
 

Systematic Review 
 

Estimating Physical Activity and Sleep using the Combination of Movement 
and Heart Rate: A Systematic Review and Meta-Analysis 
 

JAMES W. WHITE III†1, CHRISTOPHER D. PFLEDDERER‡1, PARKER KINARD †1, MICHAEL 
W. BEETS‡1, LAUREN VON KLINGGRAEFF†1, BRIDGET ARMSTRONG‡1, ELIZABETH L. 
ADAMS‡1, GREGORY J. WELK‡2, SARAH BURKART‡1, and R. GLENN WEAVER‡1 

 

1Arnold School of Public Health, Department of Exercise Science, University of South Carolina, 
Columbia, SC, USA; 2Department of Kinesiology, College of Human Sciences, Iowa State 
University, Ames, Iowa, USA 
 
†Denotes graduate student author, ‡Denotes professional author  

ABSTRACT 
International Journal of Exercise Science 16(7): 1514-1539, 2023. The purpose of this meta-analysis was 

to quantify the difference in physical activity and sleep estimates assessed via 1) movement, 2) heart rate (HR), or 
3) the combination of movement and HR (MOVE+HR) compared to criterion indicators of the outcomes. Searches 
in four electronic databases were executed September 21-24 of 2021. Weighted mean was calculated from 
standardized group-level estimates of mean percent error (MPE) and mean absolute percent error (MAPE) of the 
proxy signal compared to the criterion measurement method for physical activity, HR, or sleep. Standardized mean 
difference (SMD) effect sizes between the proxy and criterion estimates were calculated for each study across all 
outcomes, and meta-regression analyses were conducted. Two-One-Sided-Tests method were conducted to meta-
analytically evaluate the equivalence of the proxy and criterion. Thirty-nine studies (physical activity k = 29 and 
sleep k = 10) were identified for data extraction. Sample size weighted means for MPE were -38.0%, 7.8%, -1.4%, 
and -0.6% for physical activity movement only, HR only, MOVE+HR, and sleep MOVE+HR, respectively. Sample 
size weighted means for MAPE were 41.4%, 32.6%, 13.3%, and 10.8% for physical activity movement only, HR only, 
MOVE+HR, and sleep MOVE+HR, respectively. Few estimates were statistically equivalent at a SMD of 0.8. 
Estimates of physical activity from MOVE+HR were not statistically significantly different from estimates based on 
movement or HR only. For sleep, included studies based their estimates solely on the combination of MOVE+HR, 
so it was impossible to determine if the combination produced significantly different estimates than either method 
alone.  
 

KEY WORDS: Measurement, validation, calibration, research-grade, accelerometry, sensors 
 
INTRODUCTION 
 
Engaging in healthy levels of physical activity and sleep is critical to leading a healthy life (57, 
59, 81). Thus, the accurate assessment of physical activity and sleep is essential for 
understanding the complex and interdependent relationship between physical activity, sleep, 
and health outcomes. Scientific-grade sensors, such as ActiGraph, Axivity, Actiheart, and Polar 
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monitors, that use accelerometry to capture movement and electrocardiogram (ECG) or 
photoplethysmography to capture heart rate (HR), have been validated to assess physical activity and 
sleep. Calibration/validation studies (37, 76) have estimated physical activity from cut-points or 
pattern recognition based on movement and demonstrate that accelerometry provides reasonable 
estimates of physical activity and sleep (79). Studies (4, 9, 15, 71, 84-86) also show that HR provides 
reasonable estimates of physical activity and classifies time spent in different intensities of 
physical activity accurately. HR is also one of the essential metrics used in 
polysomnography (i.e., the gold standard of sleep measurement) to determine sleep and sleep 
stages (65). 
 
Both measures of movement and HR have limitations that hinder their ability to accurately predict 
physical activity and sleep. For instance, measures of movement are unable to distinguish between 
activities that require different energy expenditure from similar movements (e.g., stair climbing, 
walking uphill) (14, 23). Further, regression equations based on accelerometry in children and adults 
show overestimated or non-equivalent estimates of energy expenditure for sedentary activities (16, 
38), demonstrating that accelerometry cannot accurately capture sedentary activities. Accelerometry 
also underestimates energy expenditure during intense activities (e.g., fast walking, running) (15, 38). 
For sleep, accelerometry is limited to only detecting motion (i.e., not sleep), or lack of motion (i.e., 
sleep). This reliance on movement is likely why accelerometry-based devices for assessing sleep have 
low specificity and have been shown to over or underestimate sleep time (24, 28). Estimates of motion 
alone are unable to distinguish sleep stages (18, 19, 28, 79). HR has its own set of limitations, which 
include the influence of ambient temperature and stress on HR (1, 26, 60). Studies have also shown 
that HR is influenced by caffeine (35, 75). Devices that use photoplethysmography to assess HR may 
also be influenced by skin tone (67, 70). While both measures of movement and HR have numerous 
methodological weaknesses, these two measures are widely used to assess physical activity and sleep.  
 
