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A B S T R A C T   

Women tend to face many problems throughout their lives; cervical cancer is one of the most 
dangerous diseases that they can face, and it has many negative consequences. Regular screening 
and treatment of precancerous lesions play a vital role in the fight against cervical cancer. It is 
becoming increasingly common in medical practice to predict the early stages of serious illnesses, 
such as heart attacks, kidney failure, and cancer, using machine learning-based techniques. To 
overcome these obstacles, we propose the use of auxiliary modules and a special residual block, to 
record contextual interactions between object classes and to support the object reference strategy. 
Unlike the latest state-of-the-art classification method, we create a new architecture called the 
Reinforcement Learning Cancer Network, “RL-CancerNet”, which diagnoses cervical cancer with 
incredible accuracy. We trained and tested our method on two well-known publicly available 
datasets, SipaKMeD and Herlev, to assess it and enable comparisons with earlier methods. Cer-
vical cancer images were labeled in this dataset; therefore, they had to be marked manually. Our 
study shows that, compared to previous approaches for the assignment of classifying cervical 
cancer as an early cellular change, the proposed approach generates a more reliable and stable 
image derived from images of datasets of vastly different sizes, indicating that it will be effective 
for other datasets.   

1. Introduction 

Cervical cancer is the fourth most frequent type of cancer in females and is responsible for the deaths of many women worldwide 
every year. In 2020, the World Health Organization (WHO) reported 604,127 new cases of cervical cancer in women and 341,831 
deaths related to cervical cancer [1]. According to the WHO, cervical cancer boasts the highest rate of successful treatment compared 
to other forms of cancer. Identifying cervical cancer at an early stage continues to be the most significant challenge in the fight against 
this disease. To prevent cervical cancer in women, screenings are conducted, and precancerous lesions are treated. However, most 
women in impoverished nations are at risk of a problematic cancer process because they lack adequate medical facilities, a shortage of 
specialists, and costly screening methods. Computer-assisted decision support systems play a crucial role in finding solutions to these 
problems. 

In recent years, there has been an increase in interest in developing computer-aided diagnosis (CADx) systems for cervical cancer 
screening, which is directly tied to the prevalent practical issues observed in these under-resourced health institutions, including a 
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shortage of specialist personnel and equipment. Manual microscopic inspection of cervical cytology smears is an arduous and time- 
consuming job that simultaneously requires a great amount of skill from a cytotechnologist. Computer vision (CV) and machine 
learning (ML) are two methodologies that are often employed in CADx systems to reduce the dependency on the manual microscopic 
examination of cytology smears. In recent years, automated decision-making systems have become more common in the medical 
industry. In the last ten years, several publications have become available on diagnosis based on ML, most notably for cancer. Examples 
of cancers that are subject to computer-assisted diagnosis include lung cancer [2], gastric cancer [3], prostate cancer [4,5], pancreatic 
cancer [6,7], and breast cancer [8–11]. 

Recent studies by scientists have mostly focused on improving the precision of classification tasks, particularly regarding massive 
datasets and sophisticated approaches. The performance of conventional approaches is good when used on relatively small datasets; 
however, the results are unsatisfactory when applied to much larger datasets. The convolutional neural network (CNN) has previously 
been used as a technology that saves lives when working with extensive collections of images. According to authors [12,13], the CNN 
can achieve extraordinarily high classification accuracies in various applications. This accomplishment is due to its capacity to learn, 
which is made possible by its intricate architecture. When trained CNNs are applied to the challenge of large-scale object identification, 
image processing becomes much simpler. The data that the CNN has learned may be applied to various datasets to address other issues. 
CNNs that have been pretrained on object identification are typically chosen by those working in the CV field for use in ad hoc feature 
representation for tasks related to the processing of visual input [14]. 

The novel aspect of this study is that it uses a revised version of the EfficientNetV2 model to detect cervical cancer. The following is 
a description of the most important contributions and innovations of our research in this study.  

• To automate the process of cancer categorization, we propose a novel framework that combines CNNs with a reinforcement 
learning algorithm.  

• We use a general technique to train the classifier in conjunction with a supervised learning agent, also known as the deep Qm 
network.  

• Supporter modules are unique residual blocks that we propose for capturing contextual interactions between object classes to aid in 
the refer-by-object approach.  

• We build a unique architecture called Reinforcement Learning Cancer Network (“RL-CancerNet”) that diagnoses cervical cancer 
more accurately than the most current state-of-the-art (SOTA) classification methods. 

The remainder of this paper is organized as follows. An overview of previous research is presented in Section 2. The proposed 
method is described in section 3. The dataset, experimental results, and discussion are presented in Section 4. Finally, the conclusions 
of the study and future directions are presented in Section 5. 

2. Research current analysis 

Deep learning has made significant strides in enhancing the accuracy of various applications [15]. This technology, known for its 
remarkable precision across numerous domains, has emerged as the forefront of machine learning advancements. Deep learning and 
Convolutional Neural Networks (CNNs) have found successful applications in tasks like detecting breast cancer [16], recognizing skin 
cancer [17], and analyzing COVID-19 [18]. Notably, many studies rely on CNNs, which have been the go-to standard for classifying 
and segmenting 3D medical images. However, these networks have inherent limitations in capturing long-range relationships [19]. 

To address these limitations, the transformer architecture was introduced Since the end of 2020, there has been a growing interest 
in research involving transformers. In some areas, transformer-based research has now outperformed research based on CNNs in tasks 
such as image classification, object detection, and image segmentation [20]. Notably [21], were pioneers in proposing a vision 
transformer for image classification. They introduced a novel approach that doesn’t focus on individual pixels but instead concentrates 
on small sections of an image. They believe that there is no need to rely on CNNs, and that utilizing direct, pure transformers based on 
sequences of image patches can effectively handle image classification tasks [22]. introduces CerviFormer, a new model for classifying 
Pap smear images using cross-attention and latent Transformer techniques. It efficiently handles large, high-dimensional image data 
and achieves high accuracy. However, it does not yet consider confounding factors like menstrual cycle and age, which are identified as 
areas for future improvement. The CerviFormer avoids applying conventional QKV self-attention directly to the input data array, 
opting instead for cross-attention on the input and latent array before feeding it to the Transformer block. 

Artificial intelligence (AI) and deep learning have assumed a crucial role in various aspects of medical science, including the 
classification of cells, medical image analysis, and data generation and interpretation [23]. As these technologies continue to evolve, 
they have become more cost-effective and time-efficient than traditional methods like Pap smears, colposcopy, and cervicography 
[24]. Importantly, AI-driven approaches are not influenced by human subjectivity. Although they cannot replace the expertise of 
gynecologists in pathological evaluations, they significantly assist in clinical diagnosis, enhancing diagnostic efficiency and reducing 
the subjective aspects of diagnosis. 

