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Glucose produced by catalytic hydrolysis of cellulose is an important platform molecule for
producing a variety of potential biobased fuels and chemicals. Catalysts such as mineral
acids and enzymes have been intensively studied for cellulose hydrolysis. However,
mineral acids show serious limitations concerning equipment corrosion, wastewater
treatment and recyclability while enzymes have the issues such as high cost and
thermal stability. Alternatively, solid acid catalysts are receiving increasing attention due
to their high potential to overcome the limitations caused by conventional mineral acid
catalysts but the slow mass transfer between the solid acid catalysts and cellulose as well
as the absence of ideal binding sites on the surface of the solid acid catalysts are the key
barriers to efficient cellulose hydrolysis. To bridge the gap, bio-inspired or bio-mimetic solid
acid catalysts bearing both catalytic and binding sites are considered futuristic materials
that possess added advantages over conventional solid catalysts, given their better
substrate adsorption, high-temperature stability and easy recyclability. In this review,
cellulase-mimetic solid acid catalysts featuring intrinsic structural characteristics such as
binding and catalytic domains of cellulase are reviewed. The mechanism of cellulase-
catalyzed cellulose hydrolysis, design of cellulase-mimetic catalysts, and the issues related
to these cellulase-mimetic catalysts are critically discussed. Some potential research
directions for designing more efficient catalysts for cellulose hydrolysis are proposed. We
expect that this review can provide insights into the design and preparation of efficient
bioinspired cellulase-mimetic catalysts for cellulose hydrolysis.
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INTRODUCTION

Glucose, resulting from hydrolysis of cellulose, is an important biomass-derived platform molecule
for producing a variety of value-added fuels and chemicals (Yabushita et al., 2014). Many efforts are
ongoing to reduce glucose production cost for economic biorefineries. To a large extent, the
efficiency of catalysts for cellulose hydrolysis affects the economy of glucose production. A good
catalyst should selectively and cost-effectively convert cellulose to glucose in high concentrations
with limited glucose degradation.

Mineral acids and enzymes (such as cellulase) have been widely used as catalysts for cellulose
hydrolysis. Despite the low cost of mineral acids, mineral acid-catalyzed cellulose hydrolysis has
issues such as glucose degradation, equipment corrosion, and wastewater treatment (Palkovits et al.,
2010; Orozco et al., 2011; Qiao et al., 2018; Zhou et al., 2021). In contrast, cellulase can selectively
catalyze cellulose hydrolysis at mild conditions but the cost of cellulase loadings required for efficient
conversion of cellulosic materials to glucose accounts for a large portion of the whole processing cost.
Moreover, cellulase has the highest catalytic activity only under an optimum condition; a varied
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condition (e.g. a higher or lower temperature or pH value)
inhibits cellulase activity and even denatures cellulase;
therefore, the rate of enzymatic hydrolysis cannot be
accelerated through an increase in the reaction temperature
(Berlin et al., 2007; dos Santos et al., 2018; Huang, 1975). In
consideration of recyclability and stability, solid acid catalysts
have been widely explored in recent years while the efficiency of
cellulose hydrolysis catalyzed by these catalysts is highly restricted
by the limited interactions between the catalysts and cellulose
(Hara, 2010; Shimizu et al., 2011; Huang et al., 2013; Hu et al.,
2015; Wang et al., 2015) To overcome this limitation, novel
cellulase-mimetic catalysts with both cellulose-binding and
catalytic sites were developed in the last decade (Shuai et al.,
2012). The catalytic sites consisting of acid-base pairs can stabilize
the intermediate product (i.e., an oxocarbenium ion) during the
cleavage of the glycosidic bond, thereby reducing the energy
barrier of cellulose hydrolysis; the binding group on the surface of
a cellulase-mimetic catalyst can associate the catalyst with
cellulosic materials, promoting the mass transfer rate between
the catalyst and cellulose in such a heterogeneous reaction.

