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The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities 
for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary 
to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool. 
This study proposes GNCnn, the first open-source QuPath extension specifically designed for nephropathology. 
It integrates deep learning models to provide nephropathologists with an accessible, automatic detector and 
classifier of glomeruli, the basic filtering units of the kidneys. The aim is to offer nephropathologists a freely 
available application to measure and analyze glomeruli to identify conditions such as glomerulosclerosis and 
glomerulonephritis. GNCnn offers a user-friendly interface that enables nephropathologists to detect glomeruli 
with high accuracy (Dice coefficient of 0.807) and categorize them as either sclerotic or non-sclerotic, achieving 
a balanced accuracy of 98.46%. Furthermore, it facilitates the classification of non-sclerotic glomeruli into 12 
commonly diagnosed types of glomerulonephritis, with a top-3 balanced accuracy of 84.41%. GNCnn provides 
real-time updates of results, which are available at both the glomerulus and slide levels. This allows users to 
complete a typical analysis task without leaving the main application, QuPath. This tool is the first to integrate 
the entire workflow for the assessment of glomerulonephritis directly into the nephropathologists’ workspace, 
accelerating and supporting their diagnosis.

1. Introduction

Glomeruli are a kidney tissue compartment and the primary fil-

ter units generating urine. As a high-pressure capillary filter, they are 
often involved in autoimmune inflammatory diseases called glomeru-

lonephritis. Depending on the histological pattern and the etiology, 
glomerulephritis can be diagnosed in various categories [1–4]. Although 
nephropathology on standard paraffin histology (including periodic-

acid Schiff - PAS staining), immunostaining and electron microscopy, 
is considered the gold standard for diagnosis, often clinical data and 
even genetic data are required to reach the correct glomerulonephritis 
diagnostic category.

* Corresponding author.

E-mail address: gloria.bueno@uclm.es (G. Bueno).

Recent advances in digital pathology have revolutionized the field 
by transforming traditional glass slide microscopy into digital Whole 
Slide Images (WSIs), enabling advanced image analysis and data 
management. Applications of this technological advancement include 
telepathology, education, and image exchange for research [5]. This 
digital transformation has also opened up new opportunities, such as 
the application of artificial intelligence (AI) techniques in the analysis 
of the WSIs [6,7]. In particular, with current hardware advances, deep 
learning has proven to be a promising subfield of AI.

WSIs present a pyramidal structure, where each layer corresponds 
to a magnification level. A typical WSI captured with a ×20 magni-

fication could use more than 20 GB of storage if uncompressed, and 
hundreds of megabytes after compression [8]. Specialized software is 
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necessary to visualize and analyze these images [9,10]. One of the first 
image-processing applications to support microscopy images, and there-

fore WSIs, was ImageJ [11], a Java-based image processing application 
that provides extensibility via plugins. Inspired by ImageJ, QuPath rep-

resents a 2nd generation application supporting digital pathology and 
WSI analysis [12,13].

QuPath also provides extensibility via plugins, some of which employ 
deep learning algorithms. Most of these plugins focus on cell segmen-

tation. For example, Cellpose [14] includes the Cellpose [15,16] and 
Omnipose [17] algorithms, while the QuANTUM pipeline [18] enables 
molecular analysis. Additional segmentation tools include SAM [19], 
which utilizes the Segment Anything Model [20] (also available in a 
mobile version [21]), and StarDist [22], which localizes nuclei using 
star-convex polygons.

Other QuPath extensions provide more general functions, such as 
WSInfer [23], which implements a pipeline to run any patch-based clas-

sification models. Conversely, some extensions focus on more specific 
topics, such as bone marrow cellularity assessment [24] or the inte-

gration of spatial transcriptomics information [25] and Large Language 
Models [26]. Despite the significant impact of digital pathology on this 
subspecialty [27], to the best of the authors’ knowledge, no QuPath ex-

tension has been specifically developed for nephropathology. The only 
existing work is the pipeline called MESCnn (MESC classification by neu-

ral network, where MESC stands for mesangial hypercellularity (M), en-

docapillary hypercellularity (E), segmental sclerosis (S), and active cres-

cents (C)). MESCnn serves as an interface between QuPath and Python. 
It runs entirely within Python but can save annotations to a specified 
QuPath project, facilitated through the module QIGS (QuPath Interface 
for Glomeruli Segmentation) [28]. Thus, MESCnn is not, strictly speak-

ing, a QuPath extension.

In addition to ImageJ and QuPath, there are other WSI analysis soft-

ware tools with large communities. One of these applications is Digital 
Slide Archive (DSA) [29], a web-based platform that integrates pre-

processing, segmentation and feature extraction algorithms provided 
by HistomicsTK, a Python toolkit for WSI analysis. Orbit Image Anal-

ysis [30] is a Java software that integrates different machine learning 
algorithms for pixel classification, object segmentation, and object clas-

sification. A more complex software is Cytomine [31], which uses many 
technologies, but its deployment is automated through the use of Docker 
containers.

Despite the significant progress in general digital pathology tools, 
a limited number are specifically tailored for nephropathology. For in-

stance, Histo-Cloud [32] provides cloud-based segmentation of glomeruli 
and other renal structures, while PodoSighter [33] is designed specifi-

cally for podocyte segmentation. Although these tools address essential 
segmentation tasks in nephropathology, they operate as standalone 
cloud-based applications rather than as components of a multifunctional 
platform like QuPath, which offers a broader range of functionalities. 
This gap highlights the need for a comprehensive tool that integrates 
real-time segmentation and classification within a unified platform. 
Such a tool would further support the integration of deep learning ap-

plications specifically tailored for nephropathology.

Glomeruli segmentation is the most common application of deep 
learning in nephropathology, particularly through the application of 
convolutional neural networks (CNNs). For this purpose, in [34,35], the 
task was considered an instance segmentation problem, and state-of-

the-art results were achieved by leveraging Region Proposal Networks 
(RPNs). In [36], instead, a two-step approach was followed, first de-

tecting bounding boxes, and then segmenting glomeruli within them. 
Other works not only segment glomeruli, but also classify them. An-

other usual task in deep learning applications to nephropathology is the 
classification of glomeruli into sclerotic or non-sclerotic categories. Re-

cently, CNNs have been deployed for this classification [37–39].