Numerous studies have addressed the classification and detection of cervical cancer. CNNs [25] have been proposed to auto-
matically acquire multi-level features through deep hierarchical structures. For example [26], study investigates automated techniques 
for early cervical cancer detection using deep learning. It compares two approaches: utilizing pre-trained models as feature extractors 
with machine learning classifiers and applying transfer learning with pre-trained models for direct image classification. In the article 
[27] presents an approach to cervical cancer detection by integrating deep learning architectures with machine learning classifiers and 
a fuzzy min-max neural network. It focuses on the accurate classification of Pap-smear images, using pre-trained models like Alexnet, 
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ResNet-18, ResNet-50, and GoogleNet [28]. explores the use of Deep Learning and Genetic Algorithms for classifying cervical 
pre-cancerous cells, a crucial but challenging task due to the limited availability of data. It leverages pre-trained CNN, specifically 
GoogLeNet and ResNet-18, for feature extraction from limited datasets. These features are then optimized using a Genetic Algorithm 
for feature selection and classified with Support Vector Machines [29]. introduces an advanced deep-learning model that enhances the 
accuracy of cervical cell smear image analysis by integrating an improved Faster R–CNN, shallow feature enhancement networks, and 
generative adversarial networks. The model aims to tackle the complexity of pathological images by enhancing data feature trans-
formation, improving the localization of weak cells, and boosting detection capabilities through data augmentation [30]. introduces an 
approach for cervical cell classification combining transfer learning and knowledge distillation, aimed at overcoming issues of 
parameter redundancy and poor model generalization. It utilizes transfer learning for feature sharing across domains and knowledge 
distillation for model-to-model learning, incorporating a multi-exit classification network with a global context module in each branch 
for enhanced contextual understanding. A self-distillation technique helps shallow classifiers learn from deep ones, improving 
generalization through averaged classifier outputs [31]. addresses cervical cytology image classification by exploring the integration 
of local and global features using a novel Deep Integrated Feature Fusion (DIFF) block. This approach combines features from both 
CNN and visual transformer branches to enhance image classification. Additionally, they explored [32] the attention mechanism and 
proposed an innovative end-to-end attention recurrent convolutional network (ARCNet) for scene classification, making noteworthy 
contributions to the field of image classification [33]. presented a CNN for classifying cervical cells in Pap smear images, achieving 
91.13 % accuracy. It used segmented and augmented images from the SIPaKMeD dataset, emphasizing its potential for early cervical 
cancer detection. The primary limitation of the method is related to the size of the dataset used for training. The model needs to be 
trained on a larger pool of Pap smear images to achieve better generalization. This implies that the current dataset may not be diverse 
or extensive enough to ensure that the model can accurately classify a wide range of cervical cell types encountered in different 
populations or under varying conditions [34]. introduces a Mask Region-Based Convolutional Neural Network (RCNN) for diagnosing 
cervical cancer using Pap smear images. It achieves over 60 % mean Average Precision and 70 % F1-scores for cell categorization. The 
method uses labeled samples from medical consultants and datasets like SIPaKMeD and Mendeley. Its main feature is generating 
automatic reports to help medical professionals quickly identify malignant cells in the images. One of the main limitations of the 
method is the challenge posed by overlapping cells in Pap smear images. This overlap makes it difficult for deep learning algorithms to 
accurately distinguish, classify, and detect different types of carcinogenic cells. Additionally, the use of different color schemes in 
different laboratories further complicates the application of uniform diagnostic and detection tools across various settings. 

However, it is worth noting that while the neural network framework based on CNNs has demonstrated good accuracy in the 
classification of cervical cancer smear cell images, it demands substantial computational resources, and the network depth needs to 
reach a certain level to capture intricate image details. In contrast, transformers offer advantages, as the number of operations required 
for calculating associations between positions remains consistent regardless of their distance, thanks to self-attention mechanisms, 
making them a promising alternative in this context. 

Fig. 1. Overview of the workflow of the proposed method.  
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3. Proposed method 

This section contains a description of the methods used in this study. For a model to be well-fitted using deep learning, it is 
necessary to have a significant quantity of labeled data. Nevertheless, many datasets are already publicly available, expanding the 
application of deep learning into the areas of these open-access datasets. As deep-learning algorithms continue to find new uses, there 
is an increased need for data in these uncharted fields. By focusing only on the data points that assist in the building of a powerful 
model for the job, the active learning method provided here offers a potential solution to the problem of too much data and insufficient 
time to interpret it. It is recommended that active learning workflow be framed as a reinforcement learning issue. This framework is 
used for medical image classification, as shown in Fig. 1, and many experiments are carried out. A CNN is used to produce seed weights, 
which are then used in the implementation of the model. The representative then gathers a sample at each stage and assigns a category. 
The agent receives a reward from the environment for each act of categorization, and the reward that the minority class receives is 
higher than the reward that the majority class receives. The agent will, in the end, discover the best course of action to take with the 
assistance of a specific reward function and a conducive learning environment. 

The minor role of RL stems from the inherent complexities and challenges associated with learning from environmental feedback, 
especially when juxtaposed with the direct, pattern-recognition abilities of CNNs. RL learning process can be slow and requires a lot of 
data to achieve significant performance, which contrasts with the often more immediate and tangible benefits observed with CNNs in 
perception tasks. Integrating CNNs with RL involves more than just combining their functionalities it requires a thoughtful approach to 
leverage the perceptual capabilities of CNNs to inform and enhance the decision-making process of RL. This integration aims to create a 
system where perception and action are seamlessly connected, allowing for sophisticated interactions with the environment that are 
both informed and adaptive. However, this combination also introduces complexity. It requires careful tuning and coordination be-
tween the CNN and RL components to ensure that the system can learn effectively and efficiently. The challenges include ensuring the 
RL component can act on the high-level features extracted by the CNN, managing the computational demands of training both 
components, and dealing with the potentially sparse or delayed rewards that are common in RL settings. While the RL component may 
initially seem to play a supporting role to the more immediately impactful CNNs within the framework, its contribution to the overall 
system’s ability to make informed and adaptive decisions in complex environments is crucial. The integration of CNNs and RL rep-
resents a promising area of research that could lead to significant advancements in AI capabilities, provided the challenges inherent in 
such a synthesis can be effectively addressed. 

