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Next generation plasma proteome profiling to
monitor health and disease
Wen Zhong 1, Fredrik Edfors 1, Anders Gummesson 2,3, Göran Bergström2,4, Linn Fagerberg 1 &

Mathias Uhlén 1,5✉

The need for precision medicine approaches to monitor health and disease makes it

important to develop sensitive and accurate assays for proteome profiles in blood. Here, we

describe an approach for plasma profiling based on proximity extension assay combined with

next generation sequencing. First, we analyze the variability of plasma profiles between and

within healthy individuals in a longitudinal wellness study, including the influence of genetic

variations on plasma levels. Second, we follow patients newly diagnosed with type 2 diabetes

before and during therapeutic intervention using plasma proteome profiling. The studies

show that healthy individuals have a unique and stable proteome profile and indicate that

a panel of proteins could potentially be used for early diagnosis of diabetes, including

stratification of patients with regards to response to metformin treatment. Although

validation in larger cohorts is needed, the analysis demonstrates the usefulness of

comprehensive plasma profiling for precision medicine efforts.
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One of the most important fields of biotechnology is the
need to stratify patients to allow individualized treatment
and monitoring of therapeutic interventions. This field

called precision medicine has been dominated by genomics
platforms, led by the rapid development in next generation
sequencing. However, there is a need to move towards compre-
hensive proteome profiling of blood to take the next step in
precision medicine, and this emphasizes the need for multiplex
analysis of proteins in blood not only to understand the basis for
wellness and disease, but also to facilitate precision medicine
efforts aimed at early detection of disease, as well as stratification
and monitoring of patients before and during therapeutic
interventions1,2. The aim for such efforts is to identify signatures
with pathophysiological importance forming an attractive bridge
between genomes and phenotypes3–6. The objective is thus to
probe the circulating plasma proteome of individuals with sen-
sitive and specific assays that can allow massive sample
throughput. However, progress has been hampered by the chal-
lenge to allow the quantification of thousands of proteins across
more than a billion range in concentrations, starting with minute
sample volumes.

Recently, proximity extension assay (PEA)7 with qPCR read-
out has been used to analyzed protein plasma levels in long-
itudinal studies8–11 and genome association studies12–14. Here,
we show that this analytical platform can be extended for
simultaneous analysis of many more targets by the introduc-
tion of massive parallel sequencing, here referred to as PEA-
NGS or Olink Explorer, without sacrifice on accuracy or sen-
sitivity. This approach for next generation plasma profiling
allows for simultaneous analysis of close to 1500 protein targets
from minute blood samples (less than 3 mL of plasma). The
method relies on four pillars allowing sensitive multiplex assays
to be coupled with low cross-reactivity and minimal off-target
events; (1) dual binding based on a specific monoclonal or
polyclonal antibody recognizing more than one epitope on the
target protein, (2) a proximity extension assay based on
bringing two complementary DNA-barcodes in proximity by
the antibody, (3) tag-sequences introduced into an amplicon to
determine the sample origin and target protein, respectively,
and (4) next generation sequencing to allow millions of
amplicons to be sequenced and digitally counted. We use this
method to study both health and disease with the objective to
determine wellness profiles in individuals, as well as to identify
protein markers for stratification and monitoring of patients
during drug treatment.

Results
Multiplex protein analysis platform. The principle of the assay is
summarized in Fig. 1. Antibodies having two different oligonu-
cleotide tags are mixed and allowed to bind to the target protein
(Fig. 1a). Upon binding to the same target, the complementary
tags of each antibody anneal and allow for extension using a DNA
polymerase (Fig. 1b, c). Each antibody and sample have a separate
and unique barcode (Fig. 1d) and after amplification, a library of
DNA fragments is prepared and sequenced (Fig. 1e). The number
of reads corresponding to a particular antibody and samples is
counted per sample barcode and can thereafter be translated into
the original protein plasma concentration (Fig. 1f). In total, 1463
unique plasma proteins were analyzed using the technology
(Supplementary Data 1), including 522 proteins not analyzed
before using PEA. The Venn diagram (Fig. 1g) shows the overlap
of proteins for the PEA-NGS assay as compared to the earlier
described PEA-qPCR assay. Among them, 304 are actively
secreted proteins in blood according to the recent annotation of
the human secretome15 (Supplementary Data 1).

