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A prediction model of outcome 
of SARS‑CoV‑2 pneumonia based 
on laboratory findings
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of 
deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is 
scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-
CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance 
minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator 
logistic regression model were used for selection of laboratory features. Seven laboratory features 
selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, 
indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using 
the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting 
outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of 
outcome of SARS-CoV-2 pneumonia based on laboratory findings.

Most human coronavirus infections are mild. However, several betacoronaviruses can cause serious diseases 
or even death1,2. The mortality rates of severe acute respiratory syndrome coronavirus (SARS-CoV) and Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) were 10% and 37% respectively. SARS-CoV-2 is the 
pathogen for 2019 novel coronavirus disease (COVID-19)3,4, which has resulted in thousands of deaths in the 
world since the beginning of 2020.

The diagnosis of SARS-CoV-2 infection must be confirmed by the real-time reverse transcriptase polymer-
ase chain-reaction (RT-PCR) or gene sequencing of specimens of patients5,6. Chest radiograph and laboratory 
findings are both important for accessing the severity of the disease7–9. Critical patients should be admitted to 
Intensive Care Unit (ICU) of infectious disease hospital, while mild patients could be kept and treated at isola-
tion. It is very important to effectively prioritize resources for patients with the highest risk because of the large 
number of infected people10.

ICU patients and non-ICU patients differed significantly in some blood parameters, including: leukocytes, 
neutrophils, prothrombin time, D-dimer, total bilirubin (TB), lactate dehydrogenase, high sensitivity cardiac 
troponin I and procalcitonin5,7,11. Ruan et al.12 retrospectively analyzed laboratory findings of 68 nonsurvivors and 
82 discharged patients, and found significant differences in lymphocytes, platelets, albumin, TB, urea nitrogen, 
creatinine, myoglobin, C-reactive protein and interleukin-6 between the two groups. These laboratory findings 
seemed useful in predicting outcome of SARS-CoV-2 infection. However, an advanced prediction model involv-
ing multiple laboratory parameters is urgently required to be applied in a clinical-decision support system to 
improve the predictive and prognostic accuracy.

As a branch of artificial intelligence, machine learning (ML) helps establish accurate prediction model13–15. 
However, there are few publications reporting prediction of the outcome of SARS-CoV-2 pneumonia using 
ML methods based on laboratory findings. Thus we retrospectively collected laboratory findings of discharged 
patients and non-survivors. These data were dealt with a ML method similar to radiomics16,17. We aim to establish 
a prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory data.
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Methods
All methods were carried out in accordance with relevant guidelines and regulations.

Study design and participants.  This study was approved by the Ethics Commission of Hospital (TJ-
2020-075). Written informed consent was waived by the Ethics Commission of hospital.

The author’s center was the designated hospital for severe and critical SARS-CoV-2 pneumonia. Patients 
underwent repeated RT-PCR tests to confirm SARS-CoV-2. Laboratory tests for SARS-CoV-2 pneumonia 
included: blood routine test, serum biochemical (including glucose, renal and liver function, creatine kinase, 
lactate dehydrogenase, and electrolytes), coagulation profile, cytokine test, markers of myocardial injury, infec-
tion-related makers, and other enzymes. Repeated tests were done every 3–6 days for monitoring the patient’s 
condition.

Oxygen support (from nasal cannula to invasive mechanical ventilation) was administered to patients accord-
ing to the severity of hypoxaemia. All patients were administered with empirical antibiotic treatment, and 
received antiviral therapy. Most of patients improved after treatment. However, a few critical patients continued 
to deteriorate and eventually died.