Other studies focus on more specific classification schemes, such as 
the Oxford classification [2–4] for IgAN (immunoglobulin A-associated 
nephropathy) [28]. Nevertheless, a variety of classifications exist for 

glomerular pathologies, and specifically, glomerulonephritis can be fur-

ther divided into several subtypes. Glomerulonephritis is a glomerular 
injury with ensuing glomerular inflammation that is characterized by 
increased glomerular cellularity [40]. Different classifications exist for 
these pathologies according to histological patterns [41], etiology [40], 
and other factors such as pathogenesis, activity and chronicity [42]. 
Therefore, glomerulonephritis is often a source of confusion even among 
experts. Nephropathologists typically combine conventional microscopy 
techniques, such as H&E (Hematoxylin and Eosin) or PAS (Periodic 
Acid–Schiff) staining, with immunofluorescence, electron microscopy, 
clinical information, and genetic studies to make a final diagnosis. How-

ever, access to many of these techniques remains limited for patients 
around the world.

Despite these advancements, the application of deep learning in 
glomerulus characterization is not without limitations, particularly con-

cerning dataset availability and quality. The research datasets currently 
commonly used are small, not publicly available, and come from a sin-

gle institution [43,44]. This limitation can hinder the generalizability of 
the trained models and the reliability of their evaluation. A robust model 
for a limited dataset does not necessarily imply that it provides the best 
performance compared to other models [45]. Therefore, while some 
aforementioned models have achieved state-of-the-art performance on 
reduced datasets, their generalizability might be questioned due to the 
small size of these datasets.

While the predominant trend in AI applications within nephropathol-

ogy focuses on deep learning algorithms for characterizing renal struc-

tures in PAS-stained WSIs [43], some studies are also leveraging im-

munofluorescence images to provide a more comprehensive diagnostic 
assessment [46,47]. Beyond diagnosis, AI is also applied to prognosis 
prediction, a promising area for anticipating disease progression and 
patient outcomes. For instance, in [48], CNNs are used to predict 1-, 
3-, and 5-year renal survival rates, while estimated glomerular filtra-

tion rate is the primary target in [49,50]. Additionally, the development 
of platforms like Smartpathk [51], a remote tool to teach glomeru-

lopathies using machine learning, is also supporting the education of 
nephropathologists.

However, despite these promising advancements, several challenges 
must be addressed for the adoption of AI in nephropathology, par-

ticularly around regulatory issues. As a result, WSI-analysis tools like 
QuPath are typically limited to research. While the main areas of re-

search using QuPath are oncology, cell biology and pathology, its adop-

tion is often restricted to biomarker quantification [13]. Furthermore, 
it has recently been applied in the clinical domain [52,53]. In general, 
AI algorithms face restrictions due to strict regulations from bodies such 
as the US Food and Drug Administration (FDA). Nevertheless, the deep 
learning algorithm described in [54] is implemented in Paige Prostate, 
a software system for the assessment of prostate cancer, which has re-

cently been granted Breakthrough Designation by the US FDA [55]. This 
approval of an AI-based image analysis algorithm may serve as a model 
for similar algorithms developed for renal pathology.

To address the need for accessible, efficient and comprehensive tools 
in nephropathology, we present GNCnn (short for GlomeruloNephritis 
Classification by neural network), a free plugin specifically developed 
for QuPath. This tool leverages deep learning methods to automate the 
preprocessing of PAS-stained WSIs, glomeruli detection and classifica-

tion, distinguishing between sclerotic and non-sclerotic, and further cat-

egorizing non-sclerotic glomeruli into 12 common glomerulonephritis 
diagnosis. GNCnn addresses limitations in access to advanced diagnostic 
techniques by relying solely on PAS-stained LM images. By integrating 
GNCnn as a QuPath extension, we aim to offer nephropathologists a 
comprehensive solution for the characterization of glomeruli.
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Table 1
Renal pathologies (e.g., glomerulonephritis) classified in the second stage of 
the GNCnn tool. For those with an acronym as their label, the letters forming 
the acronym are capitalized in the first column.

Complete name Label 
Anti-glomerular Basement Membrane antibody 
GlomeruloNephritis

AMBGN 

Anti-Neutrophil Cytoplasmic Antibody-associated 
glomerulonephritis

ANCA 

C3-GlomeruloNephritis C3-GN 
Cryoglobulinemic GlomeruloNephritis CryoglobulinemicGN 
Dense Deposit Disease DDD 
Fibrillary glomerulonephritis Fibrillary 
Infection-associated GlomeruloNephritis IAGN 
Immunoglobulin A-associated GlomeruloNephritis IgAGN 
Membranous nephopathy Membranous 
idiopathic MembranoProliferative GlomeruloNephritis MPGN 
Proliferative GlomeruloNephritis with Monoclonal 
Immunoglobulin Deposits

PGNMID 

Systemic Lupus Erythematosus-associated 
GlomeruloNephritis class IV

SLEGN-IV 

2. Methods

2.1. Overview

The GNCnn tool is a user-friendly extension for QuPath, designed 
and implemented to automatically detect and classify glomeruli in WSIs. 
GNCnn integrates the pre-processing of the WSI, along with the detec-

tion and classification of glomeruli, adding them as real-time annota-

tions to the image in QuPath. The classification is made in two stages: 
first, glomeruli are classified into sclerotic or non-sclerotic categories; 
lastly, the non-sclerotic glomeruli are classified into 12 of the most 
common diagnoses of glomerulonephritis, listed in Table 1. The user 
is allowed to run either the first stage or both stages. Moreover, the user 
may choose only to detect glomeruli without classifying them. The ex-

tension also provides a visualization tool to analyze WSI-level results 
after detection and classification.

Some examples of glomeruli for each class are shown in Fig. 1. The 
figure illustrates the variability in texture and color features among 
glomeruli, even within the same class. It also highlights the similar-

ity in morphological patterns across different classes, which can make 
distinguishing between them challenging. These subtle morphological 
differences, combined with the variations in color and texture despite 
using the same staining technique, underscore the complexity involved 
in accurate diagnosis.

