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Abstract

Localization of human activity using floor vibrations has gained attention in recent years. In 

human health technologies, floor vibrations have been recently used to estimate gait parameters to 

predict a patients’ health status. Various methodologies such as using the characteristics of wave 

traveling (algorithms based on time of arrival) or the properties of structures (Force Estimation 

and Event Localization, FEEL, algorithm) have been investigated to localize the impact, fall, or 

step events. This paper presents a probabilistic approach that builds upon the FEEL algorithm 

to offer the advantage of eliminating the need for a robust experimental setup. The proposed 

Probabilistic Force Estimation and Event Localization (PFEEL) algorithm provides a probabilistic 

measure to an event’s force estimation and localization using random variables associated with the 

floor’s dynamics. The algorithm can also guide calibration by identifying calibration points that 

provide the maximum information. This reduces the number of calibration points needed, which 

has practical benefits during the implementation. In this manuscript, we presented the design, 

development, and validation of the algorithm.
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1. Introduction

1.1. Research motivation

Event localization algorithms using floor vibrations have become popular for their 

widespread applications, including occupant detection [1–5], human health monitoring [6], 

and security [7]. The use of floor vibrations to track human activity has shown advantages 

over other technologies, particularly when intrusive technologies such as cameras or 

wearable sensors are not appropriate or practical (e.g., bathrooms, lockers, or dressing 

rooms). Identifying human activity using these “smart floors” could help, for example, to 

reduce cost and energy consumption by controlling the heating and cooling of a building 

depending on the number of people inside [8]. Similarly, the technology could help 

track unauthorized activity in isolated areas, buildings, and other facilities for security 

applications.

A significant portion of the research on smart floors using floor vibrations has focused in 

recent years on the extraction of gait parameters for health care practices [6,9–12]. This 

is because previous research has shown that gait parameters can be used as a predictor of 

frailty, probability of falls [13,14], function loss and even death [9,15–17]. The extraction of 

these parameters using footstep-induced floor vibrations methods can be advantageous for 

some particular populations, such as dementia patients, that often forget to wear or charge 

their wearable devices. In these cases, collecting information from the environment rather 

than directly from the person is a more suitable approach. The extraction of gait parameters 

from floor vibrations can be challenging, especially because small variations on gait are 

hard to capture, and even a small change can have an important outcome as a predictor. For 

example, previous research has shown that a minimum detectable change of 0.1 m/s can 

indicate functional decline or change in health status [6,18].

Two of the techniques used on event localization or step event extraction for gait measures 

are the time of arrival (TOA) and force estimation and event localization algorithm (FEEL). 

The first group is very popular in the literature for localization [4,5] and include some 

variations such as time difference of arrival (TDOA), frequency difference of arrival 

(FDOA), angle of arrival (AOA), and angle constrain time difference of arrival (ATDOA). 

The TOA approach is based on the estimation of the time that waves take to travel between 

the source and the sensors [19,20], and the impact’s location is estimated based on the 

time of arrival using at least three sensors. One of the challenges for TOA methods is that 

the wave propagation is dispersive through the floor, and strong multi-path fading occurs. 

Changes in vertical rigidity can affect the wave’s shape and the propagation velocity for 

the different frequency components of the wave, making it difficult to estimate the time of 

arrival accurately [21].

Davis and Caicedo proposed a different type of methodology by designing FEEL [7,22,23]. 

The algorithm’s fundamentals rely on the floor dynamics (input and output relationships) 

and not on wave propagation. The FEEL algorithm can estimate the location of an event 

and provide an estimation of the force magnitude. Unlike TOA methods, FEEL requires 

pre-calibration. The algorithm calculates transfer functions between the forces and the 

response of the system at specific excitation locations. These transfer functions are unique, 
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encapsulating the structure’s dynamic properties and are not limited by the structural 

configuration, as long as vibrations signals can be measured. FEEL requires a minimum 

of two sensors and does not require fully synchronized data acquisition [7].