The study cohorts and clinical chemistry. The first cohort
(wellness) consisted of 76 individuals recruited from the SCAPIS
study16, including 40 males and 36 females between 50 and 65
years of age. An inclusion criteria was the willingness to allow
extensive sampling and physical examination every 3 months for
2 years. Extensive phenotype characterization of the subjects was
conducted before the study to establish the inclusion and exclu-
sion criteria for the definition of healthy subjects (see “Methods”
section). The sample collection in combination with clinical
chemistry analysis of 30 parameters as well as anthropometric
measurements were conducted at the start of the study (visit 1),
and after approximately 15–18 months (visit 2) and
21–24 months (visit 3) (Fig. 1h). The complete list of assessed
clinical variables is available in Supplementary Data 2. The sec-
ond cohort (type 2 diabetes) consisted of 48 individuals also
recruited from the SCAPIS study, with no history of diabetes, and
who were diagnosed during the population-based screening17.
The sample collection in combination with clinical chemistry
analysis of 30 parameters as described in the wellness study,
anthropometric measurements as well as analysis of insulin, C-
peptide, and the homeostatic model assessment of insulin resis-
tance (HOMA-IR) were conducted at the start of the trial (visit 1)
and after approximately 1 month (visit 2) and 3 months (visit 3)
of treatment (Fig. 1h) (Supplementary Data 2).

Comparison between the NGS and qPCR measurements gen-
erated with the proximity extension assay. To assess the per-
formance and reproducibility of the NGS approach, we
investigated the concordance between NGS and qPCR read-out.
A set of 372 samples were analyzed using the conventional qPCR
protocol and the result was compared to independent analysis of
the same samples using the NGS protocol. Protein-wise Pearson
correlation between NGS and qPCR platforms for each assay
across samples was calculated, as shown in Fig. 2a. Most of the
assays (~82%) were found to correlate well with a high cross-
platform correlation >0.7. A pairwise correlation of all protein
levels across the 372 samples also showed high concordance with
a median Pearson correlation of 0.985 (Fig. 2b). No significant
difference in correlation was observed between the two study
cohorts (Supplementary Fig. 1b, c). Intra-platform and inter-
platform variations have also been analyzed as exemplified by the
interleukin-6 protein, which was run in four different NGS panels
as well as the qPCR platform (Supplementary Fig. 1d). Both inter-
platform and intra-platform correlations were high with an
average Pearson correlation of 0.97, indicating high consistency of
the measurements of protein levels using the PEA-NGS platform.
Two examples of the correlation between the two methods are
shown in Fig. 2c, d. The fibroblast growth factor 21 (FGF21) is an
example of a protein with higher levels in the T2D patients18,19,
and the results from the two assays support this observation with
consistent higher level of FGF21 in the T2D patients compared to
the healthy individuals (Fig. 2c) with a correlation across all
samples of 0.96 (Spearman) and 0.97 (Pearson), respectively. The
second example is prokineticin 1 (PROK1) here shown (Fig. 2e, f)
to have higher levels in males than females. The comparison
between the two assays across all samples shows high correlation
of 0.92 (Pearson and Spearman).

To identify all the proteins with sex-difference in plasma, an
ANOVA analysis was performed with age and visit as covariates
(Supplementary Data 3). Proteins with Benjamini–Hochberg
adjusted P-value < 0.05 were considered as sex-related proteins.
In total, 283 proteins were found to be significantly elevated in
male samples, while 249 proteins showed significantly increased
levels in female samples. A comparison of the fold changes of sex-
related proteins in male and female samples between NGS and
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qPCR measurements also shows a high consistence between these
two platforms (Fig. 2g). Among them, 187 proteins were only
identified using the PEA-NGS platform (Fig. 2h and Supplemen-
tary Data 3), as exemplified (Fig. 2i) by the neutrophic factor
persephin (PSPN) and the enzyme pyrophosph/phosphodiester-
ase 2 (ENPP2), showing sex-specific differences in plasma with
individual levels stable over the 2-year study period.

