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Current studies of phenotype diversity by genome-wide association studies

(GWAS) are mainly focused on identifying genetic variants that influence

level changes of individual traits without considering additional alterations at

the system-level. However, in addition to level alterations of single phenotypes,

differences in association between phenotype levels are observed across differ-

ent physiological states. Such differences in molecular correlations between

states can potentially reveal information about the system state beyond that

reported by changes in mean levels alone. In this study, we describe a novel

methodological approach, which we refer to as genome metabolome integrated

network analysis (GEMINi) consisting of a combination of correlation network

analysis and genome-wide correlation study. The proposed methodology

exploits differences in molecular associations to uncover genetic variants

involved in phenotype variation. We test the performance of the GEMINi

approach in a simulation study and illustrate its use in the context of obesity and

detailed quantitative metabolomics data on systemic metabolism. Application

of GEMINi revealed a set of metabolic associations which differ between

normal and obese individuals. While no significant associations were found

between genetic variants and body mass index using a standard GWAS

approach, further investigation of the identified differences in metabolic associ-

ation revealed a number of loci, several of which have been previously

implicated with obesity-related processes. This study highlights the advantage

of using molecular associations as an alternative phenotype when studying the

genetic basis of complex traits and diseases.
1. Introduction
With the development of high-throughput genotyping technology, genome-

wide association analysis (GWAS) has become a powerful tool to examine the

genetic basis of many complex traits and common diseases. These studies

have substantially increased our knowledge of genes that influence phenotypic

variations. For instance, in obesity genetics, substantial progress has been

made with the discovery of at least 50 common and rare variants influencing
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obesity-related traits [1–6]. Yet, despite this great success, a

large proportion of the genetic variation contributing to the

observed variability in phenotypes still remains unmapped

[7,8]. In trying to discover the ‘missing variants’, a number

of strategies have been proposed [9]. It has been suggested

that considering alternative models of genetic effects and

their influence on complex traits can help to discover some

of the missing variants [9–12].

In an earlier work [13], we highlighted the importance of

using molecular association patterns and their differences in

relation to different physiological conditions to investigate

the biological features of phenotype variation. We developed

a network-based method for the differential analysis of mol-

ecular associations and illustrated its use in the context of

prediabetes. Based on this analysis, we were able to identify

key differences in lipoprotein metabolism known to be rela-

ted to the early development of diabetic dyslipidaemias.

Importantly, these changes were not identified by comparing

changes in mean concentration levels at the early phase of dis-

ease development. These results indicate that differences in

molecular associations might provide access to unique aspects

of the underlying genetic and molecular mechanisms, being

therefore a complementary tool to unravel the biological

basis of phenotype variation.

In this study, we hypothesize that some of the undetected

variants might be associated not with changes in mean levels

of a phenotype, as studied by conventional GWAS, but with

alterations that occur at a higher system-level. To investigate

the potential use of differences in molecular dependencies to

uncover genetic variants associated with phenotype variation,

we propose a novel analytical approach to integrate metabo-

lic and genetic information, which we refer to as genome

metabolome integrated network analysis (GEMINi). A simu-

lation study is initially presented to assess the performance of

the proposed methodology. We then demonstrate the use of

our approach by investigating metabolic changes in relation

to obesity using two independent population-based cohorts,

totalling to over 5000 individuals. A recently established

serum NMR metabolomic platform [14] was applied to

quantify 38 systemic metabolites that represent various key

metabolic pathways [15].

The proposed GEMINi approach identifies potentially

new genetic components of obesity. Differences in association

between serum metabolites were identified, comprising

several metabolites linked by previous studies to the develop-

ment of obesity-related disorders. Metabolites involved in such

differential connections included all sizes of very-low-density

lipoprotein particles (VLDL) as well as several low-molecular-

weight metabolites. Further investigation of these phenotypic

differences revealed a set of genetic variants significantly associ-

ated with these differential metabolic dependencies. Several

of the associated genes have been previously implicated in

obesity-related traits. Besides the GEMINi approach, we also

performed two standard analyses. First, we looked for associ-

ations between genetic variants and body mass index (BMI) by

a conventional GWAS approach. Second, we looked for associ-

ations between mean levels of the metabolites and BMI. Using

the conventional GWAS approach, we found no associations at

a genome-wide significance level between single nucleotide

polymorphisms (SNPs) and BMI. These results highlight the

advantage of using differences in statistical association between

different molecules as an additional phenotype in the study of

common trait variation and demonstrate the applicability
of our approach to uncover further molecular factors potentially

involved in the pathogenesis of complex traits.
2. Material and methods
2.1. Study populations
We used data from two large population-based cohorts, the North-

ern Finland Birth Cohort 1966 (NFBC1966) and the Northern

Finland Birth Cohort 1986 (NFBC1986). The methods and aims

of these studies have been published previously [16]. In brief, the

NFBC1966 includes 12 068 children with expected dates of birth

falling in between 1 January and 31 December in the two northern-

most provinces of Finland, Oulu and Lapland. Data were collected

since pregnancy and supplemented at the age of 1, 14 and 31 years.