FEEL establishes the localization of an event as the closest calibrated location, treating 

space in a discrete fashion (only calibration points), following a deterministic methodology, 

which is its most substantial limitation, especially in scenarios where an event’s localization 

is needed with high spatial resolution. In those cases, FEEL implementation could require a 

time-consuming calibration process as the number of necessary calibration points increases. 

Also, the estimated force and locations from FEEL do not include an estimate of their 

uncertainty.

In this paper, we propose a reformulation of the FEEL algorithm to overcome its limitations. 

The new formulation is performed in a probabilistic fashion to provide an estimation of 

the uncertainty of the identified forces and their locations. A significant portion of the 

literature in structural dynamics and materials has focused on measuring the uncertainty 

of the dynamic systems [24–29]. The need to measure the uncertainty arises from the 

errors of constructing theoretical models, including inexact representation of boundary 

conditions and incomplete data relative to the model complexity [28]. Also, constructing 

probabilistic models allows to include expert knowledge obtained from similar systems 

to the inference process [28,30]. The probabilistic FEEL algorithm employs a theoretical 

response formulation, which inherently is a source of uncertainty but allows making 

predictions in locations with no experimental information. PFEEL uses a continuous model 

of the structure in terms of space and can identify the location of an event, even if its 

location has not been used for calibration. Also, unlike TOA methods, PFEEL is based on 

the dynamics of the structure, and variations in vertical rigidity are intrinsically considered 

when building the transfer functions of the structural system. As long as acceleration 

signals can be measured with a reasonable signal-to-noise ratio, and the room’s structural 

configuration or mass layout has not changed dramatically, these relationships will not 

change; thus, PFEEL’s calibration is not affected.

The first part of this manuscript contains a short review of FEEL’s theoretical background, 

followed by the introduction of the newly proposed method. The rest of the article provides 

a detailed description of the proposed method and its validation through the use of a simply 

supported beam model.

1.2. FEEL theoretical background

The steps to apply FEEL are presented in Fig. 1. The calibration in the sequence focuses 

on estimating the transfer functions (TF) between an applied force P and an acceleration 

response R. The transfer functions are obtained using:

TFP , R(f) = SP , R(f)
SP , P(f)

;     TFR, P(f) = SR, R(f)
SR, P(f)

; (1)
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TF (f) = TFP , R(f) + TFR, P(f)
2 (2)

Here, S is the cross and auto power spectral density between P and R [23,31,32]. For a 

specific event location i and sensor location ϵ, the transfer function associated with the 

input/output is represented by TF iϵ as a function of the frequency f, as shown in Eq. (3).

Once a particular event is identified by a spike on the acceleration in the operation stage, 

forces are first estimated at all calibration locations and then the impact location is identified 

by comparing the force estimates. The estimation of the forces in Fig. 1 is the reconstruction 

of the force using the TFs from the calibration stage, and accelerations (R̈(t)) from a new 

event

F iϵ(t) = IFFT FFT R̈(t)ϵ
TF iϵ(f) (3)

Where FFT and IFFT represent the Fast Fourier Transform and its inverse, respectively, and 

F iϵ(t) represents the force estimates at i given the acceleration at ϵ.

The location of the event in Fig. 1 is estimated using the similarity between force estimates 

from different sensors. With a selected window of force estimates F i, ϵ(t), FEEL calculates 

the Pearson product-moment correlation coefficient (ρϵmϵn) between sensors ϵm and ϵn (Eq. 

(4)), where COV is the covariance between the forces of sensors ϵm and ϵn, and σm and σn 

are their standard deviations. The result is the matrix of normalized coefficients presented in 

Eq. (5), where {Li} is the maximum value obtained per location i.