In this review, we summarize the recent studies regarding
cellulase-mimetic catalysts. In particular, the mechanism of

cellulase-catalyzed cellulose hydrolysis and the structural
characteristics of cellulase-mimetic catalysts such as binding
and catalytic sites are critically reviewed. In the end, we
discuss the issues of the current catalyst design and propose
some potential directions for synthesizing more efficient
cellulase-mimetic catalysts.

CELLULASE-CATALYZED CELLULOSE
HYDROLYSIS

Structurally, cellulase comprises at least three separate structural
elements of different functions, i.e., a catalytic domain (CD), a
cellulose-binding domain (CBD), and an interdomain linker
(Figure 1A; Rabinovich et al., 2002). The CBD is responsible
for associating cellulase with cellulose while the CD catalyzes the
cleavage of glycosidic bonds of a cellulose chain. During the
enzymatic hydrolysis of cellulose, cellulase is adsorbed onto the
bulk solid cellulosic materials through hydrophobic interactions
(e.g., CH–π interaction) between the CBD containing the
aromatic and alkyl residues of amino acids and the axial face
of cellulose as well as hydrogen bonding interactions between the

FIGURE 1 | (A) A modeling image of cellulase, (B) cellulase-cellulose binding via hydrogen bonding (orange) and hydrophobic interactions (blue), catalytic
hydrolysis of cellulose by cellulase in (C) a retaining or (D) an inverting mechanism, and (E) a proposed mechanism of mineral acid-catalyzed cellulose hydrolysis
(substituted groups are omitted for better visibility).
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polar groups of amino acids and cellulose hydroxyls (Figure 1B;
Asensio et al., 2012; Georgelis et al., 2012), then the cleavage of the
glycosidic bond of the captured cellulose chain is catalyzed by a
catalytic site in a retaining or inverting mechanism (Figures
1C,D; Badieyan et al., 2012; Zechel et al., 2000). In both of the
proposed hydrolysis mechanisms, a carboxylic acid (COOH)-
carboxylate (COO−) pair (an acid-base pair) works synergistically
to cleave the glycosidic bond (Figures 1C,D). The nucleophilic
attack of COO− to the anomeric carbon of cellulose stabilizes the
high-energy free oxocarbenium ions that is usually formed in an
acid-catalyzed hydrolysis process (Figure 1E; Brown et al., 1979;
Rinaldi et al., 2010), thereby reducing the energy barrier for
cellulose hydrolysis. During the enzymatic hydrolysis of cellulose,
the occurrence of such an enzymatic reaction highly depends on
the perfect conformation of the acid-base pair. When the
glycosidic bond of a cellulose chain is perfectly fit into the
acid-base pairing site, the energy barrier for cellulose
hydrolysis is substantially lowered. Such perfect fitting is
assisted by the CBD which associates cellulase with cellulose
chains via specific adsorption. The adsorption of cellulase to
cellulose increases the mass transfer rate between them, thereby
further increasing the enzymatic hydrolysis efficiency.

A temperature or pH change would substantially affect the
structural conformations of the catalytic and binding sites and
thereby the catalytic activity of cellulase. The hydrolysis rate of
cellulose is thus strictly limited by the optimum temperature for
cellulase and cannot be improved via changing the reaction
temperature. In contrast, a temperature increase can enhance
the rate of acid-catalyzed hydrolysis without changing the
structure of chemically synthesized solid acid catalysts.
Therefore, solid acid catalysts are receiving increasing
attention due to its high potential to overcome the limitation
of cellulase.

CELLULASE-MIMETIC CATALYSTS

As conventional solid acids do not have specific sites for binding
cellulose and specific acid-base pairs for catalyzing cellulose
hydrolysis, the rate of cellulose hydrolysis highly relies on the
mass transfer rate between the acid catalysts and cellulose as well
as the acidity of the catalysts.

Particularly, the mass transfer rate is highly restrained when a
solid acid is used as a catalyst. An elevated temperature could
enhance the mass transfer rate but it would cause more cellulose
and glucose degradation and thereby low glucose selectivity (Zuo
et al., 2014). Alternatively, synthesis of cellulase-mimetic solid
acid containing both catalytic and cellulose-binding sites (groups)
is a viable way to improve the cellulose hydrolysis efficiency.