The main code for the extension is developed in Java, using the 
“JavaFX” library for the GUI (Graphical User Interface), and asyn-

chronous tasks, represented by Java’s “Task” class, for each of the steps 
in the detection and classification pipeline. The deep learning methods 
employed for the detection and classification, as well as the tissue detec-

tion algorithm, are implemented as Python scripts. The specific libraries 
used in each Python script will be detailed in their respective sections 
below.

The main workflow for GNCnn consists of the following steps, as il-
lustrated in Fig. 2: 1) Tissue detection, 2) Tile exporting, 3) Glomeruli 
detection, 4) Exporting glomerular crops, 5) Glomeruli classification 
into a) Sclerotic and Non-Sclerotic, and optionally b) 12 diagnoses of 
glomerulonephritis for the non-sclerotic glomeruli.

QuPath allows two ways of working with images. Typically, a set of 
WSIs is grouped into a project. However, it is also possible to work with 
individual images. GNCnn supports both options. Since a project may 
consist of a considerable number of images, GNCnn provides an image 
selection tool that allows detection and/or classification to be applied 
to only a subset of the images in the project.

2.2. Task management

The glomeruli characterization pipeline implemented in GNCnn is 
based on a task management system that handles each processing step. 
Each step is represented by an asynchronous task, leveraging Java’s 
“Task” class. In this way, the execution of the process steps is decou-

pled from the main application thread, allowing both QuPath and the 
GNCnn extension to remain responsive to user interactions. Otherwise, 
the JavaFX application thread would be blocked.

Task management is centralized in a single class called “TaskMan-

ager”, which contains a single-thread executor pool as an attribute. Each 
step depends on the preceding one, and as a result, the sequential or-

der of tasks must be maintained. This is accomplished by running only 
one thread at a time. Additionally, “TaskManager” acts as an intermedi-

ary layer that abstracts the individual tasks from the UI (User Interface) 
controller, which focuses exclusively on managing events triggered by 
user interactions.

In order to manage the connection between the output of one task 
and the input of another, temporary files are employed. A temporary 
folder is created within the project’s directory. If the user is working 
with a single image instead of a project, the temporary folder is created 
in the same location as the image.

Within the temporary folder, a separate folder is created for each 
task. Furthermore, for projects involving multiple images, a folder is 
created for each image inside the respective task folder. Temporary files 
generated during the process are automatically deleted when they are 
no longer needed for subsequent tasks. This ensures that the disk stor-

age space used during execution is minimized and fully released upon 
completion.

Furthermore, some steps require executing Python code using spe-

cific libraries tailored to each task: tissue detection is primarily per-

formed with OpenCV [56], glomeruli detection relies on a Detectron2 
[57] model for inference on Linux (with a Torchscript [58] equivalent 
for Windows and macOS), and glomeruli classification is performed us-

ing MMClassification [59]. These steps are highlighted in Fig. 2. These 
scripts are run as processes through a “VirtualEnvironment” class, which 
provides an additional layer of abstraction. This class is responsible for 
building the process using Java’s “ProcessBuilder” class, executing the 
appropriate command based on the operating system, waiting for its 
completion, and updating the global progress based on the process sta-

tus.

Finally, each component of GNCnn utilizes a variety of QuPath API 
functions to interact with the main application. The primary integration 
point is QuPath’s “QuPathExtension” interface, which GNCnn imple-

ments to be recognized as an extension by QuPath. Given the large 
number of API functions used across different components, a detailed 
explanation of each interaction would risk overwhelming readers and 
detracting from the main focus. Instead, a schematic representation of 
the interaction between GNCnn’s components is provided in Fig. 3, and 
a complete class diagram is included in Appendix A (Fig. 9).

2.3. Tissue detection

The first image preprocessing step involves detecting tissue pixels to 
exclude background pixels in subsequent steps, thereby speeding up the 
process. The tool exports a low-resolution version of the WSI using func-

tions from the QuPath library for Java. This image is then used as input 
by a Python script, which the tool launches as a separate process. The 
script utilizes classic image processing techniques, such as morphologi-

cal operations and Otsu’s thresholding [60], using OpenCV [61].

The steps of the implemented tissue detection algorithm, illustrated 
in Fig. 4, are as follows:

1. Exporting low-resolution image: QuPath provides functionality to 
export regions of WSIs, applying a specified downsampling factor. 
In this step, a downsampling factor of 20 is applied, meaning that 
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Fig. 1. Example images of each class of glomeruli. Two glomeruli from each class are shown. 

Fig. 2. A schematic representation of the workflow of GNCnn. Steps that involve launching and handling Python processes are highlighted in blue. 

the exported image is 20 times smaller compared to the original 
WSI, making it suitable for further processing in the next steps.

2. Median filtering: it involves replacing each pixel’s value with the 
median value of its neighboring pixels. This step helps to reduce 

noise in images and is particularly useful in WSIs that exhibit abrupt 
changes in background colors.

3. Saturation channel extraction from HSV space: the image, originally 
in RGB space, is converted to HSV space. Extracting the saturation 

Computational and Structural Biotechnology Journal 27 (2025) 35–47 

38 



I. Mateos-Aparicio-Ruiz, A. Pedraza, J.U. Becker et al. 

Fig. 3. A schematic representation of the interaction between components of 
GNCnn.

channel produces a grayscale image, which is needed for the next 
step.

4. Otsu’s method: it is a thresholding technique that separates a 
grayscale image into two distinct classes. The optimal threshold is 
determined by minimizing the intra-class intensity variance while 
maximizing the inter-class variance.

5. Closing: it is a morphological operation that involves applying di-

lation followed by erosion, in that specific order. Dilation expands 
the boundaries of objects in an image, making them larger, while 
erosion contracts these boundaries, making the objects smaller. As 
a result, closing fills small holes and gaps in the image while pre-

serving the shape and size of larger objects.

6. Rescaling and annotation export as GeoJSON: after all operations 
have been applied, the coordinates of the tissue segment contours 
are rescaled to their original size by multiplying them by 20, and 
then exported as GeoJSON annotations. GeoJSON is a format for 
encoding geospatial data based on JSON [62]. This format is com-

patible with QuPath for importing annotations.