Given that HR is a physiological indicator and movement is a biomechanical assessment, combining 
the two methods may address weaknesses of either method alone, which may yield more precise 
estimates (5). Yet, the benefits of using the combination of movement and HR (MOVE+HR) relative 
to either method alone has not been meta-analytically quantified in previous literature. Therefore, the 
aim of this systematic review and meta-analysis was to quantify the difference in physical 
activity and sleep estimates assessed via 1) movement only, 2) HR only, or 3) MOVE+HR 
compared to criterion indicators of the outcomes. 
 
METHODS 
 
Participants 
This meta-analysis was guided by Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) (50). Searches in four electronic databases (PubMed, SportDiscus, Web of 
Science, and ScienceDirect) were executed September 21-24 of 2021. Search terms were divided 
into two categories: outcome and design. “Sleep”, “physical activity”, “sedentary”, “circadian”, 
and “nap” were the search terms used for outcome, and “calib*”, “valid*”, “reliability”, and 
“accuracy” were the search terms used for design. All possible combinations of the search terms 
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were included using Boolean operators and systematically searched in each database. A full list 
of search terms and an example search strategy are included in Supplementary Table 1. No 
restrictions were placed on the year of publication or the age of the population. Studies focused 
on special populations (e.g., people with a disability, high-level athletes, etc.) were excluded. 
Titles and abstracts were searched using Medical Subject Heading Terms (MeSH-terms) for 
databases using this indexing and cataloging structure (e.g., PubMed). For databases that did 
not use MeSH-terms for their indexing and cataloging structure (i.e., SportDiscus, Web of 
Science, and ScienceDirect), titles and abstracts were searched instead of searching the full text 
of articles. Citations of articles that were included after the data management and selection 
process were screened for relevant articles. This research was carried out fully in accordance to 
the ethical standards of the International Journal of Exercise Science (53).  
 
Inclusion and Exclusion Criteria 
Peer-reviewed, published validation/calibration studies of human participants were included 
if they 1) estimated physical activity outcomes, movement behaviors, or sleep using the 
combination of movement and HR collected via a research-grade measurement tool, and 2) used 
a criterion indicator of physical activity, movement behaviors, or HR as a reference for estimates 
from proxy measurement tools. Research-grade measurement tools were defined as tools that 
are primarily marketed to research scientists for use in research studies (6, 34). Criterion 
measures are defined as the most direct indicators of the outcome, in this instance physical 
activity and sleep. Criterion measurement methods in this study included indirect or direct 
calorimetry, doubly labeled water, direct observation, electrocardiogram, and 
polysomnography. Proxy measures are indirect indicators of a desired outcome that are closely 
related to that outcome. For this study, proxy measurement methods included movement, HR, 
or MOVE+HR. Only studies printed in English were included in the review.  
 
Animal studies and computer-simulated models were excluded, along with retracted studies, 
letters to the editor, and conference abstracts. Studies that only used movement or HR to 
estimate physical activity or sleep were excluded because they would increase the heterogeneity 
across studies, as opposed to analyzing within-study comparisons of movement or HR only 
and/or the combination of MOVE+HR. Studies that included movement and HR in addition to 
several other metrics (e.g., eye movement, muscle activity, blood saturation, breathing rate, etc.) 
were excluded. Additionally, studies that predicted sleep disorders (e.g., sleep apnea, restless 
leg syndrome, and leg movement), did not evaluate a device worn by participants (not the case 
for sleep studies, as most sleep occurs in the bedroom), evaluated special populations, or 
evaluated consumer wearable devices as measurement tools were also excluded. Consumer 
wearable devices were considered devices that were primarily marketed to the public as end-
users to monitor health metrics (e.g., Fitbit, Garmin).  
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Figure 1. Prisma flow diagram. 
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Study Records 
The studies identified in the searches were screened for inclusion in a three-step process. First, 
duplicate articles in the resulting searches were removed and studies were pre-screened in 
Endnote (Clarivate, London, United Kingdom). The EndNote “Find Duplicates” function was 
used to remove duplicate articles from within each database. Because of the large number of 
search results, pre-identified exclusion (e.g., survey, questionnaire, etc.) and inclusion (e.g., 
Actiheart, Polar) terms selected by the study team were applied using the “simple search” 
function in EndNote to pre-screen irrelevant studies prior to reviewing titles and abstracts. A 
full list of exclusion and inclusion terms is provided in Supplementary Table S2. Second, the 
remaining titles and abstracts were screened in Covidence, an online systematic observation 
management tool. Four independent reviewers screened titles and abstracts for full-text 
eligibility using the same criteria established for the initial search strategy. Any inconsistencies 
or questions related to the inclusion of a study were resolved via consensus with an additional 
author. Third, once title and abstract screening was completed, the full-text articles were 
retrieved and reviewed for inclusion using the same criteria established for the initial search 
strategy by two independent reviewers. Again, any inconsistencies or questions related to the 
inclusion of a study were resolved via consensus with a third author. Consensus was reached 
on all studies included. 
 