Blood samples were taken when individuals were 31 years old. The

NFBC1986 includes 9432 live born children with expected dates of

birth between 1 July 1985 and 30 June 1986 also in the above area.

The cohort has been monitored since early pregnancy until adoles-

cence. All those alive with known address were invited to a clinical

examination at the age of 15–16 years when blood samples were

taken. The blood collections were drawn after overnight fasting

and the samples stored at 2808C. The University of Oulu Ethics

Committee and the Ethical Committee of Northern Ostrobothnia

Hospital District have approved the studies, and all participants

provided written informed consent.

2.2. Phenotype measures
For the differential network analysis, individuals were classified

into two groups: obese and non-obese according to their BMI

values. For the NFBC1966, individuals were classified as obese if

their BMI exceeded 30 kg m22. Individuals were classified as

non-obese if their BMI was equal or lower than 25 kg m22 and

equal or greater than 18.5 kg m22. For the NFBC1986, individuals

were classified as obese and non-obese by calculating the age-

and sex-specific BMI percentiles. The non-obese group includes

females with measures of BMI equal or lower than 24.05 kg m22

and equal or greater than 17.4 kg m22 and males with BMI equal

or lower than 24.2 kg m22 and equal greater than 17 kg m22

(fifth percentile to less than the 85th percentile). The obese group

includes female with BMI greater than 27.5 kg m22 and males

with BMI greater than 28.2 kg m22 (greater than the 95th percen-

tile). Individuals were excluded from analysis based on the

following criteria: non-fasting, diagnosed type I or II diabetes, preg-

nancy, lipid-lowering medication, missing data on glucose and/or

weight measures and/or height. The sample size for NFBC1966

is 3464 subjects (Nnon-obese ¼ 3023 and Nobese ¼ 441) and for

NFBC1986 it is 3791 subjects (Nnon-obese ¼ 3565 and Nobese¼ 226).

The clinical characteristics of the study groups are presented in

the electronic supplementary material, tables S1 and S2.

2.3. Metabolic data
The metabolic data for the two cohorts were acquired using the

same high-throughput serum NMR metabolomics platform

the details of which have been described previously [8,14]. Metab-

olites were selected according to feasibility of quantification by

NMR and to allow a consistent analysis across the two cohorts.

Table 1 shows the 38 metabolic measures included in the GEMINi

analysis, representing a wide variety of metabolic processes, such

as amino acid, energy and lipoprotein metabolism.

2.4. Genetic data
Only the NFBC1966 were used for the genetic analysis, because

genome-wide data for the NFBC1986 were not available. Details

for the genotyping procedure and quality control are presented
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in reference [16]. In brief, all DNA samples were prepared and

genotyped by the Broad Institute Biological Sample Reposi-

tory. Genotyping was performed using the Illumina Infinium

370cnvDuo array. The per-sample quality control process

included analysis of duplicate samples, sex discrepancy,

sample contamination and relatedness. Of the related pairs that

shared over 20% of the genome identical by descent, the individ-

uals with less complete genotype data were excluded. Markers

were excluded if the call rate in was less than 95%, if the minor

allele frequency was less than 1% and if the p-value from a

Hardy–Weinberg equilibrium test was p , 1 � 1024. The final

genetic dataset included 4815 individuals and 318 443 SNPs

2.5. Statistical methods
In this study, we perform and compare two statistical procedures.

First, we perform a standard analysis of the associations between

metabolic levels and BMI using univariate linear regression and

between genetic variants and BMI following a conventional

GWAS approach. The second approach, which we refer to as

GEMINi, is a combination of (i) differential network analysis of

metabolic associations, and (ii) genome-wide correlation (GWC)

study. We assess the performance of the proposed GEMINi meth-

odology by performing a simulation study (see the electronic

supplementary material). All analyses were adjusted for sex

differences in serum metabolite levels.

2.5.1. Conventional analysis of association between obesity and
metabolic – genetic data

A conventional GWAS approach is used to test for associations

between genetic variants and BMI. The analysis is performed fol-

lowing the standard single-SNP approach where SNPs are tested

one at a time. Associations were investigated using linear

regression assuming an additive effect on the trait and including

sex as a covariate. Significant associations between genetic var-

iants and BMI measures were assessed by setting genome-wide

significance to p , 5 � 1028 [18].

We use linear regression to test the effect of serum metabolites

on BMI. The analyses are performed following a univariate

approach where metabolites are tested one at a time. We included

sex as a covariate to correct for sex differences in serum metabolic

profiles. To identify significant associations between serum metab-

olites and BMI, we use a conservative Bonferroni-corrected

significance level, p , 0.01/M, where M ¼ 38 denotes the total

number of serum metabolite measures.

The above analyses were conducted including all the individ-

uals for which genetic, metabolic and BMI data were available

(N ¼ 4346).