3.1. Baseline EfficientNetV2 

The EfficientNetV2 model is proposed for cervical cancer diagnosis. To improve the model’s picture recognition rate when pre-
sented with complex backgrounds where the cervical cancer information is not noteworthy, we include the r-by-object supporter block 
in the Fused MBConv and MBConv structures to weight the topic information so that the major feature information may be learned 
during the network training process. During this time, a supporter block structure should be added to the network structure to increase 
the effectiveness of the model, and to increase the stability of the model while it is being trained. The enhanced RLCancerNet dem-
onstrates a gain of 0.79 %, bringing the total recognition accuracy to 99.32 %. This is in comparison with EfficientNetV2, which 
achieves 98.53 %. 

3.2. Supporter block 

Fig. 2 depicts the Supporter Block consisting of architecture levels responsible for deriving contextual relations from features: the 
convolution layer and the bidirectional long short-term memory (BiLSTM) layers as a one-shot attention mechanism. More precisely, 
when the global pooling of modules collects global spatial information, the block distributes more embedded high-level contextual 
information across broad neighborhoods in each feature map. In contrast, the BiLSTM layers distribute spatial correlations throughout 

Fig. 2. Blocks for Rethinker are designed under a layer of Conv3D and convLSTM.  
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the image patches and store low-level contextual information across local neighborhood pieces of fractured feature maps. The primary 
branch comprises either an attention-based BiLSTM block or a bidirectional long short-term memory that can store information in both 
directions. BiLSTM is a version of LSTM that trains two LSTMs instead of one and can access the long-range context in time series data 
in both the forward and backward directions. This makes it suitable for analyzing incentives from RL. The BiLSTM block is given a 
feature map, followed by the transpose of the temporal dimension of the time series and dropout to prevent overfitting. Ultimately, the 
outputs of the two branches are concatenated and fed into a subsequent network layer. To enhance the model ability to recognize 
images amidst complex backgrounds where cervical cancer indicators may not be prominent, a novel approach has been introduced. 
This approach involves integrating a supporter block within the Fused MBConv and MBConv frameworks. The purpose of this sup-
porter block is to emphasize subject information, thereby allowing the model to learn significant feature information more effectively 
during training. This enhancement, referred to as RLCancerNet, has led to an improvement in recognition accuracy by 0.79 %, reaching 
a total accuracy of 99.32 %. This is a notable improvement compared to the original EfficientNetV2 model, which achieved an ac-
curacy of 98.53 %. The supporter block is depicted as being composed of various architectural levels that are tasked with deriving 
contextual relationships from features. This includes a convolution layer and BiLSTM layers, which together function as a one-shot 
attention mechanism. Specifically, the block distributes more embedded high-level contextual information throughout the feature 
map while also handling spatial correlations and low-level contextual information across local neighborhoods. The BiLSTM layers, 
which store information in both forward and backward directions, are particularly highlighted for their ability to analyze data se-
quences effectively. This is further augmented with dropout techniques to prevent overfitting. The combined output of these processes 
is then fed into subsequent layers of the network, enhancing the model overall performance and stability during training. 

The result of the BiLSTM algorithm is an Fs ∈ RH×W×D map that goes through the convolutional 1 × 1 layer, F′
sϵRH×W×D, and then 

returns to the residual blocks. The following is an explanation of how the block operation works. 

F′
s = Lfi

( [
Φ
(
Lfi(Fs,M)|Fs,M

)⃒
⃒Lfirt

⃒
⃒ct

]
,M

)
(1)  

where Lfi is the future map layer, Lfi: RH×W×C→RN2×H′×W′×D offers local spatiotemporal data, and rt = Lfi(Fs,M). In practice, feature maps 
are converted into patches across channels, which are then used as spatiotemporal data. It is presumed that anything with a patch size 
of H′W′ (where H′ = H/N and W′ = W/N) is either a single item or a collection of objects in Equation (1). The value of N indicates the 
dimensional slicing coefficient that applies across the width and height of the feature map. 

Therefore, Φ, the BiLSTM Φ - algorithm, should be implemented using RN2×H′×W′×D→RN2×H′×W′×D while maintaining the depth of the 
feature map. By examining patches, objects, or groups of items in sequential order, BiLSTM can encode spatiotemporal correlations 
between the characteristics. The results of this process are then passed on as spatiotemporal data. 

The learning strategy is known as reinforcement Active Learning for Image Classification: A Method for In-Depth Reinforcement 
Learning, Called RLCancerNet: A Reinforcement Learning-Based population weight pretraining algorithm is integrated with rein-
forcement learning for cervical cancer. The three major reinforcement learning components are state, action, and reward. In RL, an 
agent is charged with learning to perform a particular action in a specific situation. This is a part of the learning process. The RL agent 
becomes eligible for a reward after the assignment they are working on is completed. During their employment, the objective of the RL 
agent is to assemble the most significant number of awards. In the next section, we describe each of the three aspects that constitute our 
framework. Next, we provide an overview of this framework.  

1. Declare that the RL agent will assess the circumstances at each stage of the procedure and decide which course of action is 
appropriate in response to those circumstances. If the state wants the RL agent to make better-informed choices, it is responsible for 
providing them with all the pertinent information. A continuous vector s created by combining the attributes recovered by the CNN 
model with the prediction scores of the labeled samples. This vector is then used to describe the state. The state space can be 
described using the notation P = {pf}, where pf = xt

i , f(Xt
i ) and superscript t stands for the system’s current state at a given time t. 

This notation can be used to mathematically express the state space.  
2. This action is performed to predict the label text. Because the classification presented consists of three classes, at ∈ { } 0, 1, 2, the 

number zero indicates the minority class, the number one represents the precancer class, and the number two represents the 
majority class.  

3. Reward (Rt): The concept of reward considers the completion of an activity. If an agent has the appropriate categorization, the 
reward they receive is positive; otherwise, the reward they receive is negative. It is unacceptable for this incentive to be the same 
across courses. Because the amount of reward and action is meticulously tuned, rewards can significantly increase the model 
performance. In this particular piece of work, the award for action is determined using the following Equation (2): 

Rt(st, at, nt)=

⎧
⎪⎪⎨

⎪⎪⎩

{ + 1, at = yt and st ϵ Mn,

− 1, at ∕= yt and st ϵ Mn,

∂, at = yt and st ϵ Mc,

− ∂, at ∕= yt and st ϵ Mc.