Data Extraction and Coding 
Data extraction was conducted by two authors. The extracted data were placed in a custom 
extraction spreadsheet created in Microsoft Excel. To ensure consistency of extraction, authors 
independently extracted the first 9 studies to be included for meta-analysis, then met with an 
author to resolve any inconsistencies or questions related to the extraction of a study. All three 
authors met weekly to resolve discrepancies via consensus. If authors could not come to a 
consensus in weekly meetings, additional authors provided further input. Through this process, 
consensus was reached on all included articles. 
 
General study characteristics were extracted from all studies and comprised of the following 
variables: study author, publication year, study title, overall sample size, number of female 
participants, sample characteristics (e.g., age, ethnicity), and country in which the study was 
conducted. Physical activity or sleep metric predicted (i.e., energy expenditure, physical activity 
energy expenditure, metabolic equivalents, total sleep time, sleep stage, sleep efficiency, body 
posture), proxy signal used for prediction (i.e., HR, movement, or combined MOVE+HR), proxy 
measurement tool (e.g., ActiGraph accelerometer, Polar HR monitor), placement of proxy 
measurement tool, and criterion measurement method (i.e., indirect calorimetry, direct 
calorimetry, doubly labeled water, and polysomnography) were also extracted for both physical 
activity and sleep studies. Effect estimates (e.g., mean, median) and variability of those estimates 
(e.g., standard deviation, interquartile range, standard error) were extracted. Other presented 
metrics indicating the validity of the proxy compared to the criterion were also extracted (e.g., 
% accuracy, r-squared of prediction equation, mean error, mean absolute error). 
 
Assessment of Methodological Quality 
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Two reviewers independently examined the risk of bias for each included study based on 
recommendations about selecting appropriate accelerometer cut-points for youth from a 
previous systematic review (37). Studies were examined for quality using four criteria: 1) use of 
an appropriate criterion measure of physical activity or sleep, 2) a wide variety of activities were 
included in the protocol (i.e., at least 6 activities), 3) accelerometer data was collected with 
epochs of 60 seconds or less, and 4) had more than 10 participants based on the study’s 
predefined age group(s) (e.g., Zakeri 2013 reported greater than 10 participants for 3-, 4-, and 5-
year age groups). Criteria 1-3 were rated as “yes”, “no”, or “could not determine” for each of 
the included studies (see Supplementary Tables 3 and 4). Criterion 4 was rated using a two-step 
process. First, we identified study sample size and then second, we rated the study “yes” if the 
study had more than 10 participants based on the study’s predefined age group(s) and “no” if 
the study had less than or equal to 10 participants based on the study's predefined age group(s). 
 
Table 1. Demographics of the included physical activity studies. 

Study 
Sample 

Size 
N Female 

(%) 

Sample 
Age 

Mean (SD) 
or 

Sample 
Age 

Rangea 

Metric 
Predicted 

Criterion 
Measure 

Proxy 
Signal 

Proxy 
Measure 

(Location) 

Hernandez-
Vicente, 
2016(32) 

18 9 (50) 21.0 (1.2) EE ACC Combo Polar (Wrist) 

Rennie, 2000(61) 8 3 (37) 23-54 EE DC 
Combo, 

HR 

Custom 
Device 
(Chest) 

Moon, 1996(51) 20 10 (50) 19-40 

Oxygen 
Consumption, 

Carbon 
Dioxide 

Production 

DC 
Combo, 

HR 

Polar (Chest, 
Wrist), 

Mini-mitter 
(Leg) 

Butte, 2014(10) 50 25 (50) 4.5 (0.8) EE DLW 
Combo, 

ACC 

Actigraph 
(Hip), 

Actiheart 
(Chest) 

Silva, 2015(71) 17 0 (0) 24.9 (4.8) EE, PAEE DLW 
Combo, 

ACC, HR 
Actiheart 
(Chest) 

Ojiambo, 
2012(56) 

49 25 (51) 6.9 (1.5) EE, PAEE DLW 
Combo, 

ACC 

3DNX v3 
(Hip), 

ActiGraph 
(Hip), 

Sunto t6 
(Chest) 

Santos, 2014(66) 12 8 (67) 16.4 (0.5) EE, PAEE DLW 
Combo, 

ACC, HR 
Actiheart 
(Chest) 

Garnotel, 
2018(25) 

56 25 (45) 39.6 (12.7) EE, PAEE DLW 
Combo, 

ACC 
Actigraph 

(Hip), 
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Actiheart 
(Chest) 