Mimetic Design of Catalytic Sites
The mechanism of cellulase-catalyzed cellulose hydrolysis
indicates the important role of the COOH-COO− pair in the
cleavage of the glycosidic bonds. Incorporation of COOH-COO−

(Cho et al., 2015; Sugano et al., 2011) or similar acid-base pairs
(e.g. COOH-NH2) (Chen et al., 2019; Cho et al., 2016) onto
catalyst supporting materials (e.g. carbon nanotubes (CNT)

(Sugano et al., 2011), and magnetic silica-based nanoparticles
(Cho et al., 2015), and greenmagnetic nano-catalyst (GMN) (Cho
et al., 2016) to mimic the catalytic conformation of cellulase was
therefore explored extensively (Figure 2). Since the theoretical
pKa value of the carboxylic group is around 3.1–4.4, the pH value
of the hydrolysis reaction media is generally adjusted to around
3.0 to ensure the presence of the acid-base (or conjugated base)
pair in a reaction medium for the best performance (Cho et al.,
2015; Sugano et al., 2011). In contrast to the conventional acid-
catalytic hydrolysis processes that require high temperatures,
some of these catalysts (e.g., a green magnetic nano-catalyst
(GMN) with carboxyl and imidazole groups as an acid-base
pair) could catalyze the cleavage of the glycosidic bonds under
a very mild condition (37.5°C, pH � 5) in a similar manner to
cellulase (Cho et al., 2016). However, these catalysts are far less
active than cellulase because the random distribution of acid
(such as -COOH and phenolic -OH) and base (such as COO− and
NH2) groups on the surface of the catalysts does not completely
mimic the ideal structural conformation of the COOH-COO−

pair in cellulase. To understand the effect of well-arranged acid-
base pairs on the hydrolysis efficiency, a comparative study of
ortho-, meta-, and para-hydroxybenzoic acids (pKa values of 3.0,
4.1, and 4.6, respectively) as the catalysts for cellulose hydrolysis
was conducted (Yabushita, 2016). The considerably higher
catalytic activity of ortho-hydroxybenzoic acid (a turnover
frequency (TOF) of 28 h−1) than others (TOFs of 5.7 and
2.4 h−1 for meta- and para-hydroxybenzoic acids, respectively)
suggests the major contribution of a vicinal acid-base pair to the
catalytic activity of a synthesized catalyst (Yabushita, 2016). The
vicinal acid-base pair has a better conformation than others
towards stabilizing the intermediate oxocarbenium ion and
protonating the hydroxyl ion formed during the cleavage of
the glycosidic bond. Consistently, a polymer acid catalyst,
hyperbranched poly(arylene oxindole) (5-OH-SHPAO)
functionalized with phenolic hydroxyls and ortho-substituted
sulfonic acids as vicinal acid-base pairs demonstrated high
catalytic activity for cellulose hydrolysis and achieved a
cellulose conversion of 88% with a glucose yield of 56% and
above 93% selectivity to all useful hydrolytic and dehydration
products (such as lactic acid) at 170°C in 4 h (Figure 2; Yu et al.,
2016). During the hydrolysis, the phenolic hydroxyl attacks the
anomeric carbon to stabilize the oxocarbenium ion and the
resulting hydroxyl ion can be readily protonated by the
neighboring sulfonic acid. In contrast to the findings of
Yabushita et al. where the strict requirement of a vicinal acid-
base site is preferred for constructing the catalytic site (Yabushita,
2016), a biochar sulfonic acid bearing randomly distributed
polyamide chains (BCSA-PA) also demonstrated higher
activity for cellulose hydrolysis (26% reducing sugars (RSs)
and 23% HMF yields) than BCSA without PA (22% RSs and
<0.1% HMF yields) (Figure 2; Chen et al., 2019). The finding
indicates that the flexible polyamide chain can easily move to
attack the anomeric carbon to stabilize the oxocarbenium ion,
reducing the energy barrier of the cleavage of the
glycosidic bonds.