Data collection.  58 fatal cases of SARS-CoV-2 pneumonia (39 male, median age 66 years) were collected 
by the electronic medical record system. 68 discharged patients with SARS-CoV-2 pneumonia whose age and 
gender matched the non-survivors were selected (46 male, median age 66 years). The admission date of these 
patients was from Feb 16, 2020 to Mar 20, 2020. We reviewed all laboratory findings for each patient. Results of 
repeated tests were carefully compared to find the greatest deviation from normal value. In general, the greatest 
number in series of values was recorded. However, for platelets, red blood cell, lymphocytes, hemoglobin, cal-
cium, total protein, albumin, estimated glomerular filtration rate (eGFR), and prothrombin activity (PTA), the 
minimum was recorded. Laboratory findings at the day of mortality were not used. These recorded laboratory 
findings were considered as lab features of a patient. A initial data set of 126 patients (non-survivor 58, discharge 
68) was thus built.

There were 16 patients who did not have the entire group of laboratory features, thus their data were deleted 
from the dataset. The remaining data of 110 patients (51 non-survivor, 59 discharge) were analyzed by machine 
learning.

Statistical analysis and modeling.  First, all the variables were compared between non-survivors and 
discharged patients using the Mann–Whitney U test for non-normally distributed features or the independ-
ent t test for normally distributed features16,17. Features with P < 0.05 were considered significant variables and 
selected16,17. Second, Spearman’s correlation coefficient was used to compute the relevance and redundancy of 
the features16,17. Third, we applied the maximum relevance minimum redundancy (mRMR) algorithm to assess 
the relevance and redundancy of the features16,17. The features were ranked according to their mRMR scores16,17. 
Fourth, the top 15 features with high-relevance and low-redundancy were selected for least absolute shrinkage 
and selection operator (LASSO) logistic regression model. The LASSO logistic regression model was adopted for 
further features selection16,17. Some candidate features coefficients were shrunk to zero and the remaining vari-
ables with non-zero coefficients were finally selected16,17. The model was used for calculating signature for each 
patient. Mann–Whitney U test was used for comparing signature between two groups16,17. Receiver operator 
characteristic (ROC), precision recall curve (PRC) analysis and Hosmer–Lemeshow test were used for further 
evaluation of model.

The statistical analyses were performed using R software (version 3.3.4; https​://www.r-proje​ct.org)16,17. The 
following R packages were used: the “corrplot” package was used to calculate Spearman’s correlation coefficient; 
the “mRMRe” package was used to implement the mRMR algorithm; the “glmnet” was used to perform the 
LASSO logistic regression model, and the “pROC” package was used to construct the ROC curve16,17.

Results
Nine laboratory features were eliminated in the first step of feature selection because of non-significance. The 
remaining thirty-eight lab features were significantly different between two groups (P < 0.05), and then mRMR 
scores were obtained for them. There were seven features having non-zero coefficients after LASSO algorithm, 
and were selected for the model. Table 1 shows the fifteen features with the highest mRMR scores. Figure 1 shows 
the correlation matrix heatmap of the thirty-eight significant features. Figure 2 shows the feature selection process 
with LASSO algorithm. Figure 3 shows the contribution of the seven features to the model. Figure 4 shows the 
signatures of all patients, as well as ROC. Figure 5 shows the PRC for the model.

Non-survivors and discharged patients differed significantly in the signature derived from the model 
(P < 0.0001). The AUC was 0.997 [95% CI 0.99, 1.00]. The sensitivity and specificity in predicting outcome of 
SARS-CoV-2 pneumonia were 98% [93%, 100%] and 91% [84%, 99%] respectively. The area under precision 
recall curve (AUPRC) was 0.996. Hosmer–Lemeshow test showed good calibration (P = 0.95) for the model.

The seven features included in the prediction model were as follows: PTA, urea, white blood cell (WBC), 
interleukin-2 receptor (IL-2r), indirect bilirubin (IB), myoglobin, and fibrinogen degradation products (FgDP). 
All features had coefficients of positive number except PTA. PTA and FgDP are from coagulation profile. Urea 
and IB are from renal and liver function respectively. WBC is from blood routine test. Myoglobin is a marker of 
myocardial injury. IL-2r is related to immune response. The signatures derived from the model could be positive 
or negative numbers.

https://www.r-project.org
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Non-survivors and discharged patients did not differ in age or gender (median age 67 vs. 66, P = 0.75; per-
centage of males, 66% vs. 64%, P = 0.66). The comparisons of laboratory findings between non-survivors and 
discharged patients are shown in Table 2.

