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A B S T R A C T   

Introduction: COVID-19 (coronavirus disease-2019) is an infectious disease caused by SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2). Immune dysregulation causes inflammation and massive production of 
inflammatory mediators that worsen the patients’ status. Here, regulatory immune cells may ameliorate 
inflammation and improve the severity of the disease. 
Materials and methods: A total of 76 participants were enrolled in this study and divided into 3 groups as follows: 
patients with moderate/severe COVID-19 (n = 25), patients with critical COVID-19 (n = 26), and healthy 
controls (n = 25). After blood collection, peripheral blood mononuclear cells (PBMCs) were isolated and stained 
by FITC-conjugated anti-CD4 monoclonal antibodies (mABs), PE-conjugated anti-HLA-G mABs, PerCPCy5.5- 
conjugated anti-CD14 mABs, and APC-conjugated anti-CD8 mABs. 
Results: Critical COVID-19 patients had a significantly lower frequency of CD4+ HLA-G+ T lymphocytes 
compared with moderate/severe COVID-19 patients (p value < 0.001; SMD, − 1.27; 95% CI [-1.86, − 0.66]) and 
healthy controls (p value < 0.05; SMD, − 0.69; 95% CI [-1.25, − 0.12]). Critical COVID-19 patients had a 
significantly lower frequency of CD14+ HLA-G+ monocytes compared with moderate/severe COVID-19 patients 
(p value < 0.001; SMD, − 2.09; 95% CI [-2.77, − 1.41]) and healthy controls (p value < 0.05; SMD, − 0.83; 95% CI 
[-1.40, − 0.25]). However, there was no difference between the groups regarding the frequency of CD8+ HLA-G+

T lymphocytes. 
Conclusion: The increased amount of immunomodulatory HLA-G+ cells may reduce the severity of the disease in 
moderate/severe COVID-19 patients compared with critical COVID-19 patients.   

1. Introduction 

The outbreak of the COVID-19 pandemic has affected millions of 
people all over the world. COVID-19 is an infectious disease that leads to 
a dysregulated immune system. For example, in our previous articles, we 
showed that critical COVID-19 patients had a significantly higher fre-
quency of both exhausted CD4+ and CD8+ T cells compared with non- 
critical COVID-19 patients [1–3]. A better understanding of the im-
mune characteristics of COVID-19 patients may help clinicians to 
manage the disease more effectively. Since inflammatory responses are 

associated with the severity of COVID-19 [3,4], understanding the reg-
ulatory properties of patients’ immune systems is crucial. 

HLA-G is a non-classical HLA molecule belonging to HLA class Ib. 
HLA-G has 7 isoforms from which HLA-G1 to HLA-G4 have a membrane- 
bound form, and HLA-G5 to HLA-G7 have a soluble form. HLA-G1 and 
soluble HLA-G5 (sHLA-G5) contain beta-2 microglobulin and therefore 
are important isoforms of HLA-Gs. Although HLA-G1 has a membrane- 
bound form, it can be shed or released from the surface of immune 
cells to the bloodstream. Both membrane-bound and soluble forms of 
HLA-G have immunomodulatory functions and modulate the 
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inflammatory responses through inhibition of proliferation of CD4+ T 
cells. Among the immune cells, CD4+ and CD8+ T cells and CD14+

monocytes express HLA-G and exert immunomodulatory effects [5–7]. 
Both in vitro and in vivo evaluations showed that CD4+ HLA-G+ T 

cells could exert their suppressive capacity. In vitro CD4+ HLA-G+ T cells 
inhibit T cell responses via both cell-dependent and cell-independent 
mechanisms. CD4+ HLA-G+ T cells can secret anti-inflammatory medi-
ators, such as sHLA-G, interleukin-10 (IL-10), IL-35, and transforming 
growth factor-β (TGF-β), to exert their immunomodulatory function [7]. 
Immune responses against the allograft and the semi-allograft (fetus) 

lead to adverse outcomes in the field of transplantation and reproductive 
immunology [8–12]. However, it was reported that increased frequency 
of HLA-G+ immune cells was associated with better allograft function 
and successful pregnancy [12,13]. Moreover, a study reported that 
increased sHLA-G was associated with improved COVID-19 outcomes 
[14]. Given the suppressive property of HLA-G+ T cells and monocytes, 
we aimed to evaluate the frequency of CD4+ and CD8+ HLA-G+ T cells 
and CD14+ HLA-G+ monocytes in our COVID-19 patients and compare 
them with healthy controls. 