Variance analysis of the plasma protein profiling and the
genetic effects. The approach described here allowed us to
investigate ~700 proteins that have not been analyzed with PEA
before. First, we analyzed the inter-individual and intra-
individual variation of each protein in the longitudinal well-
ness cohort as described before12 (Fig. 3a and Supplementary
Data 4). We found that the majority of proteins have a higher
variation between individuals (Fig. 3a) rather than within indi-
viduals, which is consistent with our previous findings12. These
proteins are interesting to study in more depth in various disease
cohorts. Second, we investigated the influence of genetic back-
ground on the individual plasma protein levels, using genome-

wide association analysis with 7.3 million variants identified by
whole-genome sequencing, as previously described12. By intro-
ducing more proteins in the analysis, we found 331 significant
associations (P < 4 × 10−11) between 143 proteins and 321
independent genetic variants (Supplementary Data 5). Among
them, 69 proteins have not been identified before. Sentinel pQTL
variant was determined as the variant with lowest P value at each
pQTL locus and are visualized in Fig. 3b. In Fig. 3c, the
PNLIPRP2 programmed cell death 6 (PDCD6), a lipase, which
contributes to milk fat hydrolysis20, is shown with the genetic
variants associated with the plasma levels found in conjunction
with the location of the protein-coding gene (cytoband 10q25.3
on the genome). The most significant association was found for
variant rs4751995, which is a common truncation variant in
PNLIPRP2 and was first described in 2003 as W357X in Eur-
opean cohort21. The longitudinal analysis during the three visits
for the 76 subjects in the wellness study demonstrates that the
protein levels are high for both the homozygote and hetero-
zygotes for the variant, and the differences were stable during
the 2-year study period.
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Association of plasma protein levels with clinical measure-
ments. To compare the proteome profiles with anthropometrics
and the clinical chemistry assays, an in-depth analysis of the
relationship between plasma protein levels and clinical mea-
surements was conducted using linear mixed-effect modeling and

the protein profiling from both wellness and T2D cohorts. In
total, 919 of the proteins were found to be significantly associated
with 42 clinical parameters (Supplementary Data 6). Among
them, 1614 of the significant findings were related to 321 proteins
measured here using the PEA-NGS assays. In addition, 53
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proteins were also identified with significant genetic associations
(Fig. 4a) suggesting that a large contribution to the plasma levels
of these proteins during adult life is determined by genetic factors.
In Fig. 4b, the proteins most strongly associated with clinical
assays based on both wellness and T2D cohorts are shown, here
restricted to the proteins exclusive for the PEA-NGS assay (see
full list in Supplementary Data 7). Many proteins related to sex,
BMI, lipid, and immune response were identified, as well as
proteins involved in liver and kidney function. These are inter-
esting targets to study more in-depth in larger cohorts to inves-
tigate their potential role for individualized stratification of health
and disease.

Identification of individuals with high risk for T2D. An
interesting topic in the diabetes field is to be able to stratify T2D
patients into different categories based on clinical and molecular

parameters22. As shown in Fig. 5a, the T2D cohort can roughly be
stratified into two groups with BMI larger or smaller than 30 at
baseline. These groups, here called obesity (>30) and non-obesity
(<30), are roughly equal in size, 28 (obesity) and 20 (non-obesity).
In contrast, the majority of individuals in the wellness study are
with BMI under 30. First, we investigated the plasma proteome
profile difference between the two T2D cohorts. Four proteins
were found to associate with the BMI-difference among the T2D
patients, as exemplified by the famous obesity marker leptin
(Supplementary Fig. 3). We next investigated the difference in
protein profiles between the T2D non-obesity group and the non-
obese healthy (wellness) control group. The analysis identified a
number of proteins (n= 32) differing between the healthy and
T2D individuals, as shown in Fig. 5b and Supplementary Data 8,
with some examples of proteins with decreased (Fig. 5c) or
increased (Fig. 5d) plasma levels in the T2D patients at baseline.
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These proteins are thus potential plasma protein biomarkers for
identifying individuals with high risk for T2D in population
screens independent on BMI. A principle component analysis
(PCA) based on the 32 differentially expressed proteins shows
that the T2D patients clustered together, regardless of anthro-
pometrics parameters (BMI), and separate from the healthy
individuals, using the combined protein profile of this panel of 32
proteins.

Stratification of T2D patients with regards to response to
metformin treatment. Among the T2D patients, 40 individuals
were treated with metformin and here we stratified these into

three groups based on the response of therapeutic intervention, as
determined by the decreased level of fasting plasma glucose
(FPG) after three months treatment (Fig. 6a). The groups inclu-
ded responders (FPG decrease >1), non-responders (FPG
decrease <0.1) and an indeterminate group (FPG decrease
between 0.1 and 1). Of note, one patient with large and opposite
changes of FPG in visit 2 (−2.8) and visit 3 (1.6) was also grouped
into the indeterminate group. Changes of plasma levels during
diabetes treatment as well as the comparison with healthy indi-
viduals in the top 50 most highly associated proteins with fasting
glucose are present in Supplementary Fig. 4. As shown, the
treatment results in partial recovery towards normal protein
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levels for most of the proteins and the effect is more pronounced
in the responder group as compared to the non-responder group
for many of the proteins.