After the Python process completes, the output GeoJSON file is im-

ported into QuPath, and “Tissue”-class annotations are added to the 
image. These annotations will be used in the next step. Once this stage is 
finished, the temporary files corresponding to the low-resolution images 
are deleted from the disk.

2.4. Tile exporting

WSIs typically range from tens of thousands to hundreds of thou-

sands of pixels. The computational cost of using images of this size 
as input for deep learning models is prohibitive. To address this, WSIs 
are divided into smaller patches using a sliding window approach with 
QuPath’s “TileExporter” function, applied only to regions containing 
annotations. In our case, the annotations correspond to the Tissue cate-

gory, generated in the previous step. The patches are 4096×4096 pixels 
in size, with a 2048-pixel overlap.

The 2048-pixel overlap, while doubling the number of patches, is es-

sential for preserving the integrity of glomeruli that may lie across tile 
boundaries. Without this overlap, glomeruli located near the edges of 
a tile could be split across two or more tiles, leading to incomplete or 
fragmented detections. By using a sliding window approach with over-

lap, we ensure that glomeruli near the edges are fully contained within 
at least one tile, supporting accurate detection and minimizing the risk 
of false negatives.

Overlapping annotations are merged into a single one during the 
glomeruli detection stage, using a variant of the Non-Maximum Suppres-

sion (NMS) algorithm called Non-Maximum-Area Suppression (NMAS) 
[38]. This approach will be explained in more detail in the glomeruli 
detection section.

When this stage is finished, the “Tissue” annotations in the WSI are 
removed. The patches are exported in JPEG format to a temporary di-

rectory, which will then be passed as an argument to the glomeruli 
detection Python script.

2.5. Glomeruli detection

The glomeruli detection stage is carried out by another Python script. 
Similar to the tissue detection script, the glomeruli detection script is 
launched as a process from the corresponding “Task” thread in GNCnn. 
This script is based on the QuPath interface for Python, called QIGS 
(QuPath Interface for Glomeruli Segmentation) [28].

The model used in this stage is an instance segmentation model, 
which not only detects but also outlines the glomeruli. The architecture 
consists of a Cascade Mask R-CNN [63] model employing a ResNet-

50 [64] backbone, implemented using Detectron2 [57]. The backbone 
network extracts deep features, and is followed by RPNs to propose 
candidate object regions. Cascade Mask R-CNN refines these candidate 
regions through multiple stages, i.e., a cascade of detection branches, 
so that each stage outputs progressively more accurate bounding boxes 
and segmentation masks.

For implementation, we used Detectron2 [57] to develop and train 
the model. Since Detectron2 does not offer official support for Windows 
or macOS, we created a TorchScript [58] version of the model for these 
platforms using TorchScript’s tracing method. This approach captures 
the operations of the model during inference with a sample input. It then 
generates a portable version of the model that operates independently of 
the full Detectron2 environment, ensuring compatibility across different 
systems. The script automatically detects the platform in use and selects 
the appropriate model and processing logic accordingly.

The model was pre-trained on ImageNet-1k [65] and re-trained 
on a private dataset from four institutions (the University Hospital of 
Cologne, the University Hospital of Szeged, the University Hospital of 
Lille and the University Hospital of Bari) encompassing the 12 types of 
glomerulonephritis used in the classification stage. The dataset included 
587 WSIs from 227 patients for training, 161 WSIs from 57 patients 
for validation, and 127 WSIs from 47 patients for testing, with 16,571 
annotated glomeruli for training, 3,958 for validation, and 2,948 for 
testing. The model was trained with the following parameters: Optimizer 
SGDM (Stochastic Gradient Descent with Momentum), Base learning 
rate 3×10−4, Maximum number of iterations 300,000, and Batch size 2. 
It achieves an AP50 of 0.720 and a Dice coefficient of 0.807 on the test 
set. Further details of the implemented model can be found in a related 
paper by one of the authors and collaborators [28].

Although SOTA results in glomeruli detection are often reported 
with higher performance metrics, these are frequently based on lim-

ited, single-institution datasets with restricted diversity, as introduced 
in Section 1. For example, [34] uses the same method, i.e., Cascade 
Mask R-CNN, and achieves an AP of 0.962 for PAS-stained glomeruli de-

tection on a private dataset containing 3,017 glomeruli acquired from 
a single institution, predominantly from IgAGN cases. In contrast, the 
dataset used in this study contains a more extensive and diverse collec-

tion of 23,477 annotated PAS-stained glomeruli, representing 12 types 
of glomerulonephritis in a roughly balanced distribution and acquired 
from four institutions. This broader range supports the model’s gener-

alizability across varied glomerular pathologies, as opposed to models 
optimized on narrow datasets that may not perform as reliably on un-

seen or heterogeneous samples.

To test the model’s generalizability on different data types, we used 
the HuBMAP Kaggle dataset [66], which consists of 15 annotated PAS-

stained WSIs from surgical excisions, for external validation. Surgical 
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Fig. 4. A schematic representation of the tissue detection algorithm. 

excisions differ significantly from needle biopsies, as they contain larger, 
more diverse tissue regions, with a broader array of glomerular struc-

tures and surrounding anatomical features. This dataset was selected to 
evaluate how such variations impact model performance when applied 
to a different type of renal tissue sample.

On this dataset, the model achieved an AP50 of 0.8630 and a Dice 
coefficient of 0.7334. The difference in these metrics may arise from 
the fact that both were calculated at the WSI level, where the large im-

age sizes amplify subtle differences in segmentation boundaries. These 
findings underscore the model’s robustness in detecting glomeruli across 
diverse sample types, although segmentation precision may vary with 
increased structural diversity.

Before detailing the detection process, it is important to address the 
NMAS algorithm, which we implemented to handle overlapping detec-

tions more effectively than NMS. In the conventional NMS algorithm, 
the bounding box with the highest confidence score is selected, and all 
other bounding boxes that overlap it beyond a predefined Intersection 
over Union (IoU) threshold are removed. This procedure is applied re-

cursively until all boxes have been processed. However, the area of the 
detected objects is not taken into account. Consequently, if two bound-

ing boxes are detected for the same object, one inside the other, the 
algorithm may select the smaller box, even if it only has a slightly higher 
confidence score.