ρϵmϵn = COV ϵm, ϵn
σϵmσϵn

(4)

Li = max

0 ρϵ1ϵ2 F i, ϵ1(t), F i, ϵ2(t) ⋯ ρϵ1ϵn F i, ϵ1(t), F i, ϵn(t)

0 ⋯ ρϵ2ϵn F i, ϵ2(t), F i, ϵn(t)
⋱ ⋮

sym. 0

(5)

FEEL identifies the event location as the location i with the maximum value of {Li}. 

The force magnitude estimation is then calculated by using the average between the force 

estimates at location i [7].

1.3. Contribution of this paper

One of the challenges associated with FEEL is that the force estimates are accurate when 

events happen in the vicinity of a calibration point. Accuracy is reduced as events occur far 

from these points because the transfer function between the impact location and the sensors 
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is not well represented by the calibration process. Furthermore, FEEL does not provide 

uncertainty estimation on the force or the location.

A new probabilistic approach based on FEEL is proposed to obtain the location of an 

event (e.g., footstep or fall) between points of calibration. This is achieved by modeling 

the transfer functions between impact and response locations as a hyper-surface. This 

model is determined probabilistically following the fundamentals of the FEEL algorithm 

but by considering the response parameters as random variables and updating their 

distributions using Bayesian Inference. The Probabilistic-FEEL (PFEEL) algorithm has 

several advantages over FEEL: (1) it reduces the necessity of extensive initial system 

identification tests by reducing the number of calibration points; (2) it can be used to locate 

impacts where no pre-calibration has taken place, and (3) it estimates the uncertainty of 

event locations and estimated forces.

2. Probabilistic Force Estimation and Event Localization (PFEEL) 

algorithm

The transfer function between forces at a particular location and acceleration records 

collected by sensors placed at an another specific location is unique. We take advantage 

of this spatial variation to identify the location of the impact event. To do so, it requires 

a calibration process where impact hammers are used to excite the structure at calibration 

points. Given the discrete nature of the calibration points, the calibration data provides 

discrete information. However, the transfer function, as a function of space, will be needed 

to locate and estimate forces if an impact occurs outside these calibration points. To 

accomplish this task, PFEEL employs a response model to simulate the dynamics of the 

structure with forces at any location. This model is then used to estimate the structure’s 

transfer function at any location of interest with coordinates (x,y). We refer to this response 

model as the probabilistic response model (PREP).

2.1. Probabilistic response model (PREP)

Without any lost of generality, the following paragraphs describes the response model of 

a one-dimensional linear system (e.g. beam) for the sake of simplicity. Here, space is 

determined by one variable only (x) instead of two variables (x, y). The total response 

of a one-dimensional linear system, such as the beam, with classical damping can be 

represented by the superposition of the contributions of each orthogonal mode [33], using 

the expression:

u(x, t) = ∑
r = 1

N
ϕn(x) × qn(t) (6)

With N modes contributing to the response, with qn(t) as the solution in generalized 

coordinates of the uncoupled SDOF system and u(x, t) as the total response.

For uncoupled differential equations in qn(t), an impulse with amplitude po centered at t = τ, 

induces free vibration due to initial velocity and displacement, then:
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qn(t) = Pn
Mnωd

e−ζnωn(t − τ)sin ωd(t − τ) (7)

Where ζn, ωn and ωd are the damping, natural angular frequency and damped 

angular frequency associated to the nth mode, respectively. Mn = ∫o
Lm(x)ϕ(x)2dx, and 

Pn = ∫o
Lpo(x, t)ϕ(x)dx, where m(x), po(x, t) and ϕ(x) are the modal mass, modal force 

and mode shapes, respectively. The mode shapes depend on the structure and boundary 

conditions. For a simply supported Euler–Bernoulli beam with a length L and constant cross 

section, for example, the normal modes are given by the equation:

ϕn(x) = sin nπx
L (8)

Similar to Eq. (6), and Eq. (8), the total response of a two-dimensional simply supported 

system can be expressed as a superposition of modes using:

R(x, y, t) = ∑
k = 1, 2, 3..

