A phase II clinical trial evaluated the safety 
and efficacy of the HDACi vorinostat in combi-
nation with bortezomib and Ara-C in patients 
with AML or MDS. The study enrolled 75 previ-
ously untreated AML or high-risk MDS patients 
aged 15–65 years with appropriate organ function 
and no CBF abnormalities. The overall survival 
(OS) rate was 82 weeks, and the ORR was 85%, 
with a 76% CR rate and 9% CR with incomplete 
platelet recovery.95 Because HDACis can enhance 
the efficacy of gemtuzumab ozogamicin in vitro, a 
phase I/II trial explored the efficacy of gemtu-
zumab ozogamicin combined with vorinostat and 
azacitidine in the treatment of refractory/relapsed 
elderly patients with AML.96 Among the 43 
patients, 10 achieved a CR, and 8 achieved a CR 
with incomplete platelet recovery, resulting in an 
ORR of 41.9%. Furthermore, Akada et al.32 have 
demonstrated that vorinostat possesses therapeu-
tic potential for the treatment of polycythemia 
vera (PV) and other myeloproliferative neoplasms 
linked to the JAK2V617F mutation. Vorinostat 
markedly inhibited the proliferation and induced 
apoptosis in cells expressing JAK2V617F. 
Concurrently, it potently suppressed the growth 
of mouse and human PV hematopoietic progeni-
tor cells harboring the JAK2V617F mutation. 
Notably, givinostat, an orally administered 
HDACi, gained its initial approval on March 21, 
2024, in the United States, for the management 
of Duchenne muscular dystrophy in patients aged 
6 years and above.39 Givinostat is a potent inducer 
of apoptosis and death of multiple myeloma 
cells,38 at the same time, is also studies on the 
treatment of relapsed leukemia.40 Amaru Calzada 
et al.41 propose that a combined regimen of givi-
nostat and hydroxyurea holds promise as a novel 
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strategy for the treatment of Jak2(V617F)-driven 
myeloproliferative neoplasms. This development 
indicates that extensive investigation into 
HDACis like vorinostat and givinostat may open 
up novel avenues for the management of a broader 
spectrum of hematological disorders. In Europe, 
decitabine is also approved for older AML 
patients with >20% untreated cells, but the treat-
ment has been less effective, with CR rates of 
9%–18% in randomized phase III clinical trials. 
Another phase I trial evaluated the efficacy of 
continuous or simultaneous administration of 
vorinostat plus decitabine every 28 days in patients 
with relapsed/refractory AML.97 The continuous 
regimen involves the continuous administration 
of decitabine followed by vorinostat, while in the 
concurrent regimen, patients are given both decit-
abine and vorinostat. The ORR was 23%, with a 
reliable safety profile. Among the two regimens, 
the response rate was greater for the concurrent 
regimen.

HDACis for ALL
ALL is another type of AL. The overall incidence 
of ALL is 3.85 per 100,000 people, with 60% of 
patients being under 19 years old.5 The primary 
treatment for ALL consists of multiagent chemo-
therapy, but its efficacy remains limited for 
patients with relapsed/refractory ALL. Allogeneic 
HSCT is considered an ideal therapy for ALL; 
however, recurrence posttransplantation signifi-
cantly diminishes its effectiveness. Considering 
the challenges in ALL treatment, there is interest 
in exploring the potential use of HDACis for ALL 
patients. Current investigations into HDACis are 
largely inspired by their application in PTCL. 
Romidepsin, which was approved by the US FDA 
in November 2009 for cutaneous T-cell lym-
phoma (CTCL) treatment, showed promising 
results in a pivotal open-label phase II study for 
relapsed or refractory PTCL.98 In this study, 
patients were treated for 28 days, resulting in an 
ORR of 25%, with CR/complete remission uncon-
firmed accounting for 15%. The median duration 
of overall response was 17 months. Notably, con-
trollable adverse events (AEs) were observed, and 
serious AEs such as thrombocytopenia, neutrope-
nia, and anemia were rare. Consequently, 
romidepsin has received approval from the US 
FDA for treating relapsed/refractory PTCL.99