Blood routine test.  WBC and neutrophils were significantly higher in non-survivor group versus dis-
charge group. Lymphocyte, platelets and red blood cells were significantly lower in non-survivors. AUC for 
them were 0.646–0.910.

Table 1.   The fifteen features with higher mRMR scores were selected for the step of LASSO logistic regression. 
Some candidate features coefficients were shrunk to zero and the remaining variables with non-zero 
coefficients were selected. mRMR maximum relevance minimum redundancy, LASSO least absolute shrinkage 
and selection operator, PTA prothrombin activity, WBC white blood cell, IL-2r interleukin-2 receptor, IB 
indirect bilirubin, TB total bilirubin, FgDP fibrinogen degradation products, hs-CRP hypersensitive C-reactive 
protein, LDH lactate dehydrogenase, eGFR estimated glomerular filtration rate.

Rank Features mRMR score Coefficient after LASSO

1 PTA 0.3531 − 0.4148

2 WBC 0.1921 0.3214

3 Urea 0.1867 0.3954

4 IL-2r 0.1773 0.2297

5 IB 0.1249 0.0951

6 Myoglobin 0.1119 0.0526

7 TB 0.1100 0

8 FgDP 0.1073 0.0243

9 hs-CRP 0.1025 0

10 Ferritin 0.0952 0

11 LDH 0.0870 0

12 D-dimer 0.0860 0

13 eGFR 0.0820 0

14 Neutrophils 0.0638 0

15 Sodium 0.0626 0

Figure 1.   Correlation matrix heatmap of 38 significant features. Spearman’s correlation coefficient was used to 
compute the relevance and redundancy of the features.
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Electrolyte.  Potassium, chlorine and sodium were significantly higher in non-survivor group versus dis-
charge group. Calcium was significantly lower in non-survivors. AUC for them were 0.634–0.652.

Serum biochemical test.  Glucose and globulin were significantly higher in non-survivor group versus 
discharge group. Albumin and total protein were significantly lower in non-survivors. AUC for them were 
0.649–0.736.

Renal function.  Urea and creatinine were significantly higher in non-survivor group versus discharge 
group. The eGFR was significantly lower in non-survivors. AUC for them were 0.672–0.907.

Liver function.  Total bilirubin, direct bilirubin, IB and glutamic oxaloacetic transaminase were significantly 
higher in non-survivor group versus discharge group. AUC for them were 0.647–0.806.

Figure 2.   The fivefold cross-validation (A) of the least absolute shrinkage and selection operator algorithm for 
feature selection process. A vertical line was drawn at the optimal value. Some candidate features coefficients 
were shrunk to zero (B) and the remaining seven variables with non-zero coefficients were finally selected.
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Coagulation profile.  Prothrombin time, activated partial thromboplastin time, D-dimer, international 
normalized ratio (INR), fibrinogen and FgDP were significantly higher in non-survivor group versus discharge 
group. PTA was significantly lower in non-survivors. AUC for them were 0.847–0.886.

Cytokine.  IL-2r and IL-6 were significantly higher in non-survivor group versus discharge group. AUC for 
them were 0.689–0.909.

Infection‑related markers and myocardial injury markers.  Procalcitonin, high sensitive C-reactive 
protein, ferritin and N-terminal pro-brain natriuretic peptide (NT-proBNP) were significantly higher in non-

Figure 3.   Contribution of the features to the model. The histogram shows the contribution of the seven features 
with non-zero coefficients. The features are plotted on the y-axis, and their coefficients are plotted on the x-axis.

Figure 4.   Bar charts of the signature for patients. The red bars indicate the signatures of discharged patients, 
while the light green bars indicate the signatures of non-survivors. The AUC was 0.997 for the signature.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14042  | https://doi.org/10.1038/s41598-020-71114-7

www.nature.com/scientificreports/

survivor group versus discharge group. Myoglobin, MB isoenzyme of creatine kinase and high sensitive cardiac 
troponin I were significantly higher in non-survivors. AUC for them were 0.843–0.915.