∞
Z(x, y)kqk(t) (9)

where Z(x, y) represents the shape function and qk(t) are the uncoupled differential 

equations.

The shape function of the PREP model is defined by Eq. (10), which is the derivation of 

the vibrational modes of a simply supported steel plate [34,35]. Note that the shape function 

assumes a simply supported boundary condition in this study. However, the shape function 

can be changed for any other function that best represents the system’s vibration.

Zk(x, y) = sin kπx
Lx sin kπy

Ly
(10)

With k replacing the combination of the mode number (n) in each direction k = (nx, ny), 

and where Lx and Ly are the total length in the x and y axis, respectively. The uncoupled 

differential equation for the k mode is given by

qk(t) = Pk
Mk

1
ωd, k

e −ζωkt sin ωd, k(t − τ) (11)

With:

Pk = ∫
0

Lx∫
0

Ly
P (x, y, t) × Zk(x, y)dxdy

Mk = ∫
0

Lx∫
0

Ly
M(x, y) × Zk(x, y)2dxdy

(12)
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2.2. Probabilistic formulation of the response using Bayes

PFEEL requires an estimation of the modes of the system (ϕn(x)). However, given that an 

exact estimation may be difficult to get, the PREP model and its parameters are the most 

significant sources of uncertainty. As mentioned earlier, the formulation of the responses is 

made using the Bayes rule in Eq. (13).

P (θ ∣ D) = P (θ)P (D ∣ θ)
P (D) (13)

Where θ = fnk, ζk, Ci  with fnk as the natural temporal frequencies, and ζk the damping 

ratios for each mode considered. A scale correction factor “Ci” that accounts for the 

difference between the mode shapes identified from the numerical model and from 

experimental data was also included as an unknown quantity (see Eqs. (10) and (14)).

Zk(x, y) = Cisin kπx
Lx sin kπy

Ly (14)

For the model to better represent the phenomenon under observation, experimental data 

collected from the system is used to inform the model. D in Eq. (13) represents the 

information obtained from the experimental testing. The experimental data is a frequency 

response function matrix of size q × e for q impacts and e sensors. The TF’s amplitude (r) 
and phase (ϕ) components are the observations of the model D = {D1, D2}, with D1 = log(r) 
and D2 = ϕ.

In the Bayesian formulation, P(θ) is the prior distribution of the model parameters, 

representing the prior knowledge about the parameters. For example, the authors believe that 

the frequencies associated with the different mode shapes will follow normal distributions. 

However, not much information regarding the proper distributions of the damping ratio and 

the scale parameters is available. In the last case, the distributions for ζn and Ci have been 

selected using the maximum entropy criteria [36–38]. The parameters’ prior distributions 

were selected as fnk N μ = fnk0 ; ζk Exp λ = 1/ζk0 ; and Ci U a = c0, b = ci .

P(D|θ) = P(D1|θ)P(D2|θ) represents the conditional probability of the parameters under the 

observations. In this study measurement errors are simulated using independent zero-mean 

normal random numbers for each sensor and small modeling errors are expected. Therefore, 

the likelihood function will follow a Gaussian distribution. Experimental applications might 

not follow a normal distribution and should be further studied as discussed by other authors 

[39,40]. Given the two sets of observations D1 and D2, the likelihood function for the two 

sets of observations is defined as:

P D1 ∣ θ = ∏
i = 1

n 1
σr 2π × exp − 1

2
log ri − log r i (θ) 2

σr2
(15)
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P D2 ∣ θ = ∏
i = 1

n 1
σϕ 2π × exp − 1

2
ϕi − ϕi(θ) 2

σϕ
2 (16)

Where σr and σϕ are the standard deviation of the likelihood, and are considered unknown 

random variables. log r i (θ) and ϕi(θ) are the log-amplitude and phase predictions, log(ri) 

and ϕi are the ith log-amplitude and phase observations, n is the total number of observations 

and θ = fnk, ζk, Ci, σr, σϕ .