In July 2014, belinostat gained FDA approval for 
treating patients with relapsed or refractory 

PTCL, while vorinostat obtained FDA approval 
for managing relapsed/refractory CTCL in 
2006.1,100–102 A multicenter, open-label, pivotal 
phase II study demonstrated that chidamide, 
used for relapsed or refractory PTCL, achieved 
an ORR of 28%, with a median progression-free 
survival (PFS) and OS of 2.1 and 21.4 months, 
respectively. In December 2014, the China Food 
and Drug Administration approved chidamide 
for the treatment of ALL.103 In vitro, HDACis 
have been combined with various drugs, includ-
ing topoisomerase inhibitors, bortezomib, and 
cytotoxic chemotherapy agents. Numerous clini-
cal studies are underway to explore the efficacy of 
these combinations in treating T-cell lym-
phoma.100 Given the promising therapeutic out-
comes of HDACis in PTCL and the extensive 
research conducted, it is reasonable to consider 
that HDACis could prove beneficial for ALL 
patients, especially those with a poor prognosis.

HDACis and acute T-lymphoblastic leukemia.  
Acute T-lymphoblastic leukemia (T-ALL) is con-
sidered an aggressive subtype of ALL.104 Some 
studies have shown promise in combining HDAC 
inhibitors with chemotherapy or HSCT to 
improve survival outcomes in patients with 
T-ALL. Zhou et al.105 conducted an open, single-
arm, multicenter clinical trial to investigate the 
efficacy and safety of chidamide in treating adult 
early T-cell precursor acute lymphoblastic leuke-
mia (ETP-ALL). The study included 24 patients 
with ETP-ALL, comprising 4 females and 20 
males, with a median age of 22 years (14–22 years). 
The photodynamic therapy (PDT)-ETP-ALL 
regimen plus 10 mg/day of chidamide was 
employed from induction therapy to consolida-
tion therapy. The results revealed an 87% CR rate 
after induction therapy. Six out of 24 (25%) ETP-
ALL patients underwent allo-HSCT, and the 
2-year event-free survival (EFS) rate was 83%. 
Guan et al.82 conducted a comparative study 
evaluating the efficacy of chemotherapy alone 
versus chidamide combined with chemotherapy 
in treating relapsed refractory T-ALL patients. 
The findings demonstrated that the combined 
treatment group exhibited a superior CR rate, 
ORR, and PFS compared to the chemotherapy-
only group. However, there was no significant dif-
ference in OS between the two groups. In a 
prospective study, Li et al.106 confirmed that chi-
damide, when combined with chemotherapy, 
demonstrated good clinical efficacy and safety in 
treating T-ALL in children. The OS and EFS were 

https://journals.sagepub.com/home/tah


T Xiao, Z Chen et al.

journals.sagepub.com/home/tah	 11

94.1% and 95.2%, respectively, in the chidamide 
treatment group. A small-sample study conducted 
at Guangdong Provincial People’s Hospital indi-
cated that maintenance chemotherapy with chi-
damide (10 mg twice weekly) for five patients with 
NOTCH1- and RAS/PTEN-mutated adult T-cell 
lymphoblastic lymphoma (LBL) resulted in no 
relapses at the last follow-up (122.0 months).107

Patients with T-ALL who undergo allo-HSCT 
still face a substantial risk of recurrence posttrans-
plantation, which remains the primary cause of 
death in T-ALL patients following this proce-
dure. The potential role of maintenance therapy 
with targeted drugs posttransplantation in miti-
gating the risk of recurrence warrants compre-
hensive clinical investigation. In one study, the 
efficacy of a combination of 0.5 mg/kg 
Chidamide administered once every 4 days for 
the treatment of T-ALL in children was 
explored.106 Maintenance therapy commenced 
4–8 weeks after transplantation and extended 
for up to 2 years posttransplantation. Following 
maintenance treatment, the ORR and EFS were 
reported to be 94.1% and 95.2%, respectively. 
Additional studies have investigated the efficacy 
and safety of low-dose decitabine in preventing 
relapse after allo-HSCT for ALL in adults. The 
results indicated that among 12 T-ALL/LBL 
patients, the 2-year relapse rate, OS, and disease-
free survival rates were 8.3%, 90%, and 81.5%, 
respectively, with no recurrence observed in seven 
T-ALL patients.108