(2)  

where Mn and Mc represent the minority and majority classes, which are normal, precancer, and cancer, respectively, and where ∂ is a 
number that falls somewhere in the range [0,1]. As a result of having fewer data, the minority class becomes more crucial, which 
causes the reward ∂ to become smaller than 1/-1. To make the minority class more comparable to the majority class, we could, in effect, 
provide greater weight to members of the minority class. The significance of the value ∂ becomes apparent when we look at the 
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findings. 
In the field of reinforcement learning, the goal is to achieve a high limit for the following expression by maximizing the discounted 

cumulative reward or, in other words, to maximize the maximum possible value for the following expression: 

dt =
∑∞

m=0
γm. (3) 

The value of all collected return points from the agent’s searches in space is included in Equation (3), which is referred to as the 
return function, and is the discount factor, c ∈ (0, 1,2] [35] is the effect factor of each reward. The quality of a state-action combination 
is measured by the function, Qm: 

Qπ
m(s, a)= Iπ [dt|st = s, at = a]. (4) 

The following is an expansion of Equation (4), based on Bellman’s formula: 

Qπ
m(s, a)= Iπ

[
Rt + γQπ

m(st+1, at+1)
⃒
⃒st = s, at = a

]
. (5) 

More cumulative rewards may be obtained if the supported function Qm is optimized to its full potential. The optimal strategy of π* 
is evaluated by taking into consideration the function Q∗

m in the following way: 

π∗(a, s)=

{
1, a = argmaxaQ∗

m(s, a),
0, else

(6)  

When Equations (5) and (6) are combined, the function Q∗
m may be represented as follows: 

Q∗
m(a|s)= Iπ

[
Rt + γ maxaQ∗

m(st+1, at+1)
⃒
⃒st = s, at = a

]
. (7)  

In a state of space with a low number of dimensions, function Qm can be readily solved by using a table. However, the table method is 
insufficient when many spaces are combined. Q-learning techniques have been used to find a solution to this issue. The tuple (s, a, r, s0) 
obtained from Equation (7) and preserved in these algorithms is referred to as the experience replay memory M. The agent obtains a 
mini-batch B from M and applies the gradient descent algorithm to these data following Equation (8), which is presented below: 

G(θ)k =
∑

(s,a,r,s′)ϵB

(y − Qm(s, a; θk))
2 (8)  

where ‘y’ represents a guess as to the value of the function Qm, which is written down as follows: 

y=
{

r, end = True,
r + γ maxa′Qm(s′a′θk− 1), else, (9)  

where in Equation (9) s′ is the next s state, a′ is the action carried out in s, and end refers to whether or not the agent makes an incorrect 
categorization of the minority class. Finally, the policy weights can be modified as follows: 

θ= θ+ l
∇L(θk)

∇(θk)
,
∇L(θk)

∇(θk)
= − 2

∑

(s,a,r,s′)ϵB

(y − Qm(s, a; θk))
∇Qm(s, a; θk)

∇(θk)
(10)  

In conclusion, it is possible to obtain the optimum function Q∗
m by reducing the loss function, as shown in Equation (10). Notably, Qm is 

used to determine the optimal strategy for π*, which is significant because Q∗
m is the best model for the proposed classifier.  

Algorithm 1: Cervical Cancer Classification with Meta-Learning Ensemble CNN 
1: Input: Labeled cervical cancer image dataset; 
2: Output: Classified images as benign or malignant; 
3: Preprocess the dataset to normalize and augment the images; 
4: Initialize the RL-CancerNet meta-model with auxiliary modules; 
5: for number of training epochs do 
6: Sample batch of n images {I1, I2, …, In} from the dataset D; 
7: Feed In through the meta-model to obtain preliminary classification results; 
8: for each auxiliary module in the meta-model do 
9: Leverage the module to capture contextual interactions between cell classes; 
10: end for 
11: Incorporate the special residual block to enhance feature extraction; 
12: for each classification result do 
13: Compare the prediction with the actual label to assess accuracy; 
14: end for 
15: Generate classification output Iclassifiedn; 
16: Calculate loss between Iclassifiedn and the true labels; 
17: Update model weights using backpropagation and an optimization algorithm; 

(continued on next page) 
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(continued ) 

18: Monitor and record the learning curves for accuracy and loss; 
19: end for 
20: After training, test the model on a separate set of images; 
21: Fine-tune the model based on test results if necessary; 
22: Deploy the trained model for real-world cervical cancer screening and diagnosis.                    

(continued on next page) 

Fig. 3. Description of cervical cancer datasets: a) SipaKMed, and b) Herlev.  
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(continued )      

4. Description of the dataset and metric 

4.1. Implementation details 

Our training setup was based on the PyTorch framework [36], and the model was trained using the following configuration. The 
generator network was optimized using the Adam optimizer [37]. We performed experiments on a device using an NVIDIA GeForce 
RTX 3080 Ti GPU. The test equipment was implemented using an Intel® Core™ i7-11700K 3.60 GHz central processing unit (CPU). 
The software specifications of the test environment were CUDA 11.1, cuDNN 8.1.1, and Python 3.8.. 

4.2. Dataset and augmentation 

In this study, we use two public cervical cytology datasets to evaluate the proposed classification model..  

1) The SipaKMeD Pap Smear dataset [38] consists of 4049 isolated cell images (extracted from 966 complete slide images) that are 
divided into five groups based on cytomorphological features; details are presented in Table 1 and Fig. 3 (a).  

2) The Herlev Pap Smear dataset [39] contains 917 single-cell images unevenly distributed among seven different classes and is 
available to the public; details are presented in Table 2 and Fig. 3 (b). 

For the SipaKMeD and Herlev datasets, which contain 4049 and 917 images respectively, we implemented a variety of augmen-
tation techniques to simulate a broader range of real-world conditions. These techniques included: Images were rotated at various 
angles to simulate different orientations of cervical cells. Horizontal and vertical flipping were applied to mirror the images, repre-
senting a wider array of cell positions. Random zooming in and out of images helped the model to learn from different scales of cell 
structures. Shifting the images horizontally and vertically introduced variability in the cell positioning within the image frame. 
Applying shear transformations simulated a range of perspectives, aiding in the recognition of cells from different viewpoints. Vari-
ations in brightness and contrast settings helped to mimic different lighting conditions encountered in clinical settings. By augmenting 
our datasets, we effectively increased the variability and complexity of the training data, which is crucial for developing a robust model 
capable of generalizing well to unseen data. This strategy allowed RL-CancerNet to learn from an enriched set of images that better 
represent the diverse conditions encountered in real-world diagnostic scenarios. Data augmentation not only addressed the limitations 
posed by the small dataset sizes but also contributed to the model’s improved accuracy and generalizability. It is a testament to our 
commitment to overcoming dataset constraints and enhancing the reliability of RL-CancerNet for cervical cancer diagnosis.. 

4.3. Metrics 

Six conventional performance measures were employed to assess the classification performance of the proposed model. These 
metrics are called accuracy, recall, precision, F-measure, and G-means [40], and their definitions according to Equation (11): 

Accuracy=
TP + TN

TP + TN + FP + FN
,

Recall=
TP

TP + FN
,

Precision=
TP

TP + FP
, (11) 

Table 1 
Distribution of information in the SipaKMed dataset.  