To explore if the plasma protein levels at baseline were
associated with the response to metformin treatment, a mixed-
effect modeling analysis was conducted (Supplementary Data 9).
Median levels of the top 30 most highly associated proteins with
metformin treatment response are present in Fig. 6b. As shown,
different protein expression patterns between responders and
non-responders could be observed with a majority of proteins
showing higher plasma levels at visit 1 (before start of treatment)
in the responder group, but also some proteins (GPA33, LEP,
TPSAB1, MZB1, GALNT10, and IFNLR1) with lower plasma
levels as compared to the non-responders. In Fig. 6c, the protein
levels in the three groups are shown as boxplots for four selected
examples. Unsupervised clustering analysis was then performed
on the protein profiles of the top 30 proteins at baseline for all
T2D patients with metformin treatment (Fig. 6d). Interestingly,
all non-responders were clustered together and distinct from the
responders, indicating that this panel of proteins can be used to
predict if the metformin treatment for a particular patient will be
successful or not before the start of the therapeutic intervention.

Discussion
Here, we describe a study to use a sensitive and accurate multi-
plex analysis of blood proteins based on proximity extension
assay combined with next generation sequencing read-out. Close
to 1500 human proteins were assayed allowing minute (micro-
liter) amounts of blood to be analyzed with simultaneous analysis
of low abundant proteins presented in concentrations more than
a billion-fold lower compared to the most abundant proteins in
human blood. The Olink Explorer method described here thus
complement the pioneering Slow-Off rate Modified Aptamer
(SOMAmer) technology23,24 used for several population-based
studies25–27, and enables an antibody-based method combining
sensitivity and parallel plasma analysis of thousands of protein
targets.

The results presented here support earlier observations8,12 that
each individual has a unique blood protein fingerprint with larger
inter-individual variations as compared to the intra-individual
variation. Several proteins with strong association with known
clinical parameters have here been identified and these are
interesting to study in larger cohorts to validate them as clinical
markers in routine settings. The genome association studies
reported here also support earlier observations that many plasma
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protein levels in adult life are determined at birth by genetics12,
and 69 genetic variants (pQTLs) not previously described were
identified using the multiplex assay. This demonstrates that
genetics should be taken into account when assessing an indivi-
dual´s plasma protein levels in population studies.

The analysis of the T2D patients revealed many interesting
observations. The characteristics of T2D and its association with
the epidemic of obesity have been extensively studied, but rela-
tively little is known about the incidence of lean diabetes and the
progression of disease during treatment28. The results presented
here support the notion that broad biochemical alterations are
present already at the onset of type 2 diabetes and that protein
profiling could deliver individualized health assessments of car-
diometabolic diseases4,17. The anthropometrical parameters of
the T2D cohort allowed us to stratify the patients into two distinct
groups based on BMI and an analysis of the protein profiles
between the health individuals and the T2D patients at base line
(visit 1) revealed several proteins, that could be useful for early
detection of disease based solely on protein profiles. Interestingly,
the proteome profile showed the possibility to stratify the patients
into responders and non-responders of naïve metformin drug
treatment and analysis with a selected panel of proteins demon-
strated that persons less likely to respond to treatment could be
identified before the start of treatment. The suggestion that a
panel of protein assays could be used to guide the physician
regarding choice of drug treatment is highly promising, but it is
important to point out that more in-depth analysis of these
plasma protein profiles must be performed in larger disease
cohorts to validate their use as clinical biomarkers.

The method described here has opened up the possibility to
perform next generation plasma proteome profiling to allow
massive screening of various patient cohorts to provide plasma
profiles of relevance for health and disease. This technology
allows analysis of minute samples over the challenging dynamic
range of plasma proteins, which will be highly beneficial for
precision medicine efforts. In summary, we describe an approach
suitable for comprehensive protein profiling, taking advantage
from the observation that each individual has a unique protein
profile and many proteins change during disease allowing stra-
tification and monitoring of patients during treatment.