Discussion
Non-survivors and discharged patients with SARS-CoV-2 pneumonia differed significantly in thirty-eight labora-
tory findings. By using machine learning method, we established a prediction model involving seven laboratory 
features. The model was found highly accurate in distinguishing non-survivors from discharged patients. The 
seven features selected by artificial intelligence also indicated that dysfunction of multiple organs or systems 
correlated with the prognosis of SARS-CoV-2 pneumonia.

The SARS-CoV-2 triggers a series of immune responses and induces cytokine storm, resulting in changes in 
immune components5,18. When immune response is dysregulated, it will result in an excessive inflammation, even 
cause death7,19. Excessive neutrophils may contribute to acute lung damage, and are associated with fatality20. 
Higher serum level of IL-2r was found in non-survivors, indicating excessive immune response. In addition, high 
leukocyte count in SARS-CoV-2 patients may be also due to secondary bacterial infection21,22.

Liver injury has been reported to occur during the course of the disease23,24, and is associated with the sever-
ity of diseases. Increased serum bilirubin level was observed in fatal cases. Acute kidney injury could have been 
related to direct effects of the virus, hypoxia, or shock25,26. Blood urea level continued to increase in some cases. 
Non-survivors had higher blood urea compared to survivors. Myocardial injury was seen in non-survivors, 
which was suggested by elevated level of myoglobin. The mechanism of multiple organ dysfunction or failure 
may be associated with the death of patients with SARS-CoV-2 pneumonia. Some patients with SARS-CoV-2 
infection progressed rapidly with sepsis shock, which is well established as one of the most common causes of 
disseminated intravascular coagulation (DIC)27. The non-survivors in our cohort revealed significantly lower 
PTA compared to survivors. At the late stages of SARS-CoV-2 infection, level of fibrin-related markers (FgDP) 
markedly elevated in most cases, suggesting a secondary hyperfibrinolysis condition.

A number of laboratory features were compared between non-survivors and discharged patients with SARS-
CoV-2 pneumonia. The two groups differed significantly in as many as thirty-eight lab features. However, none 
of the futures provided adequate accuracy in predicting the outcome of SARS-CoV-2 pneumonia. Thus, a novel 
prediction model involving multiple features was established in the study. With machine learning methods 
previously used in radiomics, a prediction model combining seven out of thirty-eight laboratory features was 
built for predicting the outcome of SARS-CoV-2 pneumonia.

The mRMR algorithm was used for assessing significant features to avoid redundancy between features. 
The mRMR score of a feature is defined as the mutual information between the status of the patients and this 
feature minus the average mutual information of previously selected features and this feature17,28,29. The top 
fifteen features with high mRMR scores were selected for the next step of modeling. The least absolute shrink-
age and selection operator logistic regression model was used to processing the features selected by mRMR 
algorithm. LASSO is actually a regression analysis method that improves the model prediction accuracy and 
interpretability30. The signature calculated with the model can be positive or negative number, corresponding 
with poor and good prognosis respectively. Our results showed that the AUC of the signature was 10–40% higher 
than that of a single feature.

The modeling process is a black box; however, the choice of variables seems reasonable. PTA can more accu-
rately reflect the coagulation function compared to prothrombin time, and can also reflect the degree of liver 
injury. Urea is a good index to reflect the degree of renal function damage. WBC can not only reflect immune 

Figure 5.   The precision recall curve for the model. The area under precision recall curve was 0.996.
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status, but also secondary infection. IL-2r is an indicator of inflammation and immune response20. IB is related 
to liver function and possible hemolysis. Myoglobin reflects the degree of myocardial injury. The increase of 
FgDP is related to coagulation disorders including DIC. Thus the current model involves multiple important 
systems related to prognosis. In consideration of the high accuracy of the model, it can be concluded that liver, 
kidney, myocardial damage, coagulation disorder and excess immune response all contribute to the outcome of 
SARS-CoV-2 pneumonia.