HDACis and B-ALL.  Acute B-lymphoblastic leuke-
mia (B-ALL) patients are treated with chemo-
therapy. However, in high-risk patients, relapse or 
metastasis to extramedullary tissues or organs 
occurs within a year, and the 5-year survival rate 
is generally only approximately 35%. The sensi-
tivity of NALM-6 human B-ALL cells to spi-
ruchostatin B (SP-B), a histone acetylase 
inhibitor, has been observed. The expression of 
P21-related mRNAs in these cells was signifi-
cantly greater than that in other types of leukemia 
cells. SP-B inhibits histone acetylation and acti-
vates the caspase cascade, leading to NALM-6 
cell apoptosis. Notably, prior to the induction of 
apoptosis by SP-B, the expression of P21-related 
mRNA in NALM-6 cells increases, facilitating 
SP-B recognition and the induction of leukemia 
cell apoptosis.109 The HDACi LAQ824 has a sim-
ilar effect on NALM-6 leukemia cells.110 A study 

by Agirre et al.111 confirmed the impact of 
LBH589 on mouse models of T-ALL and B-ALL. 
Compared with those treated with vincristine and 
dexamethasone, mice treated with LBH589 
showed increased levels of H3 and H4 acetylation 
and survived longer. Notably, the combination of 
LBH589 with vincristine and dexamethasone sig-
nificantly enhanced the treatment efficacy. Simi-
larly, Mehrpouri et al. discovered that LBH589 
prolongs the G1 phase of cells by increasing 
C-MYC-mediated cyclin-dependent kinase 
inhibitors, thereby reducing the viability of B-ALL 
cells. Additionally, they found that bortezomib 
synergistically enhances the antitumor effects of 
LBH589 by inhibiting the NF-κB pathway, sug-
gesting that LBH589 is a potential therapeutic 
agent for B-ALL.112 In the treatment of children 
with ALL, the metabolism of the commonly used 
antifolate methotrexate (MTX) is dependent on 
folylpolyglutamate synthetase (FPGS). Chroma-
tin remodeling can alter the sensitive sites of 
FPGS upstream of exons, thus modifying FPGS 
expression. Research indicates that the HDACis 
sodium butyrate and SAHA can increase FPGS 
mRNA expression by 2–5 times without enhanc-
ing the cytotoxicity of MTX. Therefore, the com-
bination of HDACis and MTX has the potential 
to improve therapeutic efficacy in clinical ALL 
patients.113

In contrast to generalized HDACi research, 
Stubbs et al.114 aimed to identify the HDACi to 
which B-ALL is most sensitive. They assessed the 
sensitivity of B-ALL cells to various subtypes of 
HDACis and found that HDAC6 inhibitors, 
which selectively inhibit HDAC6 in the high-dose 
range, are effective against B-ALL cells. Both in 
vitro and in vivo, the selective inhibition of 
HDAC1 and HDAC2 significantly impeded the 
growth of B-ALL cells, with little effect on the 
growth of other hematopoietic malignant tumors. 
Consequently, the development of a drug that 
selectively inhibits HDAC1 and HDAC2 holds 
promise as a targeted therapy for precision treat-
ment of B-ALL. In 2019, Yang et al.115 evalu-
ated the preclinical efficacy of purinostat 
mesylate, a novel class I and IIb HDAC inhibi-
tor, for treating breakpoint cluster region (BCR)-
abelson proto-oncogene (ABL) induced Ph+ 
B-ALL. Purinostat mesylate was found to down-
regulate the expression of BCR-ABL and 
c-MYC, inducing apoptosis in primary Ph+ 
B-ALL cells in Ph+ leukemia cell lines and 
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relapsed patients. Furthermore, purinostat 
mesylate effectively impeded the progression of 
Ph+ B-ALL, significantly extending the survival 
of BL-2 secondary transplantation models with 
clinical symptoms of Ph+ B-ALL, BCR-
ABL(T315I)-induced primary B-ALL mouse 
models, and BCR-ABL-specific tyrosine kinase 
inhibitor-induced recurrent Ph+ B-ALL patients. 
These findings suggest that purinostat mesylate 
may serve as an effective treatment for B-ALL 
patients and patients with relapsed/refractory 
disease.