2. Materials and methods 

2.1. Study subjects 

A total of 76 participants were enrolled in this study and divided into 
3 groups as follows: patients with moderate/severe COVID-19 (n = 25), 
patients with critical COVID-19 (n = 26), and healthy controls (n = 25). 
Written informed consent was obtained from all participants, and the 
study was approved by the Institutional Research Ethics Committee, 
Ayatollah Rouhani Hospital, Babol University of Medical Sciences. 

2.2. Peripheral blood mononuclear cell isolation 

The peripheral blood (5 mL) was collected into an EDTA anticoag-
ulant tube. Ficoll-Hypaque gradient (Biowest, Nuaille, France) centri-
fugation was used to isolate peripheral blood mononuclear cells 
(PBMCs). In brief, the peripheral blood was directly added to the Ficoll- 
Hypaque gradient and centrifuged at 400×g for 25 min. The middle 
phase (i.e., PBMCc) was collected and washed with phosphate-buffered 
saline (PBS) at 300×g for 10 min. 

2.3. Phenotypic analyses of PBMCs 

To determine the frequency of CD4+ and CD8+ HLA-G+ T cells and 
CD14+ HLA-G+ monocytes, PBMCs (0.7 × 106) were stained for cell 
surface markers, i.e., CD4, CD8, CD14, and HLA-G. A fragment crystal-
lizable (Fc) blocker (Biolegend, USA) was used for blocks of Fc receptors 
before staining. In brief, FITC-conjugated anti-CD4 monoclonal anti-
bodies (mABs; Clone SK3, Biolegend, USA), PE-conjugated anti-HLA-G 
mABs (Clone 87G, Biolegend, USA), PerCPCy5.5-conjugated anti-CD14 
mABs (Clone HCD14, Biolegend, USA), APC-conjugated anti-CD8 mABs 
(Clone RPA-T8, Biolegend, USA) were added to the cellular suspension 
and incubated at 4 ◦C for 20 min. The cells were read by a FACS Calibur 
Flow Cytometer (BD Biosciences, San Jose, CA, USA), and the data were 
analyzed by FlowJo version 7.6.1 (Tree Star Inc., Ashland, OR, USA). 

Table 1 
Demographic and clinical characteristics of study subjects.  

Variables Healthy control 
[25] 

Moderate/Severe 
[25] 

Critical [26] 

Age (years) 52.6 ± 7.0 59.9 ± 15.6 65.1 ± 12.5 
Male (n; %) 15 (60) 11 (44) 8 (31) 
Female (n; %) 10 (40) 14 (56) 18 (69) 
O2 saturation – 90.1 ± 5.27 88.9 ± 5.91 
Respiratory 

rate 
– 18.7 ± 2.30 19.7 ± 3.15 

LDH 227 ± 43 743 ± 310 1053 ± 639 
CRP 2.6 ± 1.5 55 ± 32 112 ± 92 
ESR 13 ± 5 34 ± 28 60 ± 29 
BUN 15 ± 4 26 ± 13 26 ± 11 
Cr 0.9 ± 0.2 1 ± 0.4 1 ± 0.5 
AST 24 ± 8 53 ± 59 45 ± 29 
ALT 25 ± 10 35 ± 21 40 ± 31 
ALP 125 ± 81 161 ± 72 210 ± 121 
WBC 6668 ± 1254 5883 ± 2708 10326 ± 4547 
Total bilirubin 0.44 ± 0.08 0.43 ± 0.06 0.79 ± 0.64 
Direct bilirubin 0.23 ± 0.06 0.20 ± 0.02 0.35 ± 0.35 
RBC 6.15 ± 7.13 4.70 ± 0.65 4.14 ± 0.57 
Lymphocytes 2504 ± 481 1634 ± 1719 1149 ± 381 
Neutrophil 5184 ± 8341 4510 ± 2586 8936 ± 4324 
PLT 234600 ± 65468 206083 ± 70078 192923 ±

75620 
NLR 1.56 ± 0.63 4.41 ± 2.74 6.12 ± 5.40 
PLR 91 ± 24 205 ± 122 183 ± 94 
Hb 14 ± 1.69 13 ± 2.15 11 ± 2.05  

Table 2 
Frequency of different HLA-G+ cells.  