Methods
The wellness profiling study. The Swedish SciLifeLab SCAPIS Wellness Profiling
(S3WP) program is non-interventional with the aim to collect longitudinal clinical
and molecular data in a community-based cohort, as previously described8–10,12.
The study consists of 101 healthy individuals recruited from the Swedish CArdi-
oPulmonary bioImage Study (SCAPIS), which is a prospective observational study
with 30,154 individuals enrolled at ages between 50 and 64 years from a random
sampling of the general Swedish population16, from 2015 to 2018. Hence, all
subjects had been extensively phenotyped in SCAPIS before entering the S3WP
study. For inclusion in the study subjects must fulfil the following criteria: (1)
signed informed consent to participate in the study, (2) randomly selected and
included in the Gothenburg SCAPIS cohort, (3) 50 but not yet 65 years of age at the
time of selection from the SCAPIS cohort, (4) Ability to understand instructions
and complete questionnaires, as judged by the study staff. The exclusion criteria in
the S3WP study included: (1) previously received health care for myocardial
infarction, stroke, peripheral artery disease, or diabetes, (2) presence of any clini-
cally significant disease which, in the opinion of the investigator, may interfere with
the results or the subject’s ability to participate in the study, (3) any major surgical
procedure or trauma within 4 weeks of the first study visit, or (4) medication for
hypertension or hyperlipidemia. Examinations in combination of sample collection
(blood, urine and feces) were performed every third month (±2 weeks) in the first
year and approximately a 6-month interval in the second year. During the study,
99 subjects completed the first year and 94 completed the second year. The study is
approved by the Ethical Review Board of Göteborg, Sweden (registration number
407-15). All participants provided written informed consent. The study protocol
conforms to the ethical guidelines of the 1975 Declaration of Helsinki (Supple-
mentary Note 1 and 2).

The type 2 diabetes (T2D) study. The T2D study is an extension of the S3WP
study with the aim to perform molecular phenotyping of T2D before and after

diabetes treatment17. Fifty-two subjects at age between 50 and 65 years with no
history of diabetes and diagnosed during population-based screening examinations
were enrolled from the Sahlgrenska University Hospital, Gothenburg, from 2016 to
2018. The diagnosis of diabetes was based on the Swedish standard, corresponding
to the American Diabetes Association standards (1), and subjects who met diabetes
criteria were scheduled for a second glucose measurement on a separate occasion
and enrolled if diabetes diagnosis was confirmed. For inclusion in the study sub-
jects must fulfil the following criteria: (1) signed informed consent to participate in
the study, (2) age 50–65 years, (3) T2D diagnosis (the combination of either fasting
p-glucose ≥7.0 mmol/L or an oral glucose tolerance test 2 h p-glucose ≥11.1 mmol/
L [or ≥12.2 mmol/L if measured capillary] at two separate occasions). The exclu-
sion criteria in the T2D study included: (1) diabetes medication before study start,
(2) severe hyperglycemia requiring hospitalization or immediate insulin treatment,
as judged by the investigator, (3) presence of any clinically significant disease
which, in the opinion of the investigator, may interfere with the subject’s ability to
participate in the study, (4) any major surgical procedure or trauma within 4 weeks
of the first study visit. Examinations were performed at baseline and after 1 and
3 months of guideline-based diabetes treatment. The T2D study is observational
and diabetes treatment was part of standard clinical care according to first-line
therapy with lifestyle change including weight management and physical activity,
with or without metformin as judged by the treating physician. Complete samples
from all visits were obtained from 48 subjects, including 29 males and 19 females.
The study is approved by the Ethical Review Board of Göteborg, Sweden (regis-
tration number 448-16). All participants provided written informed consent. The
study protocol conforms to the ethical guidelines of the 1975 Declaration of
Helsinki (Supplementary Note 1 and 3).

Examinations and questionnaires. All visits in the wellness study and the T2D
study were performed using the same protocol. All subjects were fasting overnight
(at least 8 h) before the visits. Physical examinations included height, body weight,
waist and hip circumference, body fat using bioelectrical impedance (Tanita MC-
780MA) and blood pressure (Omron P10). The body mass index (BMI) was cal-
culated by dividing the weight (kg) by the square of the height (m). A selection of
questions from the initial SCAPIS questionnaire was repeated to note any changes
in health and lifestyle factors between each visit.