Villars, 2012(80) 35 0 (0) 28.4 (8.4) PAEE DLW 
Combo, 

ACC 

Actiheart 
(Chest), 

RT3 (Wrist) 

Assah, 2011(2) 33 9 (27) 35.4 (6.8) PAEE DLW 
Combo, 

ACC, HR 
Actiheart 
(Chest) 

Campbell, 
2012(11) 

18 10 (55) 17.5 (0.6) PAEE DLW Combo 
Actiheart 
(Chest) 

Lof, 2013(45) 20 20 (100) 36.0 (8.0) PAEE DLW 
Combo, 

ACC 

Actigraph 
(Hip), 

Actiheart 
(Chest), 
IDEEA 
(Waist) 

Bussman, 
1998(8) 

3 0 (0) 19-24 
Activities 
detected 

DO Combo 

IC-3031 
(Thigh), 
Vitaport 
recorder 
(Chest) 

Zakeri, 2008(84) 109 44 (40) 12.3 (3.5) EE IC Combo 
Actiheart 
(Chest) 

Zakeri, 2010(85) 61 26 (43) 11.8 (3.8) EE IC Combo 
Actiheart 
(Chest) 

Zakeri, 2013(86) 69 35 (51) 4.6 (1.0) EE IC 
Combo, 

ACC 

Actiheart 
(Chest), 

Actigraph 
(Hip) 

Rumo, 2011(64) 44 16 (36) 35.0 (11.0) EE IC Combo 

Custom 
Device 
(Chest, 
Wrist, 

Ankles, 
Back, Arms) 

Spierer, 
2011(72) 

27 11 (41) 26.3 (7.3) EE IC 
Combo, 

ACC, HR 

Actical 
(Hip), 

Actiheart 
(Chest) 

Barreira, 2009(3) 34 17 (50) 21.8 (3.6) EE IC 
Combo, 

ACC 

Actigraph 
(Hip), 

Actiheart 
(Chest) 

Ellis, 2014(21) 40 21 (52) 35.8 (12.1) EE IC 
Combo, 

ACC 

Actigraph 
(Wrist, Hip), 
Polar (Wrist) 

Strath, 2001(73) 30 14 (47) 32.5 (12.7) METs IC 
Combo, 

ACC, HR 

Polar 
(Wrist), 

CSA (Hip, 
Wrist, 

Thigh), 
Yamax (Hip) 
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Table 2. Demographics of the included sleep studies. 

Schneller, 
2015(68) 

14 8 (57) 27.7 (3.3) METs IC 
Combo, 

ACC 

Actigraph 
(Hip), 

Actiheart 
(Chest), 
ActivPal 
(Thigh) 

O'Driscoll, 
2021(55) 

89 54 (61) 38.2 (14.1) METs IC 
Combo, 

ACC 

Actigraph 
(Hip), 

Polar H7 
(Chest), 

Sensewear 
(Arm) 

Eston, 1998(22) 30 15 (50) 9.3 (0.8) 
Oxygen 

Consumption 
IC 

Combo, 
ACC 

WAM, 
BHL 6000 
Medical 
(Chest), 

Tritrac-R3D 
(Hip), 

Digimax 
(Hip) 

Corder, 
2005(14) 

39 16 (41) 13.2 (0.3) PAEE IC 
Combo, 

ACC, HR 

Actigraph 
(Hip, Ankle), 

Actical 
(Hip), 

Actiheart 
(Chest) 

Brage, 2004(5) 12 0 (0) 22.7-30.6 PAEE IC 
Combo, 

ACC, HR 

Actigraph 
(Hip), 

Polar (Wrist) 

Brage, 2005(4) 20 9 (45) 26-50 PAEE IC 
Combo, 

ACC, HR 
Actiheart 

Corder, 
2007(13) 

145 79 (54) 12.4 (0.2) PAEE IC 
Combo, 

ACC 

Actigraph 
(Hip), 

Actiheart 
(Chest) 

Gilgen-
Ammann, 
2021(27) 

23 0 (0) 20.9 (2.5) PAEE IC Combo 

Actiheart 
(Chest), 

Equivital 
Hidalgo 

EQ02 
(Chest), 
Everion 
(Arm), 

PADIS 2.0 
(Chest) 

Abbreviations: “EE” Energy Expenditure, “PAEE” Physical Activity Energy Expenditure, “METs” Metabolic 
Equivalents of Task, “ECG” Electrocardiogram, “IC” Indirect Calorimetry, “DC” Direct Calorimetry, “DLW” 
Doubly Labeled Water, “DO” Direct Observation, “HR” Heart Rate, “ACC” Accelerometry, “Combo” 
Combination of Heart rate and Accelerometry 
aWhen mean and standard deviation are not reported 
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Study 
Sample 

Size 

N 
Female 

(%) 

Sample 
Age 

Mean 
(SD) 

or 
Sample 

Age 
Rangea 

Metric 
Predicted 

Criterion 
Measure 

Proxy 
Signal 

Proxy Measure 
(Location) 