To predict an unknown observable, a similar logic as the one presented in Eq. (13) is 

followed. Before the data D is considered, the distribution of the unknown observation is:

P (D) = ∫ P (D, θ)dθ = ∫ P (θ)P (D ∣ θ)dθ (17)

Eq. (17) is the prior predictive distribution not conditioned to previous observations [41,42]. 

When D is observed, the prediction of an unknown observable D can be obtained using:

P (D ∣ D) = ∫ P (D, θ ∣ D)dθ = ∫ P (D ∣ θ, D)P (θ ∣ D)dθ = ∫ P (D)P (θ ∣ D
)dθ

(18)

Eq. (18) can be used to predict the response at any location. The probabilistic model 

generates predictions of the amplitude and the phase under θ. Thus, we can obtain an 

approximation of the posterior distributions of the random variables and distributions of the 

unknown observables — TFs at any location.

3. PFEEL algorithm design

As shown in Fig. 2, the PFEEL algorithm is composed of three consecutive stages, namely 

probabilistic transfer function estimations (PTF), probabilistic force estimations (PFE), and 

probabilistic event localization (PEL).

3.1. Probabilistic transfer functions (PTF)

The first stage focuses on constructing the probabilistic transfer function (PTF) estimates 

at any location (x, y). These locations generate the hypersurface of transfer functions. In 

this stage, the PREP model (Section 2) is excited at multiple locations with coordinates (x, 

y), and the system’s response is recorded at the location of the sensors (ϵ). These TFs are 

obtained using Eq. (19). Notice that TF  and S are functions not only of the space (x, y) but 

of the frequency; however, f is dropped in the forthcoming equations for simplicity.

TFP(x, y)Rϵ =
TFP(x, y)Rϵ + TFRϵP(x, y)

2
(19)
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where, TFP(x, y)Rϵ =
SP(x, y)Rϵ

SRRϵ
, TFRϵP(x, y) =

SPP(x, y)
SRϵP(x, y)

. SP(x, y) is the power spectral density 

of the force P applied at location (x, y), and SRϵ the power spectral density of the response R 

measured at a sensor location ϵ. The rest of the variables represent the cross-power spectral 

densities between these. Granted, 0 < x < Lx and 0 < y < Ly, where Lx and Ly are the largest 

physical dimension where a sensor can be positioned in axis x and y, respectively.

Notice that Eqs. (2) and (19) have a similar convention for power and cross-power spectral 

density functions, only that SRϵ are probability distributions as a function of the random 

variables, as shown in Section 2.2, and as a function of x and y. Also, TFPR is a continuous 

probability distribution obtained using Eq. (18), where DP(x, y)Rϵ are the predictions of the 

amplitude rP(x, y)Rϵ, and the phase ϕP(x, y)Rϵ in the space. The complex transformation is 

made using TFP(x, y)Rϵ = rP(x, y)Rϵ cos ϕP(x, y)Rϵ + isin ϕP(x, y)Rϵ .

3.2. Probabilistic force estimates (PFE)

The second stage of the algorithm focuses on estimating the impact force distributions using 

new acceleration data R̈(t) captured by the sensors ϵ. With the spatial transfer functions 

TFP(x, y)Rϵ, the force estimations for each sensor can be obtained using:

P (x, y, t)ϵ = IFFT FFT R̈ϵ(t)
TFP(x, y)Rϵ

(20)

P (x, y, t)ϵ are distributions of the force estimates for locations (x, y) using sensor ϵ in the 

time domain.

3.3. Event localization (EL)

The third and final stage of the algorithm focuses on the localization of the event. The 

estimation of the localization is made by comparing the force estimates obtained from 

Section 3.2. The impact force of a specific event captured by all sensors should theoretically 

be the same, so the impact location can be determined by comparing the different force 

estimates’ distributions. In this study, the Kolmogorov Smirnov (K-S) test, which compares 

the similarity of cumulative distributions functions (CDF) [43], is used to determine the 

location (x, y) where the force estimates’ distributions in all sensors (ϵ) are approximately 

equal.