Clinical chemistry and hematology measurements. Clinical chemistry and
hematology measurements included fasting glucose, haemoglobin A1c (HbA1c),
triglycerides (TG), total cholesterol, low-density lipoprotein (LDL), high-density
lipoprotein (HDL), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), ApoA1/
B ratio, creatinine, high sensitive C-reactive protein (hsCRP), alanine amino-
transferase (ALAT), gamma-glutamyltransferase (GGT), urate, cystatin C, troponin
T (TNT), N-terminal pro-brain natriuretic peptide (NT-proBNP), haemoglobin
(Hb), white blood cell count (WBC), red blood cell count (RBC) and platelet count.
In addition, insulin and C-peptide was measured in the diabetes group and the
homeostatic model assessment of insulin resistance (HOMA-IR) was calculated
according to the formula: fasting insulin (mU/L) × fasting glucose (mmol/L) /
22.529. In total, a variety of 33 clinical chemistry parameters were included in the
study, see more details in Supplementary Data 2.

Plasma sample collection and preparation. Plasma samples were collected after
an overnight fast and at the same visit as the clinical examinations, using EDTA
sample tubes using venipuncture protocols, and stored at −80 °C until analysis. All
available plasma samples were analyzed using PEA-qPCR as previously
described8,12. For PEA-NGS analysis, the sample size was decided based on
availability of analysis capacity and each individual is analyzed three times. We
randomly selected 76 subjects with full longitudinal data and plasma samples at the
start of the study (visit 1) and after approximately 15–18 months (visit 2) and
21–24 months (visit 3) in the wellness study, and 48 subjects with complete series
of plasma samples in the T2D study.

Plasma protein profiling using next generation sequencing read-out. Specific
antibodies targeting 1472 proteins are each labelled separately with unique PEA
oligonucleotide probes, each antibody is labeled with two separate and com-
plementary sequences. The conjugated antibodies are mixed into four separate 384-
plex panels (372 proteins and 12 internal controls used for QC and normalization,
see below) focused on inflammation, oncology, cardiometabolic and neurology
proteins respectively (see full list in Supplementary Data 1). Each of the four
384-plex panels contain three control assays (interleukin-6 (IL6), interleukin-8
(CXCL8), and tumor necrosis factor (TNF) used for quality control (QC). The
analytical performance of each of the protein assays included in the panel is
validated based on specificity, sensitivity, dynamic range, precision, scalability,
endogenous interference and detectability in both healthy and pathological plasma
and serum samples. Briefly, samples were randomized (different samples from the
same individual and matched case–controls were present within the same plate)
and 2.8 µL of plasma were incubated overnight with antibodies conjugated to PEA
probes at +4 °C. Following the immune reaction, a combined extension and pre-
amplification mix were added to the incubated samples at room temperature for
PCR amplification. The PCR amplicons were thereafter pooled before a second
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PCR amplification step was performed with additions of individual sample index
sequences. After pooling of samples, bead purification and QC of the generated
libraries were followed on a Bioanalyzer. Finally, the sequencing were carried out
using Illumina’s NovaSeq 6000 instrument using two S1 flow cells with 2 × 50 base
read lengths. Counts of known barcode sequences were thereafter translated into
normalized protein expression (NPX) units through a QC and normalization
process. NPX is a relative protein quantification unit and values are reported on a
log2 scale. The values are calculated from the number of matched counts on the
NovaSeq run. Data generation of NPX consists of three main steps: normalization
to the extension control (known standard), log2-transformation, and level
adjustment using the plate control (plasma sample). Specifically engineered
internal controls were added to each sample and are utilized to reduce intra-assay
variability. These include one immuno-based control (incubation step) using a
non-human assay, one extension control (extension step) composed of an antibody
coupled to a unique DNA-pair always in proximity and, also, one amplification
control (amplification step) based on a double stranded DNA amplicon. In addi-
tion, each sample plate includes sample controls used to estimate the precision
(intra-CVs and inter-CVs). Three negative controls (buffer only) are utilized to set
background levels and calculate limit of detection (LOD), three plate controls
(plasma pool) adjust levels between plates (thus improving inter-assay precision,
allowing for optimal comparison of data derived from multiple runs), and finally
two sample controls (reference plasma) are included to estimate precision. The
PEA-NGS analysis was conducted using the Olink Explore strategy conducted at
Olink Proteomics.