Conclusion
The conventional approach for treating AL pri-
marily relies on combination chemotherapy, 
which has limitations in drug selection and is 
often associated with adverse reactions. The effi-
cacy of this treatment, especially for recurrent/
refractory patients, is modest at best. At present, 
the forefront of research on blood system tumor 
treatment is centered on epigenetic modifica-
tions, with a particular emphasis on rapid 
advancements in HDACis. HDACis operate at 
both the molecular and cellular levels, regulating 
cell differentiation and apoptosis, inducing cell 
cycle arrest, and modulating the function of 
immune cells such as T-cells and APCs. This 
multilevel intervention in tumor cell formation 
and differentiation, along with the induction of 
apoptosis, suggests that HDACis are a promising 
avenue for AL treatment. Some HDACis have 
already received approval for hematological 
malignancies, while others are undergoing inves-
tigation as monotherapies or adjunct agents for 
their anti-AL effects. Moreover, the combination 
of HDACis with chemotherapy, targeted therapy 
drugs, immunotherapy drugs, or CAR-T cell 
therapy has demonstrated enhanced effectiveness 
in treating AL. This has led to the emergence of 
new antitumor inhibitors, such as the dual matrix 
metallopeptidase 2 (MMP2)/HDAC-8 inhibitor, 
an antitumor substance metabolizer developed 
for AML and ALL by Halder et al.116 These inno-
vations are expected to provide improved options 
for treating AL. Additionally, there is substantial 
room for further exploration into how HDACis 
influence gene replication, transcription, transla-
tion, and chromatin remodeling. This ongoing 
research may unveil more therapeutic strategies 
involving HDACis, offering additional directions 
for treating hematologic tumors. The dynamic 

landscape of HDACis in the field holds great 
promise for advancing the treatment of AL.

The use of HDACis in the treatment of AL is still 
in its early stages, and caution is warranted, espe-
cially considering the current trend toward per-
sonalized medicine for AL. Based on current 
research findings, monotherapy with HDACis 
has not shown satisfactory results in AL patients. 
Further investigation is essential to understand 
the precise mechanisms by which different types 
of HDACis act on various subtypes of AL tumors. 
Rigorous and extensive in vivo studies are neces-
sary to establish the safety and reliability of 
HDACis before they can be used in more effec-
tive clinical trials. Moreover, some approved 
HDACis lack selectivity, leading to off-target 
effects and undesirable side effects. The develop-
ment of certain HDACis in clinical trials has been 
hindered by poor pharmacokinetic properties.51 
Efforts to address these limitations have been 
made, as demonstrated by Fan et al.,117 who 
explored prodrug strategies. Prodrugs are inactive 
or partially active drugs that become active parent 
drugs in the body through enzymatic or chemical 
reactions. Prodrug strategies aim to overcome the 
shortcomings of the physical and chemical prop-
erties of HDACis, enhancing their absorption, 
distribution, metabolism, excretion, and other 
characteristics. However, challenges arise due to 
the biotransformation of precursor drugs and the 
degradation of parent drugs and ligands/active 
groups, which are influenced by various internal 
and external factors. Additionally, when combin-
ing HDACis with other drugs, it is crucial to clar-
ify the drug toxicity and compatibility issues 
associated with these combinations. Further 
exploration of the interdependent mechanisms 
between tumor epigenetics and tumor immunol-
ogy or metabolism is needed. Anticipating 
increased investment in future research, there is a 
growing focus on developing HDACis as poten-
tial treatments for AL patients and expanding 
their application to a broader spectrum of patients 
with hematological malignancies.
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