The K-S test is a type of hypothesis test where the null hypothesis assumes that there are no 

differences between the observations and the theoretical distribution. The test compares an 

observed and a theoretical cumulative distribution of a random sample. Instead of comparing 

between theoretical and observed cumulative distributions, it is adopted in the proposed 

PFEEL algorithm to establish an agreement between the CDFs of different pairs of samples. 

For this end, the K-S two-sample test is used, and it is calculated using Eq. (21), where e is 

the total number of sensors, and i and j are pair of sensors.
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KSij(x, y) = max ∬ P (x, y, t)ϵ = idP  dt − ∬ P (x, y, t)ϵ = jdP  dt (21)

The combinations i-j of pair of sensors should not include repetitions. Thus, the formulation 

of the final statistics for each location (x, y) is the average of KS values considering 

all available sensors and can be calculated using Eq. (22). Herein, the statistics Γ is a 

continuous function in the space. The location of the event is selected as the location (x, y) 

where Γ is minimum.

Γ (x, y) = 2!(e − 2)!
e! ∑

i = 1

i = e
∑

j = i + 1

j = e
KSij(x, y) (22)

4. Numerical validation

A simply supported beam model with the properties presented in Table 1 is used to 

demonstrate the implementation of the proposed PFEEL algorithm. In this example, the 

beam was hit on five different locations using an impulse force with magnitude of po = 

444 N, as shown in Fig. 3. The response of the system was also measured in the same 

locations. Fig. 4 shows the amplitude and phase of the frequency response function matrix 

generated using Eq. (1). The locations of the hit (Px) and sensors (ϵ) were selected as x, ϵx 

= {0.03, 1.04, 2.06, 3.07, 4.09} m. Notice that in this example, the beam is analyzed as a 

one-dimensional structure to clearer showcase the implementation of the algorithm.

The frequency response function (FRF) measurements in Fig. 4 are observations D = {log(r), 
ϕ}, log(r)PxRϵ = log FRFPXRϵ  and ϕPxRϵ = ∠ FRFPxRϵ , where Px and Rϵ are the impact 

force and the sensors response at the actual impact locations.

4.1. Markov chain Monte Carlo simulations

The next part of the validation is the probabilistic formulation of the response, which 

includes the definition of the prior distributions of the random variables as addressed in 

Section 2.2, and the inference using Eqs. (13)–(16).

To reach a reasonable approximation of the posterior distributions, Markov Chain Monte 

Carlo Simulations, particularly the Metropolis–Hasting sampler [44–46] were used. Given 

that it is not possible to observe convergence with a single sequence, a convergence 

diagnostic using the potential scale reduction factor (PSRF) [47] was performed. The Fig. 

5 shows the convergence of the random variables reached at 104 samples. The posterior 

distributions of the random variables are presented in Fig. 6.

The predictions of the transfer functions at any location x were compared to the newly 

collected experimental data in those same locations to check the fit’s adequacy. Figs. 7 and 

8 shows the prediction of the transfer functions using their amplitude and phase. The gray 

band in both figures represents the 95% credible intervals with the mean represented by the 

dashed line. The continuous line in both plots represents experimental data collected at that 
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location to validate the prediction. The results indicate that the observed data lines inside the 

region of higher probability.

4.2. Force estimation

Now that the whole space of the beam has been characterized in a probabilistic fashion, 

the hyperspace of transfer functions can be used to establish the localization of a new event 

(Section 3.2).

The beam was excited to test the ability of the model to detect the localization of the event. 

New acceleration data collected from the sensors, and the hyperspace of transfer functions 

from the previous step were used to rebuild the force estimates distributions as shown in Fig. 