2.5.2. Genome metabolome integrated network analysis
An outline of the GEMINi methodology is presented in figure 1.

The method consists of two stages: (i) construction of the differen-

tial network, and (ii) a genome-wide correlation analysis (GWCA).

We start by performing a differential network analysis that allows

us to test whether the pattern of pairwise associations between

metabolites is the same in two physiological groups (e.g. non-

obese and obese) or whether it significantly differs across

groups. To eliminate the confounding effect of sex on the serum

metabolites, the data used for this analysis are the residuals from

a linear regression model of each metabolite on sex. To build the

differential networks, we use the same methodology presented

in reference [13]. Briefly, the underlying interdependencies

between metabolites are initially measured for each of the two

physiological groups using shrinkage estimates of partial corre-

lations [19]. To test whether the association between metabolites

significantly differs between groups, we perform a two-sample

permutation test. We used 100 000 permutations in our analysis.
If the partial correlations between two given metabolites are sig-

nificantly different between the two physiological groups, then

we draw an edge in the differential network. The connections

included in the differential network are defined by setting a cut-

off on the two-tailed p-value. The power to estimate correlations

is lower than the one to estimate a change in mean levels, therefore,

to infer the differential network we set an uncorrected threshold,

p , 0.01. To validate the differential network analysis results, we

compare the network structure between the two cohorts. The repli-

cated results between cohorts are further investigated in the next

step of the analysis.

In the second step, we perform a GWCA to identify genetic

variants associated with differences in metabolic associations.

As for the standard GWAS study, all individuals for whom gen-

etic data are available were included in the analysis. To find the

desired associations, we first classify individuals according to the

number of copies of the less frequent allele carried, giving geno-

type groups A (0 copies) and B (one or two copies). SNPs are

tested one at a time. Subsequently, the correlation between

metabolites m1 and m2 is calculated for each group, rA and rB,

and differences in correlation between groups A and B is

tested. As in the differential network analysis, we eliminate the

confounding effect of sex on the serum metabolites by using

the residuals of a linear regression of the metabolite level on

sex. To test whether the two correlation coefficients, rA and rB

are the same, we use the z transform method as described in

reference [20]. To correct for multiple testing, significant associ-

ations between genetic variants and variations in metabolic

associations are determined using the genome-wide significance

threshold p , 5 � 1028/D, which corresponds to a genome-wide

significance level adjusted with the number of differential connec-

tions (D) identified in step one. To assess the biological significance

of our findings, identified SNPs are assigned to the nearest gene

(maximum distance 1 Mb).

All analyses were conducted in R v. 2.14.1, apart from the

conventional GWAS that was carried out in SNPtest v. 2.0. Compu-

tation of the partial correlation matrix was performed using the R

package GeneNet. The differential networks were built and visual-

ized using the R package igraph. The package psych in R was used

to test for differences between correlation coefficients.
3. Results and discussion
3.1. Conventional analysis of metabolic and

genetic data
3.1.1. Genome-wide association study analysis of BMI
We performed a standard GWAS analysis where associations

between genetic variants and BMI (as a continuous variable)

were tested. A Manhattan plot of the p-values obtained from

the GWAS analysis is presented in the electronic supplementary

material, figure S1. Although no SNPs showed association at

the genome-wide significance threshold ( p , 5 � 1028), several

notable associations were found, of which the most significant

was a variant within a gene encoding for a transcriptional

factor-activating enhancer-binding protein two-beta (TFAP2B)

(rs987237, 6p12.3, p , 1.53 � 1026; see the electronic sup-

plementary material, table S3) expressed in adipose tissue.

The TFAP2B-rs987237 genetic variant has been previously

associated with a number of metabolic disorders, including

development of T2DM [21], BMI [22] and other BMI-related

phenotypes such as waist circumference [4]. In addition, several

SNPs localized within regions previously associated with BMI

showed associations at a significance threshold of p , 0.001.

The results for a list of loci localized within known obesity
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genes are presented in the electronic supplementary material,

table S3.

Owing to the stringent genome-wide significance threshold

( p , 5 � 1028), application of the GWAS approach to a single

population frequently fails to identify statistically significant

associations. Despite the low p-values for some of the pre-

viously reported obesity-related genes, we did not reach the

genome-wide significance threshold ( p , 5 � 1028) which

might indicate the lack of power in this cohort to identify loci

with key roles in determining variations in BMI.
3.1.2. Association analysis between serum metabolites and body
mass index

We performed an inspection of the data using linear

regression to explore associations between serum metaboli-

tes and BMI. Results for the two cohorts are presented in

table 1. To facilitate comparison of the cohorts, scatter plots

for the estimated values are presented in the electronic sup-

plementary material, figure S2. The analysis shows that all

VLDL subclasses, intermediate density lipoprotein (IDL),

all low-density lipoprotein subclasses (LDL)—apart from

mean diameter for LDL particles—small high-density lipo-

protein subclass (HDL) and apolipoprotein B are positively

associated ( p , 0.01/M ) with BMI. Very large, large HDL

and mean diameter for LDL and HDL particles are inversely

associated with BMI in both cohorts. No association was
found between BMI and apolipoprotein A in either of the

cohorts. In NFBC1966, medium HDL is inversely associated

with BMI, but shows no association in NFBC1986, which is

potentially owing to the age difference between cohorts [23].