Takano, 
2018(74) 

7 0 (0) 20-23 
Body 

Posture 

Biopac 
Bionomadix 
Wireless RSP 

with ECG 

Combo 
FUSE bed sheet 
sensor (Under 

Bed) 

Yoshihi, 
2021(83) 

8 0 (0) 
21.8 
(0.7) 

Sleep 
Stages 

PSG Combo 
Polymate Pro 
KXM52-105 
accel (Head) 

Kortelainen, 
2010(39) 

9 9 (100) 20-54 
Sleep 
Stages 

PSG Combo 
Emfit bed sensor 

(Under Bed) 

Herscovici, 
2006(33) 

30 9 (30) 
46.8 

(14.8) 
Sleep 
Stages 

PSG Combo 
Itamar WP_100 
PAT recorder 

(Wrist) 

Kuula, 
2021(40) 

20 10 (50) 
24.5 
(3.1) 

Sleep 
Stages 

PSG Combo 

Firstbeat 
Bodyguard 2 

(Chest), 
Geneactive 

(Wrist) 
Mitsukura, 
2020(49) 

25 11 (44) NR 
Sleep 
Stages 

PSG Combo 
BCG Sensors 
(Under Bed) 

Mendez, 
2009(47) 

6 6 (100) 40-50 

Sleep 
Stages, 
Sleep 

Efficiency 

PSG Combo 
Emfit bed sensor 

(Under Bed) 

Migliorini, 
2010(48) 

11 11 (100) NR 

Sleep 
Stages, 
Sleep 

Efficiency 

PSG Combo 
Emfit bed sensor 

(Under Bed) 

Muzet, 
2016(52) 

12 6 (50) 18-40 

Sleep 
Stages, 
Sleep 

Efficiency, 
Total Sleep 

Time 

PSG Combo 
Actigraph 

(Wrist), 
ECG (Chest) 

Da Woon, 
2014(17) 

20 4 (20) 
38.7 

(14.6) 

Sleep 
Stages, 
Sleep 

Efficiency, 
Total Sleep 

Time 

PSG Combo 

PVDF Film 
Sensor -BCG 

(Above 
Mattress) 

Abbreviations: “NR” Not Reported, “PSG” Polysomnography, “ECG” Electrocardiogram, “Combo” 
Combination of Heart Rate and Accelerometry 
aWhen mean and standard deviation are not reported 
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Statistical Analysis 
Descriptive statistics of the included studies were calculated prior to analyses. A two-step 
approach to estimate the group and individual differences between proxy and criterion 
estimates was taken due to concerns of ecological fallacy which may be present in measurement 
studies (4). In other words, an estimate of physical activity and/or sleep produced by a proxy 
may be comparable to the criterion at the group level, while no estimates of physical activity 
and/or sleep for any individual in that group are accurate. To give a general example, in one 
validation study, a proxy measure may be -10 units away from the criterion for one participant, 
but +10 units away from the criterion for another participant, resulting in an average difference 
of 0 units from the criterion. To account for this, study/group level percent error (MPEgroup) and 
mean absolute percent error (MAPEgroup) of the proxy compared to the criterion measure were 
calculated first, using the following formula: 
 

(
criterion estimate−proxy estimate

criterion estimate
) ∗ 100 

 
This calculation was applied for studies that presented a group-level point estimate of the proxy 
and criterion measure. This provided a standardized (i.e., not in the measured units) 
study/group level estimate of the MPEgroup and MAPEgroup of proxy compared to criterion. The 
weighted mean (by sample size) was then calculated across studies. Second, a weighted mean 
for studies that presented mean absolute percent error (MAPEind) was calculated across studies 
separately by proxy signal (i.e., movement only, HR only, and MOVE+HR). The MAPEind 
provides a metric of how well the proxy predicts the criterion for each participant in these 
studies. Weighted means were also calculated for r-squared and percent accuracy because these 
metrics do not include variability around the point estimates, which are required for pooling 
study estimates in traditional meta-analytic approaches. 
 
Following the approach above, a more traditional meta-analysis approach was completed. 
Standardized mean difference (SMD) effect sizes between the proxy and criterion estimates were 
calculated for each study across all outcomes in Comprehensive Meta-Analysis (v.3.0). Meta-
regression analyses were conducted in Stata (v.16.1, StataCorp, College Station, Texas) using the 
‘robumeta’ command that uses robust variance estimation methods in order to account for the 
clustered estimates within studies (31). All models included the SMD between proxy and 
criterion as the dependent variable and dummy variables representing the proxy signals as the 
independent variables. Study sample size, percent female, location of proxy measurement 
device (i.e., chest, wrist, combination), and criterion measurement method (i.e., direct 
calorimetry, indirect calorimetry, doubly labeled water, and polysomnography) were included 
as covariates.  
 