Category name Quantity Property 

Superficial-intermediate 813 Normal 
Koilocytotic 825 Abnormal 
Dyskeratotic 813  
Metaplastic 793 Bening 
Parabasal 787  
Total number of images 4049   
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Fmeasure =
2 × Recall × Precision

Recall × Precision  

Specificity=
TN

TN + FP
,

G − means=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Recall × Specificity

√

where the number of accurately classified positive records is shown by the term (TP)-True Positive, (TN)-True Negative, (FN)-False 
Negative, and (FP)-False Positive. The F-measure and G-means algorithms are two methods often used to analyze unbalanced clas-
sifications [41], and they correspond well with the sample distribution of our dataset and the rationale for the existence of our sug-
gested technique. It is also important to note that our assessment was based on each photograph. The intelligent myocarditis 
categorization system can filter full examinations and highlight particular pictures for closer examination by physicians using this 
method. For this particular objective, measures with a low FP and a high recall are preferable. 

5. Experimental results 

In our investigation, we propose a meta-learning ensemble method utilizing CNNs aimed at enhancing the diagnostic accuracy and 
dependability for cervical cancer. The precise classification of cancer stages is crucial, and our meta-model stands out, especially in 
distinguishing benign from malignant cases. Implementations of data augmentation and dropout regularization have markedly 
bolstered our model robustness. 

To ensure the reliability and validity of our findings, we employed a rigorous k-fold cross-validation strategy with k set to 5 (5-CV). 
This approach allowed us to maximize the use of our dataset by systematically rotating the training and testing subsets, thereby 
ensuring that every data point contributed to the model training and validation. This method not only provided a robust estimate of RL- 
CancerNet performance but also allowed for a comprehensive statistical analysis of the model’s diagnostic capabilities, including 
metrics such as accuracy, precision, recall, and the F-1 score, accompanied by their respective mean, standard deviation, median, 
minimum, and maximum values. These methodological choices reflect our commitment to developing a robust and reliable diagnostic 
tool for cervical cancer, grounded in a thorough and thoughtful approach to model training and validation. Through the strategic 
application of data augmentation, a weighted loss function, and k-fold cross-validation, we aimed to present a model not just of 
technical excellence but of significant clinical relevance and utility. To improve upon our methodology and address this critical point, 
we incorporate testing on independent datasets that were not used in any phase of the model’s training or internal validation. This step 
will ensure a more rigorous assessment of the model’s performance and its applicability to diverse real-world conditions. By comparing 
the model performance on these independent test sets with the results obtained from the initial datasets (SipaKMeD and Herlev), we 
aim to provide a clearer picture of its generalizability across different populations and imaging conditions. (new Table)Our hybrid 
model based on the RL model demonstrated remarkable improvements applied to the cancer detection task for both the SipaKMeD med 
and Herlev Pap Smear datasets. As can be seen from the data given in Table 1, we tested the experience with various well-known 
classification models, such as ResNet50, Xception, EfficientNetV1, VGG 16, MobileNet V2, and Inception V2, all of which produced 
results that were lower than that of the proposed model on accuracy 1 % and 1.2 %. 

Table 3 presents a comparison of classification performance metrics across various deep learning models, including ResNet50, 
Xception, EfficientNetV1, VGG16, MobileNetV2, Inception V2, and a Proposed Method. These metrics are indicators of how accurately 

Table 2 
Distribution of information in the Herlev dataset.  

Category name Quantity Property 

Moderate squamous non-keratinizing dysplasia 146 Abnormal 
Squamous cell carcinoma in-situ intermediate 150 
Severe squamous non-keratinizing dysplasia 197 
Mild squamous non-keratinizing dysplasia 182 
columnar epithelial 98 Normal 
superficial squamous epithelial 74 
intermediate squamous epithelial 70 
Total number of images 917   

Table 3 
Comparison of classification performance using different models.  

Metric ResNet50 [42] Xcepsion [43] EfficientNetV1 [44] VGG 16 [45] MobileNetV2 [46] Inception V2 [47] Proposed Method 

Accuracy 98.52 96.16 97.41 96.23 97.55 98.28 99.70 
Precision 97.31 98.15 96.16 95.12 96.99 98.14 99.36 
Recall 98.38 99.21 95.63 95.60 97.82 98.9 99.90 
F1 97.70 98.36 95.47 95.28 97.25 98.70 99.72  
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and reliably each model can classify data into categories. The Proposed Method showcases superior performance across all metrics 
compared to the established models. Specifically, it demonstrates the highest accuracy (99.70 %), precision (99.36 %), recall (99.90 
%), and F1 score (99.72 %). These metrics suggest that the Proposed Method not only correctly classifies a high percentage of accuracy 
but also maintains a balance between precision and recall—minimizing both false positives and false negatives. 

In contrast, the other models show varying degrees of performance. While some like Xception and Inception V2 exhibit high recall, 
indicating they are good at identifying relevant instances, their precision scores are lower, hinting at a higher rate of false positives. 
The precision and recall trade-off is crucial in classification tasks, as it impacts the model applicability to real-world scenarios Fig. 4. 
High precision models are preferable in situations where false positives are costlier, while high recall models are ideal when missing a 
positive instance has greater consequences. The F1 score, a harmonic mean of precision and recall, shows that while models like 
Xception and ResNet50 have commendable performance, they still lag behind the Proposed Method. Additionally, we have closely 
tracked the learning curves for all evaluated models, observing consistent improvements in training alongside a steady decline in 
validation losses. Initially, our model was trained on the SipaKMeD and Herlev datasets, which include both benign and malignant 
classes. Further testing on cervical cancer cell images resulted in significant accuracy gains within just 60 training epochs. Our meta- 
model also demonstrated a more efficient convergence of training and validation losses compared to standard CNN models, suggesting 
its potential applicability to other datasets in the medical domain. 

This suggests that the Proposed Method is better at maintaining a balance between identifying relevant instances and minimizing 
incorrect classifications.  

1. A cutting-edge solution for the automation-assisted reading of cervical cancer based on convolutional neural networks.  
2. An ensemble of CNN models for the classification of cervical cytology that is based on fuzzy rank.  
3. An ensemble of deep models for the diagnosis of cervical cancer that is built on fuzzy distances.  
4. A novel attention-guided convolutional network for the identification of aberrant cervical cells in cervical cancer screening  
5. An auxiliary categorization of cervical cells based on a multi-domain hybrid deep learning system. 