Tests of the association between BMI and low-molecular-

weight metabolites show that alanine, glycerol, glycoprotein,

isoleucine, leucine, phenyalanine, pyruvate, tyrosine and

valine are positively associated with BMI in both cohorts,

whereas glutamine is inversely associated with BMI. No associ-

ation was found between BMI and acetoacetate and BMI and

urea. We observe that glucose and lactate are positively associ-

ated with BMI, but these two metabolites show no association

in NFBC1986. On the other hand, 3-hydroxybutyrate, acetate

and citrate are negatively associated with BMI and creatinine

and histidine are positively associated in NFBC1986, but

shows no association in NFBC1966.

The large number of significant associations between BMI

and the metabolite concentrations reflects the close relation-

ship between obesity and systemic metabolism. However, it

is not only the concentration levels of serum metabolites

that can change owing to variations in total body mass, but

also the dependencies between metabolites can be affected.

To investigate how metabolic associations differ between

non-obese and obese individuals and to what extent these

differences can serve as an indicator of important molecular

alteration between these physiological states, we use the

GEMINi approach.
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3.2. Genome metabolome integrated network analysis
3.2.1. Simulation study
We carried out a simulation study to assess the performance of

the GEMINi approach (see the electronic supplementary

material). Four different scenarios were simulated by combining

different values of (i) minor allele frequency, and (ii) differences

in associations between variables across groups. These scenarios

were created to cover the range of variation observed in the data.

To illustrate the predictive power of GEMINi, the receiver oper-

ating characteristic (ROC) curve analysis was used for each of

the two steps of the GEMINi approach (differential network

and GWCA) and the area under the curves determined

(AUCDiffNet and AUCGWCA). Results are presented in the

electronic supplementary material, figures S3 and S4.

We observe that for large differences in associations between

variables across groups (simulation 1 and 2), the GEMINi

approach shows perfect prediction value (AUCDiffNet ¼ 1.0

and AUCGWCA ¼ 1). With small differences in associations

between variablesacross groups (simulation3 and simulation4),

the accuracy of GEMINi drops, showing moderate prediction

values. The area under the ROC curves for simulation 3, for

the two steps of the GEMINi approach are AUCDiffNet 0.7748

and AUCGWCA 0.7793. For simulation 4, the area under the

ROC curves are AUCDiffNe ¼ 0.6885 and AUCGWCA ¼ 0.7377.

Therefore, the GEMINi method shows a good performance

in identifying differences in associations between a genetic var-

iant and differences in pairwise associations between variables

across different groups.

3.2.2. Differential networks: non-obese and obese individuals
Differential network analysis is performed with the aim of

determining the subset of metabolic associations that signifi-

cantly differ between non-obese and obese individuals. We

examine the same metabolic variables from the two indepen-

dent cohorts (NFBC1966 and NFBC1986), and use estimates

of partial correlation as measures of metabolic dependency.

Metabolic associations that are consistently different across

the two physiological conditions (obese and non-obese)

in the two study cohorts are interpreted as obesity-related

molecular characteristics and are further investigated in

the GWCA.

The differential analysis for BMI is presented in figure 2.

Each connection in the differential network indicates that a

significant difference in the pairwise association between

two metabolic variables is found between the two physiologi-

cal conditions. To assess the robustness of differences in the

serum metabolite associations, we compare the two differential

networks (figure 2c). The differential network for NFBC1966

(figure 2a) consists of a set of 29 connected variables, which

are organized in 36 pairwise differential interactions. The

differential network for NFBC1986 (figure 2b) comprises a

group of 25 differentially connected variables, which are

organized in 19 pairwise differential interactions. We observe

similar patterns of differences in the metabolic associations in

these two differential networks. For both networks, the

majority of the connected variables represent measures of

VLDL (dark green nodes), LDL (light blue nodes), HDL

(dark orange nodes) and amino acids (pink nodes). Five

metabolites—pyruvate, histidine, lactate, tyrosine, total lipids

in small HDL—show no connections in either of the two net-

works. Five overlapping connections are observed between the

two networks (figure 2c). This overlap is significantly higher
than expected at random with p-value¼ 1.97� 1024 from

a hypergeometric test with N ¼ 703 pairs, M ¼ 36, K ¼ 19,

x ¼ 5). The overlapping connections highlight differences in

the pairwise associations between VLDL measures which

occur throughout all size ranges, one measure of HDL

(M-HDL-L) and two low-molecular-weight metabolites (urea

and 3-hydroxybutyrate). Moreover, not only are a number of

connected components overlapping between the two networks,

but also the signs of the difference in partial correlations are

identical (represented as connection colours). We observe that

the correlation is significantly higher in the obese group for

small VLDL and large VLDL, ApoB and mean diameter for

VLDL, large VLDL and small VLDL, very large and medium

VLDL and extremely large VLDL and medium HDL (red

edges). On the other hand, we observe that partial correlation

between the pair urea and 3-hydroxybutyrate is significantly

lowered (blue edges) in the obese group.