Finally, equivalence tests using the Two-One-Sided-Tests method (69) were conducted to meta-
analytically evaluate the equivalence of the proxy and criterion (62). To reject the null hypothesis 
that proxy and criterion are not equivalent, the 90% confidence interval for the difference 
between proxy and criterion is required to fall within prespecified equivalence bounds (20). 
Consistent with best practices in meta-analyses (41, 42), equivalence bounds were set based on 
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a range of SMD sizes from small to large (0.2, 0.4, 0.6, 0.8). Following the primary analyses, 
secondary subgroup analyses were conducted for children (i.e., < 19 years) and adults (≥ 19 
years) and by criterion measurement method (i.e., direct calorimetry, indirect calorimetry, and 
doubly labeled water) following the same meta-regression and equivalence testing procedures. 
All models were conducted using random effects weighting schemes (78).  
 
RESULTS 
 
Search Results 
Figure 1 presents the PRISMA flow diagram. A total of 42,792 articles were identified from the 
database searches with 11,016 articles remaining after duplicates were removed and pre-
screening exclusion and inclusion terms were applied. A total of 10,793 articles were excluded 
based on title and abstract, leaving 223 articles for full-text review. Two additional articles were 
identified from citations of included articles. After full-text screening, 186 studies were 
excluded, leaving 39 articles for data extraction. A total of 29 articles were physical activity 
studies and 10 were sleep studies.  
Study Characteristics 
This review included a total of (n = 1,273) participants, with physical activity studies including 
(n = 1,125) participants and sleep studies including (n = 148) participants. Characteristics of the 
included physical activity studies are presented in Table 1 and sleep studies in Table 2. Most 
physical activity studies (k = 20) and sleep studies (k = 7) reported 50% or greater male 
participants. Race of participants was reported in few studies for physical activity (k = 6) or sleep 
(k = 0). For physical activity, most studies were conducted in adults (k = 19). All studies for sleep 
were conducted in adults. The most common physical activity metric predicted was physical 
activity energy expenditure (k = 13), followed by overall energy expenditure (k = 14), metabolic 
equivalents (k = 3), oxygen consumption (k = 2) and types of activities (k = 1). For sleep, the most 
common metric predicted was sleep stage (k = 9), followed by sleep efficiency (k = 4), total sleep 
time (k = 2), and body posture (k = 1). For physical activity, the most common criterion 
measurement method was indirect calorimetry (k = 16), followed by doubly labeled water (k = 
9), direct calorimetry (k = 2), direct observation (k = 1), and accelerometry (k = 1). For sleep, 
polysomnography was used as the criterion measurement method in all but one study which 
used Biopac Bionomadix Wireless Dual Wireless Respiration and Electrocardiogram.  
 
Quality Assessment 
Findings from the quality assessment of included studies are presented in Supplementary 
Tables 3 and 4. Nearly all studies used an appropriate measure of physical activity or sleep (k = 
37), while fewer studies included a wide variety of activities (k = 15), collected data with an 
epoch of less than 60 seconds (k = 21), and/or had more than 10 participants for each age group 
(k = 6).  
 
Meta-Analytic Findings 
Figure 2 presents box plots for physical activity and sleep indicating the median, interquartile 
ranges, and the weighted mean of the MPEgroup, MAPEgroup, MAPEind, r-squared, and percent 
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accuracy by proxy signal and behavior compared to criterion. For physical activity movement 
only, HR only, and MOVE+HR, weighted means for MPEgroup were -38.0%, 7.8%, and -1.4%, 
respectively, compared to the criterion. For physical activity movement only, HR only, and 
MOVE+HR, weighted means for MAPEgroup were 41.4%, 32.6%, and 13.3%, respectively, 
compared to the criterion. Weighted mean for MAPEind was 26.6% for MOVE+HR compared to 
the criterion. For physical activity movement only, HR only, and MOVE+HR weighted means 
for r-squared were 0.52, 0.64, and 0.64, respectively, compared to the criterion. For sleep 
MOVE+HR, weighted mean for MPEgroup was -0.6% compared to the criterion. For sleep 
MOVE+HR, weighted mean for MAPEgroup was 10.8% compared to the criterion. For sleep 
MOVE+HR, weighted mean for percent accuracy was 80.5% compared to the criterion.  
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b)  

c)  
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d)  

e)  

Figure 2. Box Plots of a. percent error calculated from group means, b. absolute percent error calculated from group 
means, c. study reported mean absolute percent error, d. r-squared, and e. percent accuracy by proxy signal and 
behavior compared to the criterion. 
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Summary effect sizes and equivalence bounds from the meta-regressions estimating the SMDs 
are presented in Figure 3. None of the primary or secondary analyses showed statistically 
significant differences between the proxy and criterion. However, only three analyses indicated 
that the proxy and criterion were statistically significantly equivalent at a SMD of 0.8. These 
analyses included MOVE+HR when estimating sleep, MOVE+HR when estimating physical 
activity in children, and HR alone when compared to the criterion of doubly labeled water for 
estimating physical activity.  
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Figure 3. Summary Effect Sizes and Equivalence Bounds. No analyses showed that proxy and criterion were 
statistically sigificantly different in a traditional hypothesis testing framework at a p < 0.05. Underlined analyses 
were statistically significantly equivalent at a standardized mean diffence of 0.8. 
 