Plasma protein profiling with qPCR read-out. As previously described7,8,12, 1 μL
sample buffer (PBS with 0.1% BSA), antigen-spiked buffer, or biological sample)
was mixed with 0.3 μL of each proximity probe mix (A and B), 0.3 μL Incubation
Stabilizer (Olink Proteomics, Uppsala, Sweden) and 2.1 μL Incubation Solution
(Olink Proteomics) and incubated overnight at 4 °C. A combined extension and
preamplification mix (96 μL) containing 10 μL MUX PEA Solution (Olink Pro-
teomics), 0.5 units Pwo (DNA Gdansk, Poland), 1 μM forward + reverse universal
preamplification primers, and 1 unit hot-start DNA polymerase was added to each
reaction at RT. After mixing and a total 5-min incubation, the plate was transferred
to a thermocycler running an initial extension step to unite the two oligonucleo-
tides (50 °C, 20 min), immediately followed by a hot-start step (95 °C, 5 min) and
17 cycles of amplification (95 °C, 30 s; 54 °C, 1 min; and 60 °C, 1 min). Amplifi-
cation was performed with universal flanking primers to amplify all 96 sequences
in parallel. Finally, 2.8 μL of the preamplification products were mixed with 7.2 μL
buffer containing 5 μL MUX Detection Solution (Olink Proteomics), 0.071 units
Uracil-DNA glycosylase (DNA Gdansk) used to digest the DNA templates and
remaining universal primers, and 0.14 units hot-start polymerase. Five microliter
from the sample mix above was transferred to the sample inlet wells of a micro-
fluidic real-time PCR chip (96.96 Dynamic Array IFC, Fluidigm Biomark). Five
microliter from respective well of an Assay Plate (Olink Proteomics) containing 9
μM sequence-specific internal detection primers, 2.5 μM molecular beacon in
1× DA Assay Loading Reagent (Fluidigm) were transferred to the assay inlet wells).
The chip was run in a Biomark instrument with the following program: Thermal
mix (50 °C, 2 min; 70 °C, 30 min; and 25 °C; 10 min), Hot-start (95 °C, 5 min), PCR
Cycle 40 cycles (95 °C, 15 s and 60 °C, 1 min) according to the manufacturer’s
guidelines (http://www.fluidigm.com/biomark-hd-system.html).

To minimize inter-run and intra-run variation, the samples were randomized
across plates and normalized using both an internal control (extension control) and
an inter-plate control, and then transformed using a pre-determined correction
factor. The pre-processed data were provided in the arbitrary unit Normalized
Protein eXpression (NPX) on a log2 scale and a high NPX presents high protein
concentration. In this study, eleven Olink panels have been used including
Cardiometabolic, Cell Regulation, Cardiovascular II (CVD II), Cardiovascular III
(CVD III), Development, Immune Response, Oncology II, Inflammation,
Metabolism, Neurology, and Organ Damage. Quality control (QC) was performed
at both sample and protein levels. A sample will flag (not pass the QC) if
incubation control deviates more than a pre-determined value (+/− 0.3) from the
median value of all samples on the plate (www.olink.com). To reduce the batch
effect between samples run at different times, bridging reference samples from
different visits were also run on plates from the different batches. Reference sample
normalization based on bridging samples was conducted to minimize technical
variation between batches (www.olink.com).

Comparison of the plasma protein profiling with NGS and qPCR read-out.
Intensity normalization was carried out for each protein to reduce the technical
variation between the two methods to ensure the median value for each protein
target is the same in different batches without changing the relative protein levels
across samples (www.olink.com). Briefly, for each protein, the overall median value
for all samples and two platforms was firstly calculated. Then, for each protein and
platform, the platform specific median value was also calculated. For each protein,
the normalized value for each sample and each platform is the subtraction of
platform specific median value from the NPX value with the addition of overall

median value. Two examples of the levels of proteins before and after normal-
ization in NGS and qPCR platforms are shown in Supplementary Fig. 1a.