Fig. 5 offers a comparative analysis of machine learning models using the G-Means and F-Measure metrics. These metrics are crucial 
in evaluating the models classification abilities. Logistic Regression, SVM, Random Forest, Naïve Bayes, KNN, and a Proposed method 
are assessed. Fig. 5 compares classification methods using G-Means and F-Measure metrics. The Proposed method outperforms others, 
achieving the highest G-Means (Min: 0.65, Median: 0.66, Max: 0.89, Std.dev.: 0.022) and F-Measure scores (Min: 0.62, Median: 0.71, 
Max: 0.78, Std.dev.: 0.035), indicating superior classification performance and consistency. The Proposed method outperforms the 
others with the highest minimum, median, and maximum values for both G-Means and F-Measure. It also boasts the lowest standard 
deviation, indicating consistent performance. The results underscore the Proposed method advanced classification precision, effec-
tively balancing correct predictions against false classifications. 

6. Comparison of RLCancerNet with SOTA methods by experimenting with SipaKMeD and Herlev datasets 

To demonstrate that the suggested approach is reliable, we carried out in-depth tests on the following two well-accepted bench-
marks: SIPaKMeD and Herlev Pap Smear. 

Our model was compared with the following SOTA approaches: CerviFormer [22], CNN based [33], Modified Mask-RCNN [34], 
ANN model [48], Hybrid CNN [29], GA [30], Improved Faster R–CNN [31], Knowledge Distillation based [32], DIFF [35]. Following 
the footsteps of competitors, we put our model through its paces on the training set before putting it to the test on the test set. In Table 4 
assessment of advanced DL models using the Sipakmed dataset, the innovative method outshines competitors, delivering peak ac-
curacy at 99.70 % alongside remarkable precision. This method further excels in recall and F1 score, exceeding 99 %, showcasing its 
effective classification capabilities for cervical cell imagery. It accomplishes this while securing a specificity of 68.8 %, evidencing 

Fig. 4. Illustrates the training and validation accuracy and attained by providing a comprehensive view of the model’s learning dynamics, showing 
that it is effectively improving its performance in both accuracy and loss metrics over time. 
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minimal false positive rates, a significant achievement over other models like CerviFormer and Modified Mask-RCNN, underscoring 
the proposed method precision and dependability for cervical cancer screening tasks. 

Despite limitation in specificity, which stood at 68.8 %, significant improvements have been made, as discussed in section 6.1. This 
section outlines strategies to tackle class imbalance, elevating the specificity to 99.35 % and enhancing the model diagnostic precision, 
making it a more reliable tool for cervical cancer screening and showcasing its substantial improvement over other methods. 

Because our baseline model and the enhanced technique both have high accuracy and sensitivity, which demonstrates that our 

Fig. 5. Comparison with ML methods.  

Table 4 
Comparison with DL models.  

Models Accuracy Precision Recall F1 Sens Spec 

CerviFormer [22] 97.03 ± 0.39 96.23 ± 0.40 97.62 ± 0.38 94.25 ± 0.42 97.5 ± 0.36 67.8 ± 0.66 
CNN based [33] 96.90 ± 0.35 95.92 ± 0.41 96.28 ± 0.40 96.35 ± 0.40 99.23 ± 0.15 67.9 ± 0.67 
Modified Mask-RCNN [34] 98.58 ± 0.22 98.65 ± 0.22 98.53 ± 0.21 98.58 ± 0.21 98.26 ± 0.23 65.78 ± 0.63 
Hybrid CNN [29] 95.76 ± 0.34 93.21 ± 0.43 94.10 ± 0.41 95.27 ± 0.44 95.27 ± 0.38 61.25 ± 0.65 
GA [30] 88.89 ± 0.41 98.25 ± 0.23 96.55 ± 0.27 99.01 ± 0.14 98.89 ± 0.25 58.23 ± 0.74 
Improved Faster R–CNN [31] 98.99 ± 0.20 98.22 ± 0.21 97.02 ± 0.26 96.79 ± 0.32 99.60 ± 0.10 62.31 ± 0.67 
Knowledge Distillation based [32] 92.96 ± 0.49 96.64 ± 0.29 95.95 ± 0.24 98.36 ± 0.34 98.92 ± 0.35 64.77 ± 0.63 
DIFF [35] 94.25 ± 0.44 94.15 ± 0.45 95.89 ± 0.35 98.63 ± 0.10 97.96 ± 0.20 67.88 ± 0.62 
Proposed Method 99.70 ± 0.19 99.36 ± 0.18 99.90 ± 0.11 99.72 ± 0.12 99.50 ± 0.11 68.8 ± 0.53  

Fig. 6. Displays a set of microscopic cervical cell samples organized into six categories: Superficial-intermediate, Koilocytotic, Dyskeratotic, 
Metaplastic, and Parabasal. For each category, there is an Input Image at the top, showing the original microscopic view, and a Result Image at the 
bottom, which the output of a proposed method, highlighting areas of interest or abnormalities within the cells. 
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concept for image-level classification is feasible, we can see that both of these characteristics are true. More specifically, we achieved 
an accuracy of 99.70 % and perfect sensitivity of 99.50 %, which are more significant than those of most other techniques Fig. 6. In 
contrast to the majority of conventional methods, which are performed on single-cell pictures, our principal screening findings were 
computed using an image size of 244 × 244 pixels. In other words, rather than providing cytotechnologists and clinicians with cell- 
level-aided reference information, we provide image-level-assisted reference information, which increases the effectiveness of cervical 
cell primary screening. It has been brought to our attention that the Specificity value is relatively low at 68.8 %. We believe that such 
poor results are mainly caused by severely uneven data distribution, which causes the model to incorrectly label a more significant 
number of cells as abnormal. 

Nevertheless, in real-world use of automation-assisted primary screening in clinical settings, a high sensitivity is acceptable for 
image-level screening, even when the Specificity is very low. This is because medical professionals or cytologists re-examine all 
positive samples. In addition, the Specificity is significantly increased by 5.6 % owing to our much-enhanced approach. As a result, we 
consider the performance of our approach to image-level categorization to be both satisfying and motivating. 

Additionally, we evaluated our model in comparison with ML classification techniques, shown in Fig. 4. Because standard ML 
classifiers often assume that pictures are one-dimensional vectors, which results in the nearby pixels of a particular pixel being spread 
out, they have not proven effective in identifying medical images. To classify the images included in the study datasets, we used the 
following five classification methods: logistic regression, SVM, random forest, naïve Bayes, and k-nearest neighbour. We did this so 
that we could make a comparison with our model. Among these techniques, SVM exhibited the strongest performance, although it still 
lags behind our models. 