While not statistically significant, a clear pattern emerged where MOVE+HR improved 
estimates of physical activity compared to movement or HR only. A similar systematic review 
and meta-analysis that evaluated the accuracy of energy expenditure estimates from wrist- or 
arm-worn devices during different activity types in adults reported that the accuracy of energy 
expenditure estimates improved with the addition of heart rate sensing during most activities 
(54). The lack of statistical difference between estimates of physical activity based on the proxy 
signals compared to the criterion may have been due to the large heterogeneity across the 
included studies. Sources of heterogeneity included the wide variety of conditions (i.e., 
laboratory, semi-structured, and free-living), measurement tools, device placements, etc. (see 
Table 1). Recent best practice guidelines for evaluating new physical activity and sleep 
measurement devices have been published (36, 82, 83). Future studies that comply with these 
guidelines may reduce study heterogeneity in future systematic reviews. 
 
Across the included physical activity studies, another pattern emerged where the use of 
movement alone to predict physical activity was consistently the least accurate, followed by HR. 
This pattern was consistent across children and adults and different criterion methods. Notably, 
this finding is relevant because movement, not HR, is currently the most used method for 
assessing free-living physical activity (46, 76, 77). This is likely because, until recently, movement 
was easier to assess compared to HR—HR telemetry or wireless transmission of HR signals via 
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a chest strap was more costly and burdensome (for both researchers and participants) than 
measurement tools that assessed movement (63). Further, many methods of estimating physical 
activity via HR require individual calibration, while estimates of physical activity based on 
movement do not require the extra step of individual calibration (13, 44). However, the 
emergence of photoplethysmography has greatly reduced the burden of collecting HR, and 
research has shown that photoplethysmography can reasonably estimate HR when compared 
to ECG (87). To date, however, photoplethysmography is much more common in consumer 
wearable devices than research-grade devices. Thus, research-grade devices that incorporate 
photoplethysmography are needed. 
 
Out of the sleep studies screened, only 10 studies employed research-grade devices that used 
MOVE+HR to estimate sleep. There were several studies that included MOVE+HR in addition 
to one or several other metrics (e.g., eye movement, muscle activity, blood saturation, breathing 
rate, etc.). However, these studies were excluded because many of these measures are not 
feasible for use in free-living settings. Moreover, of the 10 studies included, none parceled out 
the ability of movement or HR alone to predict sleep. It is well established that accelerometry 
can reliably detect sleep (sensitivity) but has poor detection of wake (specificity) when compared 
to the gold standard polysomnography (24). This has led to the over or underestimation of total 
sleep time (28). There is promising evidence that consumer wearable devices incorporating HR 
via photoplethysmography may improve detection of wake. For instance, in reference to 
polysomnography, a systematic review and meta-analysis including 4 comparisons (N = 153) 
reported specificity between 0.58 and 0.69 for recent Fitbit models (29). This is considerably 
higher than the 0.50 specificity typically achieved by research-grade accelerometers. However, 
since Fitbits and other consumer wearable devices use proprietary algorithms to predict sleep, 
it is impossible to know exactly how the addition of HR is influencing the accuracy of their 
predictions. The studies included in this review all relied upon a combination of research-grade 
devices and/or custom-made devices (17, 33, 39, 40, 47-49, 52, 74, 83). The lack of a single device 
that collects both HR and movement likely complicates data collection, increases participant 
burden, and reduces the use of HR and movement in studies that are attempting to estimate 
free-living sleep. Thus, there is a clear need for research-grade devices that incorporate HR 
technology and accelerometry to be developed and validated. One such device is the Actiheart 
monitor that allows for the prediction of sleep. However, our systematic review of the literature 
found no studies that have attempted to validate Actiheart’s ability to predict sleep metrics.  
 