9. Notice how the force estimates, similar to the transfer function estimates, are represented 

by distributions with the mean and the 95% credible interval. The actual location of the 

event occurred at 3.58 m. The results demonstrate, for example, how the force estimate 

distributions at location 2.06 m (first item-second row) show that the distributions are very 

different between sensors. In contrast, the force estimates of location 3.58 m (first item-third 

row) show that the distributions are aligned for all sensors. In addition to the distributions, 

the magnitude of the force estimated in all the locations is also presented in Fig. 9 in the 

small subplots on the left corner. The force’s histogram in each location was obtained by 

integrating the force distributions of all sensors at the time of the impact (t = t). As can be 

observed, the distribution of the force in the exact location of the event (x = 3.58 m) contains 

the real force estimate.

4.3. Event localization

Each location on the hyperspace will contain as much force estimate distributions as the 

number of sensors available. The localization of the event is defined using the similarity 

between distributions for all sensors at each location, as explained in Section 3.3. For any 

new impact location with coordinates (x, y), the prediction of the impact location is a 

minimization problem of the statistics, Γ, of Eq. (22). Notice in Fig. 9 how the force estimate 

distributions in the location of the event are aligned for all the sensors. This indicates that the 

comparison of the force estimate distributions will reflect that similarity between sensors.

Fig. 10 presents the optimization results of Eq. (22) for an impact at x = 3.58 m. The 

initial guess of the optimization was selected as x = 2.54 m for this exercise. The correct 

localization of the event from the optimization was x = 3.56 m, 2 cm from the actual impact 

location, as it can be observed in Fig. 10.

Note that although the FRF matrix used for calibration does not contain a calibration point 

close to the location of this impact, the algorithm was able to establish the localization 

with a minimal margin of error, demonstrating the robustness of the proposed algorithm. 

Although these results confirm that the algorithm can reduce the error in the predictions 

without extensive calibration tests, it is worth highlighting the important role of the 

experimental data in informing the model. To establish the best locations to hit and improve 

the accuracy of the estimations, we used a feature of the algorithm that informs where to hit 

next to reduce the uncertainty on the predictions and improve the optimization.
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5. PFEEL — Calibration

PFEEL requires calibration to establish a model of the structure that can be used to estimate 

event locations. The goal is to develop a calibration process that could be implemented in a 

reasonable time. Calibration is only required once, and recalibration may be needed if there 

are significant changes to the structure (e.g., mass or stiffness changes).

One of the advantages of the proposed PFEEL algorithm is its capacity to inform where 

the new excitation should take place to reduce the uncertainty of the estimations. With this 

feature, the amount of experimental data required to accomplish a level of precision can be 

greatly reduced.

The process to establish the localization of a new hit is an iterative process showed in Fig. 

11. After an initial hit event is collected Θ(i = 1), the algorithm finds the localization with 

the highest uncertainty in the transfer function space TF (x, y)Rϵ using the statistics

Λ(x, y) = δ∫ v(x, y, f) df (23)

where v(x, y, f) = V ar TF (f)P(x, y)Rϵ  and δ is a normalization constant. The next hit location 

is selected as the location (x, y) where Λ is maximum. This process is repeated until 

one of the predefined thresholds, namely, maximum number of hits (Nmax) or a maximum 

acceptable variance (Λmax) has been reached.

To establish the next calibration location, we implemented the iterative process in the 

simply supported beam. The results are presented in Figs. 12 and 13. In Fig. 12 the initial 

calibration was made at x = 0.03 m, and the location of higher uncertainty in the estimations 

using Eq. (23) was established as the location x = 4.09 m. With these results, the next 

calibration location was selected as x = 4.09 m in the next iteration and so on.