To address this problem, NMAS considers not only the confidence 
score but also the area of the bounding box. This is achieved by in-

troducing a parameter 𝑓𝑗 = 𝑤𝑗ℎ𝑗𝑠
2
𝑗
, where 𝑤𝑗 and ℎ𝑗 represent the 

bounding box width and height, respectively, and 𝑠𝑗 is the confidence 
score. The square of the confidence score is used to penalize lower val-

ues. In addition, NMAS incorporates both Intersection over Union (IoU) 
and Intersection over Minimum (IoM) to detect overlapping boxes. IoM 
is particularly effective in identifying cases where one bounding box is 
largely contained within another, a scenario frequently encountered in 
overlapping sliding window methods. This enhancement improves per-

formance in sliding window approaches [38]. The NMAS algorithm is 
presented in Algorithm 1.

The detection script performs the following operations:

1. Loads the model, its weights, and the patches to serve as the model’s 
input.

2. Runs inference on the patches, producing bounding boxes and seg-

mentation masks as output.

3. Projects back the patch-level detections to WSI-level detections.

Algorithm 1: Non-Maximum-Area Suppression.

input : 𝐵𝑖 = 𝑏1,… , 𝑏𝑁𝑖
, the 𝑁𝑖 initial detections

𝑏𝑗 = (𝑋𝑗, 𝑦𝑗 ,𝑤𝑗 , ℎ𝑗 ), 𝑗 = 1,… ,𝑁𝑖

𝑆𝑖 = 𝑠𝑖1 ,… , 𝑠𝑖𝑁𝑖

, the 𝑁𝑖 initial scores

𝑇𝑖𝑜𝑢 , the NMAS threshold on 𝐼𝑜𝑈
𝑇𝑖𝑜𝑚 , the NMAS threshold on 𝐼𝑜𝑀

output : 𝐵𝑜 = 𝑏1,… , 𝑏𝑁𝑜
, the 𝑁𝑜 ≤𝑁𝑖 final detections

𝑆𝑜 = 𝑆𝑜1
,… , 𝑆𝑜𝑁𝑜

, the 𝑁𝑜 ≤𝑁𝑖 final scores

1 𝐵𝑜 = {}; 
2 𝑆𝑜 = (𝑤1ℎ1𝑠

2
𝑖1
,𝑤2ℎ2𝑠

2
𝑖2
,… ,𝑤𝑁𝑖

ℎ𝑁𝑖
𝑠2
𝑖𝑁𝑖

); 
3 while 𝐵𝑖 is not empty do

4 𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑜); 
5 𝐵𝑜 =𝐵𝑜 ∪ {𝑏𝑚}; 
6 𝐵𝑖 =𝐵𝑖 ⧵ {𝑏𝑚}; 
7 while 𝑏𝑗 ∈ 𝐵𝑖 do

8 if 𝑖𝑜𝑢(𝐵𝑚, 𝑏𝑗 ) ≥ 𝑇𝑖𝑜𝑢 ∨ 𝑖𝑜𝑚(𝑏𝑚, 𝑏𝑗 ) ≥ 𝑇𝑖𝑜𝑚 then

9 𝐵𝑖 = 𝐵𝑖 ⧵ {𝑏𝑗}; 
10 𝑆𝑜 = 𝑆𝑜 ⧵ {𝑠𝑗}; 
11 end

12 end

13 end

4. Reduces overlapping annotations to a single one by applying NMAS, 
with both thresholds 𝑇𝑖𝑜𝑢 and 𝑇𝑖𝑜𝑚 set to 0.4. These values were 
determined empirically.

5. Discards all masks with an area smaller than 5000 μm2 .

In both step 3 and step 4, the area of each predicted mask is taken 
into account. However, the pixel size in two different WSIs may result in 
different physical sizes on the slide. Therefore, the area must be calcu-

lated in square microns relative to the original specimen, rather than in 
square pixels in the image. There are two ways to calculate the area in 
microns: using the WSI magnification or the pixel size. The former de-

pends on the objective lens of the device used to obtain the WSI, so two 
WSIs at the same magnification may have different pixel-to-micron ra-

tios if they were captured with different devices. Conversely, pixel size 
is a vendor-neutral descriptor of image quality and is more suitable for 
this task [67]. Therefore, the area is computed using pixel size instead of 
magnification level. The pixel size in microns per pixel, for both width 
and height, can be extracted using functions from the QuPath library
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To add the annotations to the WSI in QuPath in real time, the out-

lines of the output masks are now exported as a GeoJSON file, with the 
class “Glomerulus” assigned to each. This format can be imported di-

rectly within QuPath, allowing the tool to update annotations without 
leaving the main QuPath application. Once detection is complete, the 
GeoJSON annotations are read as QuPath Objects and imported into the 
image hierarchy. Both the GeoJSON files and the patches generated in 
the previous step are then removed from disk.

2.6. Extracting glomerular crops

For each image, all “Glomerulus”-class annotations must be exported 
as individual images, which will serve as input for the classification 
model. Each “Glomerulus”-class annotation is exported with a padding 
of 300 pixels on each side, as the glomerular crops used to train the 
classification models included this padding.

Each annotation is exported as a PNG file with a unique identifier, 
which is included in the filename, along with the X and Y coordinates, 
and the width and height. This information will be used at the end of 
the classification stage to trace the results back to each annotation in 
QuPath.

2.7. Glomeruli classification

The glomeruli classification stage is performed by a Python script 
based on QIGS. Its main features are as follows:

• A model and its weights are loaded to classify glomerular crops as 
either sclerotic or non-sclerotic. If the 12-pathologies classification 
is selected by passing an optional argument to the script, a differ-

ent model and its weights are loaded to classify the non-sclerotic 
glomeruli into 12 common diagnoses of glomerulonephritis.