Variables Healthy control 
[25] 

Moderate/Severe 
[25] 

Critical 
[26] 

CD4+ HLA-G+ T cell 2.88 ± 1.23 3.69 ± 1.61 1.91 ± 1.30 
CD8+ HLA-G+ T cell 1.80 ± 0.81 1.95 ± 0.83 1.84 ± 0.80 
CD14+ HLA-G+

monocyte 
22.18 ± 8.29 32.45 ± 8.05 15.39 ±

8.04  

Fig. 1. The gating strategy for determination of the CD4+ HLA-G+ T lymphocytes.  
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2.4. Statistical analyses 

Data were analyzed using STATA version 14.1 and GraphPad Prism 
version 6. Demographic and clinical characteristics are presented in 
Table 1. The 1-way analysis of variance (ANOVA) test was used for crude 
data, and the 2-way ANOVA was used for adjusted ANOVA models. P 
values less than 0.05 were considered significant in all statistical tests. 
The data in Table 1 are presented as mean ± SD. For the main data, 3 
effect sizes were reported, including mean difference (MD), standard-
ized MD (SMD), and partial Eta2 with their 95% CIs. MD and SMD were 

used to assess pairwise comparison, and partial Eta2 was used to 
compare ANOVA models. 

3. Results 

3.1. Demographic and clinical findings 

COVID-19 patients showed lymphopenia and neutrophilia. More-
over, lactate dehydrogenase (LDH), erythrocyte sedimentation rate 
(ESR), and C-reactive protein (CRP) were higher in COVID-19 patients 

Fig. 2. The gating of CD4+ HLA-G+ T lymphocytes is presented in each group.  

Table 3 
ANOVA analyses of CD4+ HLA-G+ T lymphocytes.  

Model Groups Mean difference (95% CI) SMD (95% CI) Partial Eta2 P value$ 

Crude Critical vs Moderate/Severe − 1.77 (− 2.72; − 0.82) − 1.27 (− 1.86; − 0.66) 0.222 0.0001 
Critical vs Healthy control − 0.97 (− 1.92; − 0.01) − 0.69 (− 1.25; − 0.12) – – 
Moderate/Severe vs Healthy control 0.80 (− 0.15; 1.76) 0.57 (0.01; 1.13) – – 

Adjusted for age Critical vs Moderate/Severe − 1.81 (− 2.79; − 0.83) − 1.25 (− 1.84; − 0.65) 0.222 0.0003 
Critical vs Healthy control − 0.92 (− 1.97; 0.11) − 0.63 (− 1.19; − 0.06) – – 
Moderate/Severe vs Healthy control 0.88 (− 0.11; 1.88) 0.60 (0.04; 1.16) – – 

Adjusted for gender Critical vs Moderate/Severe − 1.89 (− 2.85; − 0.93) − 1.34 (− 1.94; − 0.73) 0.248 0.0001 
Critical vs Healthy control − 1.11 (− 2.09; − 0.13) − 0.79 (− 1.35; − 0.21) – – 
Moderate/Severe vs Healthy control 0.78 (− 0.18; 1.75) 0.55 (− 0.006; 1.11) – –  
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compared with healthy controls. Demographic and other clinical char-
acteristics of the study subjects are shown in Table 1. Moreover, the 
mean ± SD for different HLA-G+ cells is shown in Table 2. 

3.2. The lower frequency of CD4+ HLA-G+ T lymphocytes in critical 
COVID-19 patients 

The gating strategy for the determination of CD4+ HLA-G+ T lym-
phocytes is shown in Fig. 1. Critical COVID-19 patients had a signifi-
cantly lower frequency of CD4+ HLA-G+ T lymphocytes compared with 
moderate/severe COVID-19 patients (p value < 0.001; SMD, − 1.27; 95% 
CI [− 1.86, − 0.66]) and healthy controls (p value < 0.05; SMD, − 0.69; 
95% CI [− 1.25, − 0.12]). Moreover, adjusted analyses for age or gender 
showed the same results (Table 3, Fig. 2). Although the difference was 
not significant between moderate/severe patients and healthy controls, 
moderate/severe patients had a higher frequency of CD4+ HLA-G+ T 

lymphocytes compared with healthy controls (p value > 0.05; SMD, 
0.57; 95% CI [0.01, 1.13]). Moreover, adjusted analyses for age or 
gender showed the same results, and Eta2 was not different between the 
3 ANOVA models (Table 3). 

3.3. The lower frequency of CD14+ HLA-G+ monocytes in critical 
COVID-19 patients 

Critical COVID-19 patients had a significantly lower frequency of 
CD14+ HLA-G+ monocytes compared with moderate/severe COVID-19 
patients (p value < 0.001; SMD, − 2.09; 95% CI [− 2.77, − 1.41]) and 
healthy controls (p value < 0.05; SMD, − 0.83; 95% CI [− 1.40, − 0.25]). 
Moreover, adjusted analyses for age or gender showed the same results 
(Table 4, Fig. 3). On the other hand, moderate/severe COVID-19 pa-
tients had a significantly higher frequency of CD14+ HLA-G+ monocytes 
compared with healthy controls (p value < 0.001; SMD, 1.26; 95% CI 

Table 4 
ANOVA analyses of CD14+ HLA-G+ monocytes.  