Fig. 13 shows the heat map of Λ(x) for each iteration. The location with color white is 

the location with higher uncertainty, and the marker for the next calibration point. The 

location with the highest uncertainty of the prediction is added as an observation in the 

next iteration. These plots demonstrate how the stabilization is reached when the number 

of hits is equal to the number of locations made available for prediction. This behavior is 

expected and indicates that the minimum uncertainty is obtained if experimental data for 

all the possible locations is available. As it may not be feasible in practice to excite all the 

possible locations, a maximum number of calibrations or a threshold of maximum variation 

Λ should be provided to balance the sufficient level of uncertainty and the efforts needed for 

the calibration process.

6. Conclusions

The PFEEL algorithm provides a probabilistic estimation of the event location by modeling 

the system’s response as a function of random variables, representing the dynamics of the 

floor. Building upon and overcoming the challenges of the deterministic FEEL algorithm, 

the PFEEL algorithm provides a measure of uncertainty on the estimations and reduces 
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the necessity of extensive experimental calibration tests. These unique characteristics are 

especially beneficial in cases where the identification of the event localization should be 

provided with a low margin of error, such as in the case of gait parameter extraction.

To validate the algorithm, a simply supported beam model was used. The localization of 

the actual impact and the event’s location, determined by the algorithm, showed a marginal 

error of 2 cm (in a 5 m beam), demonstrating that PFEEL can localize the event in locations 

where even no experimental data has been collected with a low margin of error. The 

validation results also showed that the distribution of the force provided by PFEEL contains 

the true value of the force magnitude, indicating that the model can provide a measure of the 

estimation with the associated uncertainty of the model and the random variables.

The PFEEL algorithm establishes the localization of the event using a probabilistic 

optimization process. Any optimization method can be used to minimize the function Γ(x, 

y). This optimization methodology should allow an efficient exploration of the solution 

space.

PFEEL is also capable of informing the next calibration location to reduce the uncertainty 

in the force and location estimations. PFEEL’s calibration is an optimization problem of 

the function Λ(x, y), which allows the user to reduce or extend their experimental setup 

accordingly.

PFEEL uses the system identification process to provide an initial guess of the random 

variables, namely, natural frequencies, damping ratios, and mode shapes, to define the 

prior distributions. The authors recommend implementing an accurate system identification 

methodology to obtain correct estimations of the mode shapes and natural frequencies. 

Additionally, if other system changes are included, such as added masses, modified 

boundary conditions, or changes in the initial real sensors location, a complete re-calibration 

may be necessary.
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Fig. 1. 
Force Estimation and Event Localization (FEEL) ([7,22]).
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Fig. 2. 
PFEEL algorithm design.
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Fig. 3. 
Simply supported beam.
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Fig. 4. 
Magnitude and phase for representative Px – Rϵ.
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Fig. 5. 
Convergence diagnostics using potential scale reduction factor for the random variables.
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Fig. 6. 
Diagonals represent the marginal posterior distributions of the model parameters, namely 

natural frequencies Fn, damping ratios ζn for three modes and shape constant Ci. The lower 

contours represent the joint posterior distribution.
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Fig. 7. 
Goodness of fit test between experimental data and the probabilistic response for some Px 

and Rϵx at locations x = 0.03 and x = 2.06 m.
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Fig. 8. 
Goodness of fit test between experimental data and the probabilistic response for P(x=0.03 m) 

and R(ϵ).
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Fig. 9. 
Force estimates for 10 different locations. The location of the event was P(x=3.58 m).
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Fig. 10. 
Optimization of Γ(x, y) for an impact at P(x=3.58 m).

MejiaCruz et al. Page 25

Eng Struct. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
PFEEL-Calibration process.
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Fig. 12. 
Maximization of Λ(x, y).

MejiaCruz et al. Page 27

Eng Struct. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Extraction of the next hit location using Λmax at each iteration.
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Table 1

Beam model properties.

Young’s modulus E = 24.0 GPa

Unit weight 2.40e3 Kg
m3

Moment of inertia I = 8.99e − 05 m4

Length L = 5.00 m

Area of the cross section A = 0.05 m2
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