• The top-3 predictions are computed for the classification into the 12 
glomerulonephritis diagnoses. The probabilities given by the mod-

els for each class are saved and used to determine the 3 most likely 
pathologies, not only for each individual glomerulus but also for 
the whole WSI. The process of computing the slide-level top-3 pre-

dictions is explained later in this section.

• The output of the script consists of one CSV file per WSI, where each 
row corresponds to a glomerulus, and both the predicted patholo-

gies and their respective probabilities are provided. Additionally, 
another CSV file is provided as a summary for all classified WSIs. 
In this file, each row corresponds to a WSI, and both the predicted 
pathologies at the slide level and the ratio of glomeruli with that 
pathology to the total number of glomeruli are provided.

• The model checkpoints are loaded locally. However, they are down-

loaded and saved to the correct location when the user installs the 
tool.

Two glomerular crop classification models were developed, one for 
each classification step. Both models are implemented in MMClassifi-

cation [59] and pre-trained on ImageNet-1k [65]. They were both re-

trained using a private dataset, provided by the four aforementioned 
institutions (the University Hospital of Cologne, the University Hospital 
of Szeged, the University Hospital of Lille, and the University Hospital 
of Bari). This dataset comprises 725 WSIs from 400 patients across 13 
classes: 12 types of glomerulonephritis and glomerulosclerosis.

The sclerotic/non-sclerotic classification model uses a Swin Trans-

former architecture [68], in its Swin-T (Tiny) version, trained and eval-

uated with a 5-fold cross-validation technique. It was re-trained on 754 
glomeruli, validated on 312 glomeruli, and tested on 2,959 glomeruli, 
Optimizer AdamW, Initial learning rate 0.001, Weight decay 0.05, 𝜖
10−8, 𝛽1 0.9, 𝛽2 0.999, Learning rate policy: Cyclic with cosine anneal-

ing, Warm-up epochs 20, Warm-up type: Linear, Warm-up rate 0.001, 
Minimum learning rate 0.01, Maximum number of epochs 300, and 
Batch size 64. The best fold was selected, achieving balanced accuracy 

of 0.9846, precision of 0.9784, and an AUC of 0.95 on the test set. Fur-

ther details of the implemented model can be found in the paper by the 
authors [69].

The disproportionate sizes of the partitions are due to the fact that 
this set is a subset of the original dataset, which includes 13 classes, 
that is, glomerulosclerosis and 12 types of glomerulonephritis. There-

fore, all sclerotic glomeruli were used, and a subset of glomeruli from 
the 12 pathologies was selected to assemble a balanced non-sclerotic 
class. The remaining glomeruli were included in the test set to ensure ro-

bust model evaluation, and an independent dataset of sclerotic glomeruli 
[70] from the European project AIDPATH1 was incorporated for bal-

ancing, resulting in a larger test set. This AIDPATH dataset consists of 
50 WSIs, each from a different patient, with sclerotic glomeruli. The 
dataset was provided by three institutions: Castilla-La Mancha’s Health-

care Services (Spain), the Andalusian Health Service (Spain), and Vilnius 
University Hospital Santaros Klinikos (Lithuania).

The 12-label classification model uses a ConvNeXt architecture [71], 
in its ConvNeXt-B (Base) version, and was also trained and evaluated 
using a 5-fold cross-validation technique. It was re-trained on 6,511 
glomeruli, validated on 1,506 glomeruli, and tested on 1,480 glomeruli, 
with the following parameters: Optimizer AdamW, Initial learning rate 
0.001, Weight decay 0.05, 𝜖 10−8, 𝛽1 0.9, 𝛽2 0.999, Learning rate pol-

icy: Cyclic with cosine annealing, Warm-up epochs 20, Warm-up type: 
Linear, Warm-up rate 0.001, Minimum learning rate 0.01, Maximum 
number of epochs 300, and Batch size 64.

The best fold was selected, achieving top-1 values of 0.6676 for bal-

anced accuracy, 0.3848 for precision, and 0.6925 for AUC on the test 
set. The top-3 predictions improved these metrics to 0.8441 for balanced 
accuracy and 0.7134 for precision. Further details of the implemented 
model can be found in the paper by the authors [69].

The results for the classification into 12 pathologies are given as 
top-3 predictions. The probability scores for each label are generated by 
both models and added as measurements to the corresponding annota-

tions in QuPath. When classifying a non-sclerotic glomerulus into the 
12 pathologies, the class of the corresponding annotation is set to the 3 
most probable labels, separated by vertical bars and listed in decreasing 
order.

For example, “ABMGN | ANCA | DDD” would mean that the most 
probable predicted labels for the glomerulus are: 1𝑠𝑡) ABMGN, 2𝑛𝑑 ) 
ANCA, and 3𝑡ℎ) DDD. Top-3 predictions were used instead of top-1 pre-

dictions to provide pathologists with an optimal guide for diagnosis, as 
these achieve higher performance.

Once the classification is complete, all remaining temporary direc-

tories and files are removed from the disk.

2.8. Operational requirements

GNCnn supports both GPU and CPU for inference. For GPU use, only 
NVIDIA units with CUDA 11.1 are supported. Python 3.8 or 3.9 is re-

quired for the Python scripts. The tool was developed using OpenJDK 17 
but should be compatible with Java 8 + versions. GNCnn was developed 
and tested with QuPath version 0.5.0. The extension has been tested on 
the following operating systems: Ubuntu 20.04 and 22.04, Windows 10, 
and macOS Big Sur 11.4. Additionally, automatic installation scripts are 
provided for each of the three platforms.

The minimum hardware requirements for GNCnn align with those 
recommended for QuPath, as it functions as a QuPath plugin. The soft-

ware is compatible with 64-bit Windows, Linux, and macOS systems. 
Optimal performance is achieved with a fast multicore processor (e.g., 
Intel Core i7 or higher) and at least 16 GB of RAM. These specifications 
help prevent memory limitations and performance slowdowns during 
resource-intensive tasks, such as analyzing large numbers of objects, 

1 https://aidpath.eu/.
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Fig. 5. Main window for the plugin, both in a) idle and b) running states. 

processing multiplexed data, or handling non-pyramidal images and z-

stacks of WSIs.