Model Groups Mean difference (95% CI) SMD (95% CI) Partial Eta2 P value$ 

Crude Critical vs Moderate/Severe − 17.06 (− 22.59; − 11.54) − 2.09 (− 2.77; − 1.41) 0.439 0.0000 
Critical vs Healthy control − 6.79 (− 12.37; − 1.20) − 0.83 (− 1.40; − 0.25) – – 
Moderate/Severe vs Healthy control 10.27 (4.69; 15.85) 1.26 (0.65; 1.86) – – 

Adjusted for age Critical vs Moderate/Severe − 17.22 (− 22.94; − 11.51) − 2.04 (− 2.70; − 1.35) 0.439 0.0000 
Critical vs Healthy control − 6.51 (− 12.63; − 0.38) − 0.76 (− 1.32; − 0.18) – – 
Moderate/Severe vs Healthy control 10.71 (4.86; 16.57) 1.26 (0.65; 1.86) – – 

Adjusted for gender Critical vs Moderate/Severe − 17.53 (− 23.18; − 11.88) − 2.10 (− 2.78; − 1.42) 0.449 0.0000 
Critical vs Healthy control − 7.20 (− 12.98; − 1.42) − 0.86 (− 1.43; − 0.28) – – 
Moderate/Severe vs Healthy control 10.32 (4.61; 16.04) 1.24 (0.63; 1.83) – –  

Fig. 3. The gating of the CD14+ HLA-G+ monocytes is presented in each group.  
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[0.65, 1.86]). Moreover, adjusted analyses for age or gender showed the 
same results, and Eta2 was not different between the 3 ANOVA models 
(Table 4). The gating strategy for the determination of CD14+ HLA-G+

monocytes is shown in Fig. 3. 

3.4. The same frequency of CD8+ HLA-G+ T lymphocytes between the 
study groups 

The gating strategy for the determination of CD8+ HLA-G + T lym-
phocytes is shown in Fig. 4. There was no difference between the study 
groups regarding the frequency of CD8+ HLA-G+ T lymphocytes: critical 
COVID-19 patients vs. moderate/severe COVID-19 patients (p value >
0.05; SMD, − 0.13; 95% CI [− 0.67, 0.41]), critical COVID-19 patients vs. 
healthy controls (p value > 0.05; SMD, 0.04; 95% CI [− 0.49, 0.59]), and 
moderate/severe COVID-19 patients vs. healthy controls (p value >
0.05; SMD, 0.18; 95% CI [− 0.36, 0.73]; Table 5, Fig. 5). Moreover, the 
adjusted analyses showed the same results, and Eta2 was not different 
between the 3 ANOVA models (Table 5). 

4. Discussion 

COVID-19 is an infectious disease that leads to a dysregulated im-
mune system in critical patients. Understanding the immunological 
features of COVID-19 patients may help clinicians to manage the disease 
more effectively. In our previous articles, we assessed some immuno-
logical features of moderate/severe and critical COVID-19 patients with 
interesting results. We showed that non-intensive care unit (ICU) pa-
tients had a significantly higher amount of interferon λ1 (IFN-λ1) (836.7 
± 284.6 vs. 81.57 ± 34.25) and INF-λ2 (798.8 ± 301.5 vs. 48.32 ±
28.13) compared with ICU patients [15]. The INF-λ family or type III 
interferon is the most recently discovered interferon and divide into 4 
members, including IFN-λ1/IL-29, IFN-λ2/IL-28 A, IFN-λ3/IL-28 B, and 
IFN-λ4. INF-λ receptor 1 (INF-λR1) and IL-10R2 are the heterodimeric 
receptors of INF-λ [15]. Since the expression of INF-λR1 is primarily 

limited to the respiratory tract epithelial cells, INF-λ has a major role in 
mucosal immunity and viral respiratory tract infection [15–17]. These 
results indicate an immune dysregulation in which enough amount of 
type III interferons are not secreted. 

Cellular immunity is a crucial component of the immune system in 
which CD4+ T cells and CD8+ T cells play an important function against 
foreign antigens. We and others showed that in addition to lymphope-
nia, exhaustion of both CD4+ T cells and CD8+ T cells are associated 
with critical COVID-19 [1,2,18,19]. These results indicate another im-
mune dysregulation in which cellular immunity is dysregulated. 