Table 2.   Medians [inter-quartile range] of laboratory findings of patients with SARS-CoV-2 pneumonia 
were provided in the table. Features were compared between non-survivors and discharged patients using the 
Mann–Whitney U test for non-normally distributed features or the independent t test for normally distributed 
features. SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.

Non-survivors Discharged patients P

Leucocyte (109/L) 11.64 [9.37, 15.61] 5.22 [4.1, 8.79] < 0.0001

Platelet (109/L) 118 [63, 179] 144.5 [113.5, 227.75] 0.004

Erythrocyte (1012/L) 3.48 [2.71, 3.89] 3.76 [3.59, 4.17] 0.001

Neutrophils (109/L) 9.44 [7.36, 12.71] 4.8 [2.45, 7.37] < 0.0001

Lymphocyte (109/L) 0.5 [0.32, 0.74] 0.70 [0.47, 0.93] < 0.0001

Hemoglobin (g/L) 115.5 [91, 127] 120 [112.5, 129] 0.16

Potassium (mmol/L) 4.39 [4.11, 5.19] 4.11 [3.70, 4.76] 0.032

Calcium (mmol/L) 2.01 [1.94, 2.10] 2.06 [2.00, 2.13] 0.024

Chlorine (mmol/L) 99.4 [97.2, 105.3] 98 [95.83, 99.4] 0.041

Sodium (mmol/L) 139.55 [135.2, 145.1] 135.55 [133.4, 137.85] 0.017

Glucose (mmol/L) 9.11 [7.62, 13.66] 7.44 [6.46, 9.48] 0.019

Total protein (g/L) 59.9 [56.8, 65.4] 63.9 [59.8, 67.9] 0.030

Globulin (g/L) 37.9 [33.3, 40.7] 32.2 [29.25, 33.85] < 0.0001

Albumin (g/L) 28 [25.08, 30.95] 32.3 [28.2, 37.2] 0.009

Creatinine (μmol/L) 86 [66, 179.5] 72 [59, 103.5] 0.008

Uric acid (μmol/L) 190.5 [114.5, 309] 188 [148, 362.4] 0.54

Total bilirubin (μmol/L) 17.4 [11.5, 20.4] 11.4 [8.6, 13.4] < 0.0001

Direct bilirubin (μmol/L) 9.75 [6.4, 14.4] 6.8 [5.35, 9.93] < 0.0001

Indirect bilirubin (μmol/L) 9.15 [5.45, 11] 7.6 [5.8, 9.35] 0.043

Urea (mmol/L) 14.55 [10, 20.08] 7.85 [6.98, 10.17] < 0.0001

Estimated glomerular filtration rate (ml/min/1.73 m2) 69.3 [41.35, 89.4] 82 [73.4,88.6] 0.008

Glutamic oxaloacetic transaminase (U/L) 43 [24, 104] 37 [21, 57] 0.044

Glutamic-pyruvic transaminase (U/L) 39 [17, 77.25] 38 [24.25, 61.75] 0.70

Myoglobin (ng/mL) 280.6 [152.15, 736.8] 67 [24.45, 129.55] 0.002

High sensitive cardiac troponin I (pg/mL) 202.2 [68.95, 460.18] 30.55 [14.5, 47.6] < 0.0001

MB isoenzyme of creatine kinase (ng/mL) 5.85 [2.63, 11.93] 1.2 [0.7, 1.9] 0.014

Lactate dehydrogenase (U/L) 490 [358.5, 591] 306.5 [281.5, 368.25] < 0.0001

Glutamate dehydrogenase (U/L) 16.6 [9, 44] 13.6 [8.23, 25.13] 0.18

Creatine kinase (U/L) 180 [43, 503] 178 [84, 230.5] 0.24

Prothrombin time (s) 16.5 [15.3, 19.4] 14.3 [13.25, 15.83] < 0.0001

Fibrinogen (g/L) 5.92 [4.82, 6.3] 5.22 [4.59, 5.78] 0.039

Activated partial thromboplastin time (s) 46.4 [42.5, 56] 43.5 [40.65, 46.8] 0.0021