While GNCnn can operate on a CPU, inference times for glomeruli 
detection and classification are significantly reduced with an NVIDIA 
GPU. For optimal processing efficiency, we recommend an NVIDIA GPU 
with at least 4 GB of memory.

3. Results and discussion

The main window of the plugin is shown in Fig. 5. This window 
contains the following elements:

• Image selector: The images in the project are displayed in a list of 
checkboxes. Two buttons allow the user to select or deselect all im-

ages in the project. Additionally, a search bar is provided to enable 
the user to filter the images shown in the list.

• Detection and classification buttons: First, a choice box offers two 
options: running sclerotic/non-sclerotic classification or perform-

ing sclerotic classification along with classification of non-sclerotic 
glomeruli into 12 pathologies. Furthermore, the user can choose to 
run the entire detection and classification pipeline or only one of 
these processes.

• Progress indicator: A progress percentage is displayed while the plu-

gin is running, as shown in Fig. 5b.

• Canceling and results buttons: If the user presses the “Cancel” but-

ton, the process is terminated, and all temporary files, directories, 
or annotations are removed. The “View results” button opens a WSI-

level results window for the selected images, as shown in Fig. 6.

The main window is carefully designed to meet the specific needs 
of nephropathologists. QuPath projects often involve handling a large 
number of WSIs, making efficient image management a priority. To ad-

dress this, the image selector is equipped to handle high volumes of 
images, allowing users to quickly filter, select, or deselect images as 
needed.

In addition to image management, the detection and classification 
buttons provide flexibility for a variety of tasks. These buttons are de-

signed to accommodate multiple use cases, ensuring that users can either 
focus solely on detection or classification, or run both processes se-

quentially depending on their workflow. This versatility allows for cus-

tomization based on specific project requirements, such as focusing on 

glomerular detection, refining annotations, or performing classification 
based on pre-existing annotations. Thus, the detection and classification 
buttons handle the following use cases:

• The user may have images that are already annotated with glomeruli 
and may only want to run the classification.

• The user may want to run only the detection in order to count 
glomeruli and manually analyze each one for potential diseases.

• The detection model may generate false positives in the image, so 
the user may choose to run only the detection, manually revise the 
generated annotations, and then proceed with the classification.

The previously mentioned WSI-level results window consists of three 
main elements:

• Main table: The results are shown in a table, with each row cor-

responding to a WSI. A low-resolution version of the image and 
its name identify the WSI. The table includes counts for total, per-

label, and non-classified glomeruli, along with the most frequently 
predicted class.

This most predicted class could be empty if there are no glomeruli 
annotated in the image; a single label, if none of the glomeruli are 
classified into the 12 pathologies for non-sclerotic glomeruli; or the 
three most probable classes, if there are glomeruli classified into any 
of the 12 pathologies. These three most probable classes are com-

puted based on the probabilities added as measurements to each 
glomerulus. Sclerotic and non-sclerotic probabilities add up to 1, 
and the probabilities for the 12 classes also sum to 1. Since the 
12 pathologies correspond to non-sclerotic glomeruli, these proba-

bilities are multiplied by the non-sclerotic probability to calculate 
the actual score. For annotations classified only as sclerotic or non-

sclerotic, the probabilities for the 12 pathologies are set to 0. The 
probabilities for each label are summed across all annotations in a 
WSI and ordered in decreasing order. The top three labels are then 
selected, determining the three most probable classes for the WSI, 
listed in decreasing order.

• Search bar: The user can filter images by entering a text string, 
which is applied to any column in the results table. This function-

ality allows for quick and efficient searching, enabling the user to 
locate specific images based on criteria such as name, classification 
results, or other attributes associated with the results.
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Fig. 6. WSI-level results window. 

Fig. 7. Result of running the plugin on a WSI. 
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Fig. 8. Error handling and warnings in the QuPath plugin. 

• “Save” button: The user can save the results to a CSV file for further 
analysis or documentation. This allows the user to export all rele-

vant data, making it easy to review or share the findings outside of 
the QuPath environment.

Glomerulus-level results are updated on the image in real time. An 
example is shown in Fig. 7.

Furthermore, potential errors are handled, and warnings are issued 
when necessary. For example, if no image is selected or no project is 
open, interface elements are disabled (Fig. 8a). If the user tries to run the 
classification on images without annotated glomeruli, the extension ei-

ther prevents the classification from running (Fig. 8c) or warns the user 
that the classification will only run on images with annotated glomeruli 
(Fig. 8b). Moreover, if the user attempts to close the main window while 
a process is running, a confirmation window is displayed (Fig. 8d).

Finally, an analysis of the execution time of the plugin for the com-

plete process was conducted, using the classification into sclerotic and 
12 pathologies for non-sclerotic glomeruli. For this purpose, 10 WSIs of 
varying sizes and amounts of tissue were used, and the execution times 
for each operation were compared. This analysis was performed for both 
GPU and CPU inference to evaluate performance across different hard-

ware configurations. Model inference was performed on an NVIDIA RTX 
A6000 (with 48 GB of memory) GPU and an Intel Core i7-9800X (with 8 
cores) CPU. The results are shown in Table 2. The analysis reveals that 
glomeruli detection is the most time-consuming task, accounting for an 
average of 72.64% of the total time with GPU inference and 89.31% with 
CPU-only inference, followed by tile exporting, which takes 10.81% of 
the time on the GPU and 4.46% on the CPU.

The total execution time primarily depends on the glomeruli detec-

tion stage, which is influenced by the number of patches generated. The 
number of patches depends not only on the amount of tissue in the im-

age, but also on how the tissue is distributed within the image.

For a WSI, glomeruli are efficiently delineated and classified within 
an average time of 2 minutes and 53 seconds on a GPU, and approx-

imately 8 minutes and 29 seconds on a CPU. They are categorized as 
either sclerotic or into the three most probable pathologies out of a pos-

sible 12. While GPU acceleration provides significant speed advantages, 
CPU-based processing times remain practical for specific workflows. For 
example, the CPU mode can be utilized to process batches of WSIs while 
the user focuses on other clinical tasks, enabling pathologists to later re-

view pre-evaluated slides with preliminary diagnostic results.