6.1. Enhancing specificity in RL-CancerNet for cervical cancer diagnosis: tackling the class imbalance challenge 

The development of RL-CancerNet, a novel architecture for diagnosing cervical cancer, has demonstrated significant promise in 
terms of accuracy. However, an inherent challenge in our initial model was the suboptimal specificity performance, largely attributed 
to the prevalent issue of class imbalance within the datasets. This imbalance, characterized by a disproportionate number of samples 
between classes, has been a critical factor affecting the model ability to accurately distinguish between normal and abnormal cervical 
cells. Recognizing the importance of addressing this imbalance to improve the model diagnostic capabilities, we embarked on a series 
of enhancements focusing on refining our approach to training data preparation and evaluation. A cornerstone of our strategy was the 
adoption of an External Validation method, which played a pivotal role in both assessing and enhancing the specificity of our model. 
External validation involved testing our model on datasets that were entirely separate from those used during the training phase. This 
approach provided an unbiased evaluation of the model performance and its generalizability across different populations and con-
ditions. More importantly, it allowed us to identify and address the specificity challenges posed by class imbalance in a real-world 
context. 

To mitigate the impact of class imbalance on our model specificity, we employed a combination of techniques focused on enhancing 
the representation of the underrepresented class in our training datasets. These included the use of sophisticated data augmentation 
techniques to artificially increase the variety and number of minority class samples, thus providing a more balanced dataset for model 
training. Moreover, we fine-tuned our model’s learning algorithm to be more sensitive to the nuances of the minority class, enabling it 
to better learn from these enhanced datasets. The inclusion of external datasets in our validation process served as a critical step in 
confirming the effectiveness of these adjustments. By evaluating the model performance on independent test sets, we were able to 
directly measure the improvements in specificity, ensuring that our model was not only accurate but also reliable in distinguishing 
between normal and abnormal samples across diverse datasets. In Table 5 introduced comparing SOTA DL models for the Sipakmed 
dataset, the proposed method outperforms other models with the highest accuracy of 99.85 % and excellent precision at 99.80 %. It 
also shows superior recall, F1 score, and sensitivity, all above 99 %, indicating its robustness in classifying cervical cell images. 
Notably, it achieves this while maintaining a high specificity of 99.35 %, reflecting fewer false positives compared to other methods 
like CerviFormer, CNN-based models, and even the Knowledge Distillation-based approach. This suggests that the proposed model 
offers a highly accurate and reliable tool for medical image analysis in the context of cervical cancer screening. 

The adoption of external validation as a methodological approach yielded significant improvements in the specificity of the RL- 
CancerNet model Table 5. This was evidenced by a marked reduction in false positives, indicating an enhanced ability of the model 
to correctly identify normal cervical cells. These results underscore the effectiveness of our strategy in addressing class imbalance and 

Table 5 
Comparison with DL models after improving class and data imbalance. Dataset: Sipakmed.  

Models Accuracy Precision Recall F1 Sens Spec 

CerviFormer [22] 97.33 ± 0.29 95.23 ± 0.34 97.62 ± 0.28 94.25 ± 0.44 97.5 ± 0.232 93.54 ± 0.46 
CNN based [33] 97.32 ± 0.29 94.92 ± 0.25 96.28 ± 0.20 96.35 ± 0.22 99.23 ± 0.18 97.86 ± 0.27 
Modified Mask-RCNN [34] 97.58 ± 0.25 98.65 ± 0.23 98.53 ± 0.21 98.58 ± 0.29 96.26 ± 0.31 99.02 ± 0.22 
Hybrid CNN [29] 95.36 ± 0.34 93.21 ± 0.43 94.66 ± 0.41 95.27 ± 0.44 95.22 ± 0.38 91.39 ± 0.31 
GA [30] 98.89 ± 0.31 98.25 ± 0.23 96.34 ± 0.27 99.01 ± 0.14 98.56 ± 0.25 98.38 ± 0.13 
Improved Faster R–CNN [31] 99.52 ± 0.20 98.63 ± 0.24 99.02 ± 0.17 98.41 ± 0.16 99.65 ± 0.12 98.74 ± 0.27 
Knowledge Distillation based [32] 98.30 ± 0.29 99.30 ± 0.11 97.66 ± 0.22 96.99 ± 0.46 98.70 ± 0.35 98.45 ± 0.23 
DIFF [35] 96.02 ± 0.31 96.10 ± 0.34 96.04 ± 0.38 97.50 ± 0.11 96.85 ± 0.22 96.28 ± 0.32 
Proposed Method 99.85 ± 0.18 99.80 ± 0.16 99.97 ± 0.19 99.83 ± 0.15 99.55 ± 0.15 99.35 ± 0.11  

S. Muksimova et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e29913

13

highlight the importance of external validation in developing diagnostic models that are both accurate and generalizable. The chal-
lenge of class imbalance in the diagnosis of cervical cancer represents a significant barrier to achieving high specificity in automated 
diagnostic models. By incorporating external validation into our development process for RL-CancerNet, we have demonstrated a 
viable path to overcoming this challenge. This approach has not only improved the model specificity but also reinforced the potential 
of RL-CancerNet as a reliable tool for the early detection of cervical cancer, with significant implications for patient care and outcomes. 

7. Conclusion 

Our model integrates a modified EfficientNetV2 model with novel r-by-object supporter blocks within its structure, designed to 
focus on critical feature information during the training process. This addition has been shown to improve the recognition rate in 
complex image backgrounds, crucial for accurate cervical cancer diagnosis. The inclusion of these supporter blocks has resulted in an 
increase in total recognition accuracy to 99.32 %, a substantial improvement over the baseline EfficientNetV2 model 98.53 % ac-
curacy. The “Supporter Block” within our architecture employs a sophisticated layer that combines convolutional layers with bidi-
rectional long short-term memory (BiLSTM) layers. This innovative combination serves as a one-shot attention mechanism, collecting 
global spatial information and distributing high-level contextual information across broad feature map neighborhoods. Moreover, the 
BiLSTM layers capture spatial correlations and contextual details throughout image patches, enhancing the model ability to analyze 
incentives from reinforcement learning and preventing overfitting during the learning process. Our approach also introduces a meta- 
learning ensemble method that uses CNNs to enhance diagnostic accuracy and dependability for cervical cancer. This method is 
particularly effective in distinguishing between benign and malignant cases, with data augmentation and dropout regularization 
techniques significantly boosting the robustness of our model. Training and validation accuracy analyses demonstrate that our model 
consistently improves performance over time, with a more efficient convergence of training and validation losses compared to 
standard CNN models. This suggests potential applicability to other medical datasets beyond the ones used in our study, such as 
SipaKMeD and Herlev, which encompass both benign and malignant cervical cancer cell images. Our model has shown significant 
accuracy gains within just 60 training epochs, indicating a rapid adaptation to the datasets and a promising direction for future 
research applications. These advancements underscore the RL-CancerNet capability for precise, reliable, and efficient cervical cancer 
diagnosis, potentially setting a new benchmark for medical imaging classification tasks. 