A number of obesity-related differences in metabolic

associations identified here are in line with prior studies on

obesity-related traits. For instance, the central position and

abundance of VLDL-related measures in the differential

networks may reflect disregulation in VLDL metabolism.

These alterations may result from the shift from small VLDL

particles to enlarged VLDL [24]. There is also evidence to

suggest that in obesity-related dyslipidaemia an overproduc-

tion of large VLDL particles is the initiator of all sequences

of lipoprotein changes, resulting in a decrease in levels and

particle size of HDL and smaller-denser LDL particles [25].

Previous studies on obesity-related dyslipidaemias have

recognized a complex pattern of change in size and particle

concentration within the major lipoprotein classes in patients

with obesity, especially abdominal obesity [26,27]. These

disorders are related to elevated VLDL triglycerides that

trigger the shift from small VLDL to medium and large

VLDL, increased levels of small LDL and reduction in con-

centration and size of HDL. These variations in lipoprotein

particle size subclasses, which relate to dyslipidaemias associ-

ated with obesity, are captured by the differential network of

lipoprotein associations.

The relatively large number of independently replicated

results and the known relevance of the identified metabolites

to obesity provide strong support for differential association

analysis in improving our understanding of the biological

mechanisms of disease. Assuming that these metabolic dif-

ferences are related to obesity, we hypothesized that these

measures could be used as an additional phenotype to ident-

ify genetic variants associated with obesity-related traits.

To test this hypothesis, we performed a GWCA.
3.2.3. Genome-wide correlation analysis of metabolic associations
The associations of 318 443 SNPs with the differences in

metabolite–metabolite partial correlations were individually

tested. Our analysis revealed 24 loci significantly associated

with differences in associations between one pair of metab-

olites, namely total lipids in medium VLDL and very-large

VLDL ( p , 5 � 1028/D; D ¼ 5). The identified SNPs are

localized in 18 genetic regions across 14 chromosomes.

A brief description of the identified genetic variants,

including their accession numbers, chromosomal positions,

obtained p-values, along with candidate genes associated

with the genetic marker is presented in table 2. The Manhat-

tan plot of the p-values obtained from the GWCA is
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presented in the electronic supplementary material, figure S5.

In addition, we report the levels of association between differ-

ences in metabolic association and SNPs localized in genes

previously reported for BMI [22] (electronic supplementary

material, table S4) and SNPs previously reported to influence

human serum metabolite levels [15] (electronic supplemen-

tary material, table S5).

Several SNPs significantly associated with differences in

correlation between total lipids in medium VLDL and total

lipids in very-large VLDL are localized in or near a gene
previously implicated in the processes related to obesity or

associated traits. For instance, we identified SNP rs1334806

which is localized on chromosome 1 near a gene encoding

for dedicator of cytokinesis 7 (DOCK7). Variations in this gen-

etic region have been previously found to be implicated in the

control of lipid levels [28,29]. Another of the SNPs detected

(rs1078248) at chromosome 3p21.33 is localized near a gene

encoding for the abhydrolase domain containing five protein

(ABHD5/CG1–58). The protein encoded by this gene is

known to be linked to triglyceride (TAG) metabolism which



Table 2. Genetic loci associated with differences in metabolite – metabolite
correlations between obese and non-obese individuals. Candidate gene,
potential candidate gene in the region; Chr, chromosome; Pos, SNP position
in NCBI human genome build 36; p-value, p-value for association between
locus and variation in correlation between XL-VLDL/M-VLDL. Significant
associations between genetic variants and variation in association between
pairs of metabolites were identified using genome-wide significance level
threshold ( p , 5 � 1028/D; where D ¼ 5).

candidate

gene SNP Chr Pos p-value

DOCK rs1334806 1 62875313 1.32 � 10209

PPP1R12B rs12743401 1 202476648 1.01 � 10213

OTOF rs7592040 2 26741551 1.47 � 10209

ABHD5 rs1078248 3 43794357 2.36 � 10209

GRIA1 rs573496 5 152893433 1.94 � 10209

UST rs2500542 6 149331204 7.95 � 10210

DLC1 rs1454953 8 13315983 6.23 � 10210

DLC1 rs7814428 8 13324439 2.37 � 10210

HEY1 rs2920949 8 80869508 4.14 � 10209

FAM84B rs7357357 8 127189138 4.49 � 10209

FAM84B rs10094775 8 127197554 6.50 � 10209

FAM84B rs4557669 8 127306602 1.97 � 10209

SH2D4B rs10509433 10 83080528 2.00 � 10210

OR10A6 rs17315588 11 7913911 3.99 � 10210

OR10A6 rs1564632 11 7873288 3.23 � 10209

EED rs9971532 11 85929490 1.72 � 10209

LDHB rs1650307 12 21803770 3.11 � 10209

DACH1 rs7981816 13 72642843 5.33 � 10209

NAGPA rs2302553 16 5056295 3.06 � 10209

NAGPA rs3815490 16 5060568 9.01 � 10210

ATP4A rs8106239 19 36085358 9.14 � 10210

BPIFB3 rs2093066 20 31652596 7.81 � 10210

BPIFB3 rs378098 20 31660543 7.46 � 10210

MN1 rs2040699 22 28042532 3.72 � 10209
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is the primary energy source in vertebrates [30]. TAGs are