Inflammation and cytokine storm are other kinds of immune dysre-
gulation observed in critical COVID-19 patients [20]. Inflammation and 
cytokine storm are characterized by great production of IL-1, IL-6, IL8, 
tumor necrosis factor α (TNF-α), etc. [3]. Moreover, other inflammatory 
factors, such as CRP and pentraxin 3 (PTX3), are linked to critical 
COVID-19 [4]. As a result, corticosteroid therapy is used to reduce 
inflammation and improve the disease severity, which is useful [21]. In 
this regard, the role of regulatory cells to alleviate inflammation and 
control excessive immune responses is crucial in the inflammatory phase 
of COVID-19. 

Several studies have evaluated the frequency of regulatory T cells 
(Tregs) in COVID-19 patients. CD4+ FOXP3+ Tregs can ameliorate the 
immunopathology of respiratory syncytial virus infection [22] and, 
thereby, reduce disease severity. In the setting of COVID-19, studies 
have shown inconsistent results, which may be due to the different 
strategies used for the determination of Tregs. Some studies have re-
ported that severe COVID-19 patients had a lower frequency of Tregs 
compared with healthy controls [23]; in other words, the higher the 
severity of COVID-19, the lower the frequency of Tregs [24,25]. On the 
other hand, some studies have found no difference between different 
stages of COVID-19 [26] or found that severe COVID-19 patients had a 
higher frequency of Tregs compared with mild COVID-19 patients [27]. 

HLA-G+ cells are defined as cells with immunomodulatory proper-
ties. There is little information about the role of these cells and their 

Fig. 4. The gating strategy for determination of the CD8+ HLA-G+ T lymphocytes.  

Table 5 
ANOVA analyses of CD8+ HLA-G+ T lymphocytes.  

Model Groups Mean difference (95% CI) SMD (95% CI) Partial Eta2 P value$ 

Crude Critical vs Moderate/Severe − 0.11 (− 0.66; 0.44) − 0.13 (− 0.67; 0.41) 0.006 0.7928 
Critical vs Healthy control 0.04 (− 0.52; 0.60) 0.04 (− 0.49; 0.59) – – 
Moderate/Severe vs Healthy control 0.15 (− 0.41; 0.71) 0.18 (− 0.36; 0.73) – – 

Adjusted for age Critical vs Moderate/Severe − 0.13 (− 0.70; 0.43) − 0.16 (− 0.70; 0.38) 0.004 0.5837 
Critical vs Healthy control − 0.08 (− 0.69; 0.52) − 0.09 (− 0.64; 0.45) – – 
Moderate/Severe vs Healthy control 0.05 (− 0.52; 0.63) 0.06 (− 0.48; 0.61) – – 

Adjusted for gender Critical vs Moderate/Severe − 0.10 (− 0.67; 0.46) − 0.12 (− 0.67; 0.41) 0.003 0.8293 
Critical vs Healthy control − 0.002 (− 0.58; 0.57) − 0.003 (− 0.55; 0.54) – – 
Moderate/Severe vs Healthy control 0.10 (− 0.47; 0.67) 0.12 (− 0.42; 0.67) – –  
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possible immunomodulatory function in the setting of COVID-19. In this 
study, we evaluated the frequency of these cells and found that critical 
COVID-19 patients had a significantly lower frequency of both CD4+

HLA-G+ T lymphocytes and CD14+ HLA-G+ monocytes compared with 
moderate/severe COVID-19 patients and healthy controls. On the other 
hand, the frequency of the mentioned cells was significantly higher in 
moderate/severe COVID-19 patients compared with healthy controls. 
These results indicate that moderate/severe COVID-19 patients have 
more immunomodulatory properties than critical COVID-19 patients, 
and such a feature may help moderate/severe COVID-19 patients 
modulate inflammatory conditions. Both crude and adjusted analyses 
showed the same results. In line with our study, Bortolotti et al. showed 
that increased levels of sHLA-G were associated with improved COVID- 
19 status [14]. However, more studies are required to further evaluate 
the role of HLA-G+ cells and their association with COVID-19 
improvement. Regarding CD8+ HLA-G+ T cells, we did not find any 
significant and considerable difference between our study groups in 
both crude and adjusted analyses. 

5. Conclusion 

We showed that critical COVID-19 patients had a lower frequency of 

HLA-G+ cells, and given the modulatory role of HLA-G+ cells, it can be 
implied that such lower immunomodulatory properties may lead to the 
critical condition in these patients. 
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