Whole genome sequencing. Genomic DNA was quantified using Qubit 2.0
Fluorometer (Invitrogen), fragmented into average 350-bp fragments using E220
focused-ultrasound sonicator (Covaris), and 1 µg of fragmented DNA was con-
verted into sequencing ready library using TruSeq DNA PCR-free HT Sample
preparation method (Illumina). The obtained library was quantified using KAPA
SYBR FAST qPCR (Kapa Biosystems) and pair-end (2 × 150 bp) sequenced to
average 30× coverage on the HiSeq X system (Illumina) using v2 flowcells.
Demultiplexing was done without allowing any missmatches in the index
sequences. Bioinformatic analysis of the sequence data was carried out using
Mutation Identification Pipeline (version 4.0.18)30. Briefly, alignment was done
using BWAmem (v0.7.17) using reference genome GRCh38.p7, and single-
nucleotide and insertion/deletion variants called using GATK best practices pipe-
line (https://software.broadinstitute.org/gatk/best-practices, GATK v3.6). Structural
variants were called using Manta (v1.0.3)31. Variants in the any of the 56 ACMG
genes32 were excluded from further analysis in order to avoid secondary findings.

The VCF files were then converted to PLINK-format with the PLINK software,
version 1933. Quality control (QC) was conducted to avoid false findings, as
described by Zhong et al.12. The exclusion criteria for variants include: (1) remove
individuals with high missing genotype rates (>5%); (2) remove SNPs fail the
genotyping rate threshold 0.05; (3) remove SNPs with low minor allele frequencies
(MAF) (<5%); (4) remove SNPs fail the Hardy–Weinberg equilibrium (HWE) test
(P < 0.001). In total, 7,275,131 high-quality variants were identified in all samples.

Genome-wide association analysis. Baseline protein concentration level for each
subject in the wellness study was calculated as a median of NPX values across three
visits. Association between each protein and genetic variant was performed using a
linear regression model adjusted for age and sex at baseline using PLINK v1.933.
No significant association between protein levels and ancestry was observed by
using mixed effect modeling in the study. Therefore, no correction for ancestry was
applied. Bonferroni-adjusted P-value < 4 × 10−11 (genome-wide threshold of P= 5
× 10−8, 1463 proteins tested) were considered to be significant in the study.
Functional annotation of variants was performed using Ensembl Variant Effect
Predictor (VEP) v8734. A cis-pQTL variant was defined as a SNP residing within 1
megabase (Mb) upstream or downstream of the transcription start site of the
corresponding protein-coding gene. A SNP located >1Mb upstream or down-
stream of the gene transcript or on a different chromosome from its associated
gene was categorized as a trans-pQTL variant. Linkage disequilibrium (LD) was
computed as the square of Pearson’s correlation (r2) between genotype allele counts
across 101 subjects. To identify independent pQTLs for a given protein, LD r2 > 0.1
with window size 1 Mb was first used to exclude the correlated variants. For
proteins with multiple pQTLs, a conditional analysis was then carried out in which
the genetic associations were re-calculated using the sentinel SNP as covariate.
Only associations with conditional P-value < 0.01 were considered to be
independent pQTLs.

Statistical analysis and visualization. Data analysis and visualization was per-
formed using R (v3.6.3)35 with the tidyverse suite of R packages36 and the ggplot2
R package37. Mixed-effect modelling was performed using the lme4 package38 and
Kenward-Roger approximation39 was used to calculate P-values which were sub-
sequently adjusted for multiple testing using Benjamini–Hochberg method40. P-
values were considered significant if less than 0.01. Differential expression analysis
was carried out using analysis of variance (ANOVA) method with the built-in R
function anova(). False discovery rate (FDR) was calculated by using p.adjust()
function in R, which uses Benjamini−Hochberg method. Proteins with FDRs <
0.05 were considered differentially expressed. PCA and Uniform Manifold
Approximation and Projection (UMAP) have been performed based on scaled
NPX values using the R packages pcaMethods41 and umap42. Chord diagram and
radar chart were generated using R packages circlize43 and fsmb44.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All summary statistics and association data are available in the supplementary material.
The participant-level genotype and phenotype datasets of S3WP program, including
genetic mutations, plasma protein profiling with both NGS and qPCR readout, clinical
chemistry, anthropometric measurements and questionnaires, have been deposited with
the Swedish National Data Service (https://snd.gu.se/sv/catalogue/study/preview/
88efa94d-39b3-4a50-8b3b-87b1abedefd4, a data repository certified by Core Trust Seal).
Due to patient consent and confidentiality agreements, the dataset can only be made
available for validation purposes by contacting snd@snd.gu.se. Data access will be
evaluated according to Swedish legislation. Data access for research related questions in
the S3WP program can be made available by contacting the corresponding
author. Source data are provided with this paper.
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