stored in adipose tissue and hydrolysed into fatty acids and

glycerol and can be used by body tissues during times of

fast or energy deprivation [31]. Mutations in the gene encoding

for ABHD5 have been associated with a triglyceride storage

disease with impaired long-chain fatty acid oxidation called

Chanarin–Dorfman syndrome [32,33]. Despite the fact that

ABHD5 is involved in TGA metabolism and highly expressed

in adipose tissue, patients with Chanarin–Dorfman syndrome

are not obese [34]. No previous association between ABHD5

and obesity-related traits has been reported. Another SNP

associated with differences in correlation between total lipids

in medium VLDL and very-large VLDL is rs573496 at chromo-

some 5q33.2. This SNP is localized within a gene encoding

for glutamate receptor 1 (GRIA1). Glutamate receptors are

protein complexes formed by the combination of four different

subunits (GRIA1–GRIA4) and are known to be the main excit-

atory neurotransmitter receptors in the mammalian brain.

Regulation of glutamate receptors is influenced by leptin

levels [35].
While none of the SNPs localized within genes previously

associated with BMI [22] reach the genome-wide significance

threshold ( p , 5 � 1028/D; see the electronic supplementary

material, table S4), we observe a relatively high association

( p , 1 � 1024) between a number of these SNPs and differ-

ences in association between total lipids in medium VLDL

and very-large VLDL. These SNPs are localized in five

obesity-related genetic regions, namely fat mass and obesity-

associated protein (rs4784351 with p ¼ 3.62 � 1025); trans-

membrane protein 18 (rs2049480 with p ¼ 8.13 � 1027);

neurexin-3-alpha (rs8011930 with p ¼ 2.67 � 1026; rs8012678

with p ¼ 2.66 � 1027; rs8020920 with p ¼ 8.53 � 1027 and

rs987644 with p ¼ 1.07 � 1027); cell adhesion molecule 2

gene (rs9812103 with p ¼ 1.70 � 1025); LDL receptor-related

protein 1B (rs2049480 with p ¼ 8.13 � 1027). In addition,

two SNPs localized within genes previously reported to

influence human serum metabolite levels [15] show associa-

tion at significance level p , 1 � 1024 with differences in

correlation between total lipids in medium VLDL and very-

large VLDL (electronic supplementary material, table S5).

These two genetic variants correspond to SNP rs560887

( p ¼ 8.95 � 1025), which is localized within a gene encoding

for glucose-6-phosphatase, catalytic, 2 and SNP rs261336

( p ¼ 9.31 � 1025), which is localized within hepatic lipase gene.
4. Conclusion
While GWASs have greatly contributed to the identification

of genetic variants associated with complex traits, these var-

iants typically appear to explain only a small proportion of

the observed variability in phenotypes. In this study, we

have proposed the analysis of additional phenotypic vari-

ations such as differences in associations between metabolic

measures to aid the discovery of genetic factors involved in

complex traits. To this end, we have introduced a novel

analytical approach for the combined analysis of metabolic

and genetic information.

Initially, we examined the relationship between obesity and

serum metabolites by performing a differential analysis of

metabolic associations. Here, we investigated how metabolic

associations differ between non-obese and obese individuals

and to what extent these differences in metabolic associations

can reveal key features of obesity condition. These findings

were therefore interpreted as strong evidence of a relationship

between these metabolic associations and obesity. We per-

formed a GWCA where genetic variants were tested for

association with metabolic correlations. Unlike standard

GWAS, which did not reveal any significant associations, this

approach yielded many significant genetic loci. A clear limit-

ation of our study is the lack of a replication cohort for our

genetic findings. However, the fact that we found no associ-

ations following standard GWAS, but did find a large number

of associations using our GWC approach, many of which are

implicated in obesity-related processes, is very promising.