Thrombin time (s) 17.5 [15.7, 20.6] 15.95 [15.13, 17.68] 0.026

D–D dimer (μg/mL) 5.47 [2.73, 12.52] 2.22 [1.82, 2.92] < 0.0001

Prothrombin activity 62% [55%, 75%] 79% [64%, 91%] < 0.0001

International standardized ratio 1.3 [1.22, 1.56] 1.08 [0.99, 1.21] < 0.0001

Fibrinogen degradation products (μg/mL) 29.65 [17.13, 62.65] 6.9 [3.9, 11.5] < 0.0001

Procalcitonin (ng/mL) 0.97 [0.27, 2.58] 0.16 [0.11, 0.21] < 0.0001

N-terminal pro-brain natriuretic peptide (pg/mL) 3,375.5 [1491.75, 8,102.75] 963 [522, 1,483.5] < 0.0001

Ferritin (μg/L) 1,064.5 [814.25, 2,658.5] 826.8 [616.75, 1,481.5] 0.037

Hypersensitive C-reactive protein (mg/L) 142.7 [80.9, 209] 43.1 [22.3, 127.1] < 0.0001

Interleukin-1β (pg/mL) 5.95 [3.65, 10.28] 5 [3.5, 9.5] 0.17

Interleukin-2 receptor (U/mL) 1,280.5 [1059.25, 1,486.25] 482 [238, 901] < 0.0001

Interleukin-6 (pg/mL) 157.3 [51.62, 227.3] 75.99 [42.96, 148.80] < 0.0001

Interleukin-10 (pg/mL) 11.6 [10.25, 15.6] 9.9 [5.3, 14.4] 0.056
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It is suitable to start to use this model after three repeated laboratory tests (about 2 weeks after admission), 
because doctors may have enough data at that time. Lots of laboratory findings are generated in hospitalization. 
Which are most important for predicting outcome? Our study at least answered such a problem. Seven laboratory 
features could be used to construct a new signature with the model. The new signature seems more useful than 
any single feature. We encourage such a simple-to-use model widely used in clinical practice.

Most of clinical factors are not continuous variables (such as underlying disease). We used a machine learn-
ing method similar to radiomics, which mainly deals with continuous features. Our study focused on continu-
ous laboratory variables. We had to exclude non-continuous clinical factor with the current machine learning 
method. By using other methods, a model that involves both continuous variables and category variables can be 
established. Thus clinical factors raised as significant predictive factors (such as respiratory status or radiological 
features) could be included in the models. However, there are more than forty laboratory findings in our study, 
making establishment of model difficult. We felt it necessary to simplify laboratory features. Thus we establish 
a sub-model based on lab findings. A new lab signature is thus created, and is proved highly valuable. In future 
study, the signature may be combined with clinical factors to establish a more complex model.

Our study has some limitations. First, this is a single-center retrospective study. Multi-center large-sample 
studies are required to validate our prediction model. Second, our model may not be directly used in other cent-
ers. However, they could easily establish a prediction model using their own data with machine learning method. 
Third, some patients who did not have all the lab findings were excluded. Selection bias must be present due to 
patients exclusion. Other studies with more strict design were thus required to reveal the bias. Fourth, statistical 
approach conducted in this study is not perfect. As LASSO was used for 15 variables, 150 or more patients were 
needed. More patients should be collected in future study.

In conclusion, it is feasible to establish a accurate prediction model of outcome of SARS-CoV-2 pneumonia 
based on laboratory findings. Injury of liver, kidney and myocardium, coagulation disorder and excess immune 
response all correlate with the outcome of SARS-CoV-2 pneumonia.

Data availability
After publication, the data will be made available to others on reasonable requests to the corresponding author.
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