Strengths: This systematic review and meta-analysis has several strengths. First, the review was 
guided by the PRISMA guidelines for conducting systematic reviews and meta-analyses, 
increasing the confidence that the findings accurately reflect the state of the current literature. 
Second, this meta-analysis quantified estimates of sleep based on MOVE+HR and estimates of 
physical activity based on movement, HR, and MOVE+HR, extending our knowledge of the 
most accurate proxy methods to assess physical activity and sleep. Third, an equivalence testing 
approach was adopted to rigorously test the validity of these metrics for predicting physical 
activity and sleep.  
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Limitations: However, the findings of this systematic review and meta-analysis must also be 
interpreted considering its limitations. First, no included sleep studies reported the ability of 
movement or HR exclusively to predict sleep. Thus, it was impossible to ascertain if MOVE+HR 
is superior to movement or HR alone for predicting sleep. This limitation is likely due to the 
exclusion of consumer wearable devices, as some of these devices incorporate MOVE+HR to 
estimate sleep. In fact, multiple studies evaluating sleep metrics estimated by multichannel (i.e., 
movement and HR signals) consumer wearable devices and research-grade accelerometers 
demonstrate these consumer wearable devices perform as well as, if not better than previously 
validated research-grade devices, when compared to polysomnography (7, 12, 43, 58). This may 
suggest that future meta-analyses should consider evaluating both research-grade and 
consumer wearable devices when evaluating sleep estimates based on movement, HR, or 
MOVE+HR. Second, studies reported a wide variety of validity metrics (mean absolute percent 
error, percent error, root mean square error/standard error of estimate, mean absolute error, 
etc.). In many studies, variability around these metrics (e.g., standard deviation) were not 
presented, making it impossible to employ traditional meta-analytic techniques for pooling 
estimates from multiple studies. This did not allow for generation of SMD estimates when 
metrics were produced for different outcomes (e.g., energy expenditure, physical activity energy 
expenditure, metabolic equivalents, total sleep time, sleep stage, sleep efficiency, body posture). 
However, based on recommendations from previous literature (82), we reported mean percent 
error and mean absolute percent error to meta-analytically evaluate error at the group and 
individual levels. We also calculated weighted means for proportion of shared variance (i.e., r2) 
and percent accuracy since these metrics do not include variability around the point estimates. 
 
Conclusion: For estimates of physical activity, findings revealed no statistically significant 
differences between MOVE+HR and movement or HR only when compared to criterion 
indicators of physical activity. A lack of significant equivalence was also observed for estimates 
of physical activity based on MOVE+HR and movement or HR only compared to criterion 
indicators. The overall lack of statistical difference and equivalence for all proxy indicators may 
highlight a limitation of measurement studies in general—estimates of physical activity at the 
group level are generally closer to criterion estimates, while estimates for any individual in the 
group may be inaccurate, suggesting there is room to improve upon estimations of physical 
activity at the individual level in able-bodied human populations. Also, the large heterogeneity 
across physical activity studies, including different measurement tools, placement of devices, 
and range of activities may have contributed to the lack of statistical difference and equivalence 
between the proxy indicators. However, we did not account for heterogeneity in this study. For 
sleep, all included studies based their estimates solely on MOVE+HR, making it impossible to 
ascertain whether MOVE+HR is more accurate than either method alone. A lack of statistical 
equivalence was also observed for estimates of sleep based on MOVE+HR, which may have 
been due to the variety of sleep measurement tools used (see Table 2) to estimate sleep metrics. 
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Supplementary Table 1. Search strategy. 

Group Search terms Search strategy Search 

Outcome physical activity 
sedentary 

sleep 
nap 

circadian 

#1 TITLE: “Physical Activity” OR ABSTRACT 
“Physical Activity” 

 
TITLE: Sedentary OR ABSTRACT: Sedentary 

 
TITLE: Sleep OR ABSTRACT: Sleep 

 
TITLE: Nap OR ABSTRACT: Nap 

 
TITLE: circadian OR ABSTRACT: circadian 

 

# 1 AND #2 

Design Calib*, Valid*, reliability, 
accuracy 

#2 Calib*OR Valid*OR reliability OR accuracy 

 
Supplementary Table 2. Exclusion and inclusion terms for pre-screen in EndNote and Filter Terms in Covidence. 

Exclusion Terms Inclusion Terms 

Self-report 
Psychometric 
Scale 
Questionnaire 
Cohort 
Survey 
Perception 
Systematic Review 
IPAQ 
Rats 
Mouse 
Mice 
Rodent 
Cell 
Renal 
Antibody 
Primates 
Mammal 
Gene 
CD4 
Monkeys 
Rabbit 
Pig 
Horse 
Drosophilia 
Qualitative 
Conference 
Dissertation 
Sudden infant death 
Frail 
Abstract 
Poster 

Actiheart 
Multisensor 

Polar 
Sensewear 

Bland-Altman 
Electrocardiogram 

PAEE 
Heart rate 
Heartrate 

Accelerometry 
Plethysmography 

Sphygmomanometer 
Oscillometer 

Aortic pressure 
Wrist worn 
Chest band 

Arterial 
Tonometry 

ECG 
Ballistocardiogram 

Motion 
Cardio 

Actigraph wGT3X-BT monitors 
Actigraph 

Actipal 
Cosmed 

WatchPAT 
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Supplementary Table 3. Quality assessment of the included physical activity studies. 
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Supplementary Table 4. Quality assessment of the included sleep studies. 
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