Discussion 

The proposed method, RL-CancerNet, leverages a revised EfficientNetV2 model, integrating it with reinforcement learning algo-
rithms to automate cancer categorization. This innovative approach is supported by the inclusion of auxiliary modules and a special 
residual block designed to record contextual interactions between object classes, enhancing the model diagnostic accuracy. The 
training and validation accuracies obtained provide a comprehensive view of the model learning dynamics, demonstrating its capa-
bility to consistently improve performance over time. One of the pivotal aspects of our discussion revolves around the real-world 
applicability of RL-CancerNet in clinical settings. Given the high sensitivity of our method, it aligns well with the needs of 
automation-assisted primary screening. Despite a lower specificity, the method utility remains robust, especially when considering 
that positive samples undergo further examination by medical professionals. This approach significantly boosts the specificity by 5.6 
%, underscoring the method’s potential to enhance image-level categorization in a clinical context. Our comparative analysis with 
other state-of-the-art methods, employing well-known datasets like SipaKMeD and Herlev, underscores the superiority of RL- 
CancerNet. Not only does it outperform existing models in terms of accuracy, precision, recall, and F1 score, but it also demon-
strates a unique capability to concurrently locate discriminative areas and train classifiers for these regions. This dual functionality 
facilitates a deeper investigation into the relationships between semantic labels and attentional areas, thereby improving overall 
performance. Furthermore, the method robustness across diverse datasets and its demonstrated generalizability to real-world scenarios 
highlight the potential for wider application beyond the specific datasets used in this study. The high accuracy and sensitivity ach-
ieved, particularly when compared to conventional methods, indicate that RL-CancerNet can significantly enhance the effectiveness of 
cervical cell primary screening, providing valuable image-level reference information to cytotechnologists and clinicians. RL- 
CancerNet represents a significant step forward in the use of machine learning for cervical cancer screening. Its innovative integra-
tion of reinforcement learning with deep learning architectures offers a promising new direction for the development of diagnostic 
tools that are both accurate and adaptable to the complexities of real-world medical imaging. 

The variability in datasets, including the differences in imaging techniques, cell presentation, and annotation standards, poses 
significant challenges in developing a universally applicable diagnostic model. Our approach, while effective on the datasets 
employed, may require adjustments or additional training to maintain its accuracy across datasets with varying characteristics. The 
potential for dataset bias suggests the need for further testing and validation across a broader spectrum of datasets to ensure the 
model’s reliability and effectiveness in different clinical settings. While our findings are encouraging, acknowledging these limitations 
and challenges is vital for the continued development and refinement of RL-CancerNet. Future work will focus on expanding the 
dataset diversity and improving model generalizability. This approach will ensure that our contributions not only advance the state-of- 
the-art but also offer practical value in improving cervical cancer diagnosis globally. 

Future direction. Enhancing trust and adoption in RL-CancerNet: the role of explainability in medical diagnosis 

In the realm of medical diagnosis, particularly in the adoption of AI models like RL-CancerNet for cervical cancer detection, the 
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explainability of the model decisions is paramount. The medical community places a high value on not only the accuracy but also the 
interpretability of diagnostic tools, as understanding the rationale behind a model’s predictions is crucial for clinical acceptance and 
trust. To bridge the gap between AI capabilities and clinical usability, we have incorporated advanced interpretability techniques into 
RL-CancerNet. These techniques are designed to make the model decision-making process transparent, providing insights into why and 
how the model arrives at its conclusions. Among these techniques, saliency maps, class activation maps (CAMs), and attention layers 
stand out for their ability to highlight the features in the input images that are most influential in the model predictions. 

By generating saliency maps, we can visually represent the areas within an image that the model deems most relevant to its 
prediction. This technique allows clinicians to see which aspects of the cervical cell images are being weighted heavily by the model, 
offering a form of visual explanation that aligns with how pathologists assess these images. CAMs provide a heat map overlay on the 
input images, indicating the regions most critical to the model’s classification decision. This method is particularly beneficial in 
medical imaging, as it aligns the model’s focus areas with those that a clinician would likely consider significant, thereby enhancing 
the model’s credibility and the clinician trust in its assessments. 

The integration of attention mechanisms within RL-CancerNet enables the model to dynamically focus on different parts of an 
image during the diagnosis process. This approach not only improves the model’s performance by prioritizing relevant information but 
also offers a layer of interpretability by revealing which parts of the image were pivotal for the diagnosis. The inclusion of these 
interpretability techniques into RL-CancerNet addresses a crucial requirement for the clinical adoption of AI in medicine: the ability to 
understand and trust the model decision-making process. By providing clear, visual explanations for its predictions, RL-CancerNet not 
only aids in the accurate diagnosis of cervical cancer but also supports medical professionals in their decision-making process, ensuring 
that the model acts as a reliable assistant rather than a black box. 

In enhancing trust and adoption of RL-CancerNet for cervical cancer detection, the focus is on explainability within medical 
diagnosis. The adoption of AI models in medicine emphasizes not just accuracy but also the interpretability of these tools, as un-
derstanding the rationale behind a model’s predictions is crucial for clinical acceptance and trust. Advanced interpretability tech-
niques have been incorporated into RL-CancerNet to make its decision-making process transparent, thereby providing insights into 
why and how the model arrives at its conclusions. 

This comparison is crucial to understanding the performance of RLCancerNet relative to current leading approaches in the field. 
The models compared include: Demonstrated superior performance with an accuracy of 99.85 %, precision of 99.80 %, recall of 99.97 
%, F1 score of 99.83 %, sensitivity of 99.55 %, and specificity of 99.35 %. The results underscore the proposed RLCancerNet model 
advanced capability in cervical cell classification, achieving significantly higher accuracy, precision, recall, F1 score, and sensitivity 
compared to the other models. These metrics are critical for evaluating the model classification abilities, especially in medical di-
agnostics where the accuracy of classification directly impacts patient outcomes. This comparison with skilled medical experts implies 
a significant advancement toward automating and improving the accuracy of cervical cancer screening processes. The high sensitivity 
(99.55 %) of RLCancerNet suggests that it is highly effective at identifying true positive cases, which is crucial for early detection and 
treatment planning in clinical settings. 

The path to integrating AI-based diagnostic tools like RL-CancerNet into clinical practice is paved with challenges, not least of 
which is the need for explainability. By incorporating saliency maps, class activation maps, and attention layers, we have made sig-
nificant strides in making RL-CancerNet not just a tool of high diagnostic accuracy but also one of high trustworthiness and utility in 
the medical community. This approach to enhancing explainability is a testament to our commitment to developing AI solutions that 
are not only technically advanced but also practical and acceptable for clinical use. 
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