Moreover, the relatively low p-values for some of the previously

reported obesity-related gene lend weight to our assertion that

the GEMINi method can retrieve useful and biologically mean-

ingful relationships between genetic variants and differences

in molecular association. This study therefore highlights

the importance of investigating differences in association

between metabolites or other phenotypic indicators as an
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additional phenotype to identify novel loci with key roles in the

pathogenesis of complex traits.
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13. Valcárcel B et al. 2011 A differential network
approach to exploring differences between
biological states: an application to prediabetes.
PLoS ONE 6, e24702. (doi:10.1371/journal.
pone.0024702)

14. Soininen P et al. 2009 High-throughput serum NMR
metabonomics for cost-effective holistic studies on
systemic metabolism. The Analyst 134, 1781 – 1785.
(doi:10.1039/b910205a)

15. Kettunen J et al. 2012 Genome-wide association
study identifies multiple loci influencing human
serum metabolite levels. Nat. Genet. 44, 269 – 276.
(doi:10.1038/ng.1073)

16. Sabatti C et al. 2009 Genome-wide association
analysis of metabolic traits in a birth cohort from a
founder population. Nat. Genet. 41, 35 – 46. (doi:10.
1038/ng.271)

17. Benjamini Y, Hochberg Y. 1995 Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. J. Roy. Stat. Soc., Ser. B 57, 289 – 300.

18. Risch N, Merikangas K. 1996 The future of genetic
studies of complex human diseases. Science
(New York, NY) 273, 1516 – 1517. (doi:10.1126/
science.273.5281.1516)

19. Schafer J, Strimmer K. 2005 A shrinkage approach
to large-scale covariance matrix estimation and
implications for functional genomics. Stat. Appl.
Genet. Mol. Biol. 4, 32. (doi:10.2202/1544-
6115.1175)

20. Revelle W. 2010 psych: procedures for personality
and psychological research. R package v. 1.0-91.

21. Maeda S et al. 2005 Genetic variations in the gene
encoding TFAP2B are associated with type 2
diabetes mellitus. J. Hum. Genet. 50, 283 – 292.
(doi:10.1007/s10038-005-0253-9)

22. Speliotes EK et al. 2010 Association analyses of
249,796 individuals reveal 18 new loci associated
with body mass index. Nat. Gen. 42, 937 – 948.
(doi:10.1038/ng.686)

23. Abbott R, Yano K, Hakim A, Burchfiel C, Sharp D,
Rodriguez B, Curb JD. 1998 Changes in total and
high-density lipoprotein cholesterol over 10- and
20-year periods (the Honolulu Heart Program).
Am. J. Cardiol. 82, 172 – 178. (doi:10.1016/S0002-
9149(98)00310-5)

24. Adiels M et al. 2006 Overproduction of large VLDL
particles is driven by increased liver fat content in
man. Diabetologia 49, 755 – 765. (doi:10.1007/
s00125-005-0125-z)

25. Wang H, Peng DQ. 2011 New insights into the
mechanism of low high-density lipoprotein
cholesterol in obesity. Lipids Health Dis. 10, 176.
(doi:10.1186/1476-511X-10-176)

26. Magkos F, Mohammed BS, Mittendorfer B. 2008
Effect of obesity on the plasma lipoprotein subclass
profile in normoglycemic and normolipidemic men
and women. Int. J. Obes. 32, 1655 – 1664. (doi:10.
1038/ijo.2008.164)

27. Okazaki M, Usui S, Ishigami M, Sakai N, Nakamura
T, Matsuzawa Y, Yamashita S. 2005 Identification of
unique lipoprotein subclasses for visceral obesity by
component analysis of cholesterol profile in high-
performance liquid chromatography. Arterioscler.
Thromb. Vasc. Biol. 25, 578 – 584. (doi:10.1161/01.
ATV.0000155017.60171.88)

28. Aulchenko YS et al. 2009 Loci influencing lipid
levels and coronary heart disease risk in 16
European population cohorts. Nat. Genet. 41,
47 – 55. (doi:10.1038/ng.269)

29. Zhang Z, Tao L, Chen Z, Zhou D, Kan M, Zhang D, Li
C, He L, Liu Y. 2011 Association of genetic loci
with blood lipids in the Chinese population.
PLoS ONE 6, e27305. (doi:10.1371/journal.pone.
0027305)

30. Lass A et al. 2006 Adipose triglyceride lipase-
mediated lipolysis of cellular fat stores is activated
by CGI-58 and defective in Chanarin – Dorfman