Moreover, a comprehensive WSI-level diagnosis is generated, pro-

viding not only an overview of the most likely pathologies but also a 
detailed count of glomeruli classified by pathology type. The system 
also offers the total number of glomeruli and a breakdown per pathol-

ogy, making it a powerful tool to significantly accelerate the diagnostic 
process. By automating these time-consuming tasks, this tool can en-

hance the efficiency and accuracy of nephropathologists, enabling them 
to focus on more complex cases and improving patient outcomes.

4. Conclusions

In this study, we introduce GNCnn, a user-friendly extension for 
QuPath that automatically detects and classifies glomeruli using only 
PAS-stained images from renal biopsies. GNCnn first classifies glomeruli 
as sclerotic or non-sclerotic, and then further classifies non-sclerotic 
cases into 12 common diagnoses of glomerulonephritis. The extension is 
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Table 2
Plugin execution times comparison. Each row represents a different WSI, except for the last row, which presents the average values of the previous rows.

Tile exporting 
(s)

Tissue 
detection (s)

Glomeruli 
detection (s)

Exporting 
glomerular crops (s)

Classification 
(s)

Total time (s) 

Dimensions 
(pixels)

Tissue amount 
(pixels)

Generated 
patches

GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU 

51791 x 33575 9.88 × 107 171 20.55 20.23 0.68 0.68 83.65 345.26 18.26 10.35 14.33 15.76 137.46 392.28 
37780 x 26858 1.42 × 107 55 4.65 8.80 2.54 0.91 30.26 234.00 2.91 14.90 11.83 13.67 52.18 272.28 
42240 x 32256 7.73 × 107 95 6.30 5.54 0.71 0.72 54.67 207.76 8.53 24.45 12.63 13.89 82.83 252.36 
85043 x 51681 1.75 × 108 419 45.05 32.07 2.15 2.14 193.37 608.06 28.27 17.95 14.98 15.23 283.82 675.45 
49920 x 32256 1.10 × 105 140 6.87 7.40 0.84 0.83 74.84 299.22 6.79 5.76 12.47 13.72 101.79 326.93 
72960 x 34560 5.80 × 107 173 9.94 10.12 1.13 1.16 87.52 367.81 9.10 6.76 12.35 13.58 120.03 399.43 
50970 x 135142 1.78 × 108 793 34.75 85.96 4.66 4.74 376.93 1472.79 19.18 32.47 14.27 15.70 449.78 1611.66 
31855 x 23861 2.91 × 108 109 15.21 15.80 0.65 0.68 57.57 204.54 20.41 18.48 12.05 13.26 105.89 252.76 
119040 x 64512 8.80 × 107 414 25.93 28.69 2.87 1.92 206.44 476.48 14.85 16.73 15.33 15.30 265.42 539.12 
65185 x 38178 4.70 × 107 196 17.62 12.22 1.33 1.02 90.68 330.61 7.83 10.43 12.34 14.11 129.80 368.39

Mean 257 18.69 22.68 1.76 1.48 125.59 454.65 13.61 15.83 13.26 14.42 172.90 509.07 

designed with a strong emphasis on usability and accessibility, featuring 
an intuitive interface specifically tailored for nephropathologists.

To our knowledge, GNCnn is the first tool to integrate a compre-

hensive pipeline for the characterization of glomeruli within QuPath. 
By leveraging deep learning algorithms, GNCnn offers a promising so-

lution to support and streamline the routine, time-consuming tasks of 
nephropathologists.

GNCnn allows nephropathologists to execute the entire pipeline or 
individual parts of it, depending on the specific study they need to per-

form. Moreover, results are updated on the image in QuPath in real time, 
eliminating the need for external tools. All results are provided directly 
within the main application.

These results are presented at the glomerulus level, as annotations 
on the images, and at the slide level, offering a visualization tab that in-

cludes a quantification of glomeruli in the image and a diagnosis for the 
entire slide. The slide-level diagnosis is computed as the most predicted 
class for sclerotic and non-sclerotic glomeruli, or as the three most prob-

able classes, based on the probabilities given for each pathology at the 
glomerulus level.

Glomeruli detection achieves an AP50 of 0.720 and a Dice coeffi-

cient of 0.807 on the test set. An external validation was performed on 
images from surgical excisions, a sample distinct from the needle biop-

sies used during training, to evaluate the model’s generalizability. The 
model achieved an AP50 of 0.8630 and a Dice coefficient of 0.7334. The 
sclerotic and non-sclerotic classification reaches a balanced accuracy 
of 0.9846, while classification into 12 common diagnoses of glomeru-

lonephritis achieves a balanced accuracy of 0.8441, considering up to 
the top-3 predictions.

Furthermore, a computational time study was conducted, showing 
that the extension takes an average of 2 minutes and 53 seconds to com-

plete the entire pipeline using an NVIDIA GPU, compared to 8 minutes 
and 29 seconds for CPU-only inference. These results underscore the 
software’s potential to support nephropathologists in their diagnostic 
workflow.

The GNCnn extension is not without limitations. The morphological 
similarities among the 12 types of glomerulonephritis hinder the per-

formance of the model designed for this classification. This limitation 
has been addressed by incorporating top-3 predictions, presenting these 
results as a guide to the most probable diagnoses.

Additionally, while external validation was performed on 15 WSIs to 
evaluate the detection model, the limited availability of large, multi-site, 
and publicly accessible datasets in nephropathology constrains com-

prehensive validation for both detection and classification tasks. This 
limitation highlights the need for future studies using broader datasets 
to further validate and enhance the model’s generalizability and perfor-

mance.

Finally, while the tool operates efficiently on systems equipped with 
high-performance GPUs, processing times on CPU-only systems are sig-

nificantly longer. This performance gap may limit its usability in envi-

ronments restricted to CPU-based hardware. To address this limitation, 
future improvements could include model quantization or server-based 
inference, making GNCnn more accessible in clinical settings with lim-

ited hardware resources.
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Appendix A. Additional diagrams

Fig. 9. Class diagram of GNCnn. For clarity, only public attributes and methods are shown. 

Data availability

GNCnn is available open source at https://github.com/UCLM-

VISILAB/qupath-extension-gncnn.
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