http://dx.doi.org/10.1038/oby.2006.71
http://dx.doi.org/10.1038/oby.2006.71
http://dx.doi.org/10.1126/science.1141634
http://dx.doi.org/10.1126/science.1141634
http://dx.doi.org/10.1038/ng.140
http://dx.doi.org/10.1038/ng.140
http://dx.doi.org/10.1371/journal.pgen.1000508
http://dx.doi.org/10.1038/ng.274
http://dx.doi.org/10.1038/ng.287
http://dx.doi.org/10.1016/j.tig.2011.09.002
http://dx.doi.org/10.1371/journal.pgen.1002907
http://dx.doi.org/10.1371/journal.pgen.1002907
http://dx.doi.org/10.1038/nature08494
http://dx.doi.org/10.1186/1471-2156-11-92
http://dx.doi.org/10.1186/1471-2156-11-92
http://dx.doi.org/10.1371/journal.pgen.1000981
http://dx.doi.org/10.1371/journal.pgen.1000981
http://dx.doi.org/10.1186/1471-2156-13-59
http://dx.doi.org/10.1186/1471-2156-13-59
http://dx.doi.org/10.1371/journal.pone.0024702
http://dx.doi.org/10.1371/journal.pone.0024702
http://dx.doi.org/10.1039/b910205a
http://dx.doi.org/10.1038/ng.1073
http://dx.doi.org/10.1038/ng.271
http://dx.doi.org/10.1038/ng.271
http://dx.doi.org/10.1126/science.273.5281.1516
http://dx.doi.org/10.1126/science.273.5281.1516
http://dx.doi.org/10.2202/1544-6115.1175
http://dx.doi.org/10.2202/1544-6115.1175
http://dx.doi.org/10.1007/s10038-005-0253-9
http://dx.doi.org/10.1038/ng.686
http://dx.doi.org/10.1016/S0002-9149(98)00310-5
http://dx.doi.org/10.1016/S0002-9149(98)00310-5
http://dx.doi.org/10.1007/s00125-005-0125-z
http://dx.doi.org/10.1007/s00125-005-0125-z
http://dx.doi.org/10.1186/1476-511X-10-176
http://dx.doi.org/10.1038/ijo.2008.164
http://dx.doi.org/10.1038/ijo.2008.164
http://dx.doi.org/10.1161/01.ATV.0000155017.60171.88
http://dx.doi.org/10.1161/01.ATV.0000155017.60171.88
http://dx.doi.org/10.1038/ng.269
http://dx.doi.org/10.1371/journal.pone.0027305
http://dx.doi.org/10.1371/journal.pone.0027305


rsif.royalsocietypublishing.org

11
syndrome. Cell Metab. 3, 309 – 319. (doi:10.1016/j.
cmet.2006.03.005)

31. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian
M, Sul HS. 2007 Regulation of triglyceride
metabolism. IV. Hormonal regulation of lipolysis in
adipose tissue. Am. J. Physiol. Gastrointest. Liver
Physiol. 293, G1 – G4. (doi:10.1152/ajpgi.
00554.2006)

32. Akiyama M, Sawamura D, Nomura Y, Sugawara M,
Shimizu H. 2003 Truncation of CGI-58 protein causes
malformation of lamellar granules resulting in
ichthyosis in Dorfman – Chanarin syndrome.
J. Invest. Dermatol. 121, 1029 – 1034. (doi:10.1046/
j.1523-1747.2003.12520.x)

33. Schleinitz N, Fischer J, Sanchez A, Veit V, Harle JR,
Pelissier JF. 2005 Two new mutations of
the ABHD5 gene in a new adult case of
Chanarin – Dorfman syndrome: an uncommon
lipid storage disease. Arch. Dermatol. 141,
798 – 800. (doi:10.1001/archderm.141.6.798)
34. Steinberg GR, Kemp BE, Watt MJ. 2007
Adipocyte triglyceride lipase expression in
human obesity. Am. J. Physiol. Endocrinol.
Metab. 293, E958 – E964. (doi:10.1152/ajpendo.
00235.2007)

35. Moult PR, Cross A, Santos SD, Carvalho A-L, Lindsay
Y, Connolly CN, Irving AJ, Leslie NR, Harvey J. 2010
Leptin regulates AMPA receptor trafficking via PTEN
inhibition. J. Neurosci. 30, 4088 – 4101. (doi:10.
1523/JNEUROSCI.3614-09.2010)
J.
R.Soc.Interface
11:20130908

http://dx.doi.org/10.1016/j.cmet.2006.03.005
http://dx.doi.org/10.1016/j.cmet.2006.03.005
http://dx.doi.org/10.1152/ajpgi.00554.2006
http://dx.doi.org/10.1152/ajpgi.00554.2006
http://dx.doi.org/10.1046/j.1523-1747.2003.12520.x
http://dx.doi.org/10.1046/j.1523-1747.2003.12520.x
http://dx.doi.org/10.1001/archderm.141.6.798
http://dx.doi.org/10.1152/ajpendo.00235.2007
http://dx.doi.org/10.1152/ajpendo.00235.2007
http://dx.doi.org/10.1523/JNEUROSCI.3614-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.3614-09.2010

	Genome metabolome integrated network analysis to uncover connections between genetic variants and complex traits: an application to obesity
	Introduction
	Material and methods
	Study populations
	Phenotype measures
	Metabolic data
	Genetic data
	Statistical methods
	Conventional analysis of association between obesity and metabolic-genetic data
	Genome metabolome integrated network analysis


	Results and discussion
	Conventional analysis of metabolic and genetic data
	Genome-wide association study analysis of BMI
	Association analysis between serum metabolites and body mass index

	Genome metabolome integrated network analysis
	Simulation study
	Differential networks: non-obese and obese individuals
	Genome-wide correlation analysis of metabolic associations


	Conclusion
	Acknowledgements
	Funding statement
	References