In summary, the merit of constructing of a catalytic acid-base
pair is to stabilize the intermediate and enable the occurrence of
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the hydrolysis under mild conditions and even without the use of
strong acid catalysts. However, it is very challenging to design a
solid acid that can completely mimic the naturally evolved
catalytic conformation of cellulase. Due to such a challenge,
current cellulase-mimetic solid acid catalysts are not
comparable to cellulase in terms of the catalytic activity.

Mimetic Design of Binding Sites
The high efficiency of cellulase-catalyzed cellulose hydrolysis is
due to not just the unique structural configuration of the catalytic
site but also the assistance of the CBD in associating cellulase with
cellulosic materials. In addition to the absence of ideal acid-base
pairs, the slow mass transfer between solid acid catalysts and
cellulose is another limitation to efficient hydrolysis.
Incorporation of binding sites to a catalyst to enhance the
mass transfer rate is therefore another important research area
of cellulase-mimetic catalyst development. The catalytic
performance of various cellulase-mimetic solid acid catalysts
on hydrolyzing cellulose was compared in Table 1.

(A) Binding Via Hydrogen Bonding
Interaction
Initially, researchers found that carbon-based solid acids
prepared from incomplete carbonization of natural organic
matters followed by sulfonation exhibited remarkable
hydrolysis performance with water-soluble glucose and glucan
yields of 4–68% (Suganuma et al., 2008; Toda et al., 2005). Further
mechanistic studies revealed the contribution of the hydrogen
bonding interaction between the phenolic -OH and -COOH on
the catalyst surface and cellulose hydroxyls to the high catalytic
activity of the carbon-based solid acids (Figure 3; Hu et al., 2015;
Suganuma et al., 2008). The interaction renders enhanced mass

transfer rates between the catalysts and cellulosic materials and
thereby high hydrolysis efficiencies. This finding inspires studies
on a variety of carbon-based catalysts prepared from different raw
materials, such as mesoporous carbon (CMK-3) (Pang et al.,
2010), mesoporous silicon oxide/carbon composite (Van de
Vyver et al., 2010), magnetic oxide/sulfonated carbon shell
composite (Zhang et al., 2013), graphene oxide (GO) (Kitano
et al., 2009; Verma et al., 2013; Zhao et al., 2014; Mission et al.,
2017; Zhang et al., 2017), and lignin (Hu et al., 2015; Zhu et al.,
2016; Gan et al., 2017;Wang et al., 2020; Zhu et al., 2020). In these
studies, GO-based catalysts demonstrate excellent performance
for cellulose hydrolysis. The high surface area and abundant
carboxylic and phenolic hydroxyl groups on the surface of the
GO-based catalysts facilitate the formation of a considerable
amount of hydrogen bonds with cellulose (Zhao et al., 2014).
The apparent activation energy for cellulose hydrolysis catalyzed
by a functionalized GO/iron nanoparticle hybrid material (Fe-
GO-SO3H) was only 12 kJ mol−1, which is much lower than that
for sulfuric acid-catalyzed hydrolysis under an optimal condition
(170 kJ mol−1) (Verma et al., 2013). Recently, Yang et al. (Yang
et al., 2021) also prepared porous polymeric solid acids (PPSAs)
bearing hydroxyl and sulfonic acid groups for cellulose hydrolysis
in water through the low-cost Friedel-Crafts “knitting”
polymerization of hydroxyl-containing aromatic monomers
followed by sulfonation. The reason for the high efficiency of
the synthesized bifunctional catalysts (a glucose yield of 93% from
Avicel at 120°C within 48 h) was attributed to the porous
structure and the presence of the hydroxyl (cellulose-binding
group) on the solid acids.

The enhanced performance resulting from the hydrogen
bonding interaction between carbon-based catalysts and
cellulosic materials encouraged many attempts to examine
other electronegative groups such as amine, and halide as

FIGURE 2 | A summary of acid-base pairs as catalytic sites of cellulose-mimetic solid acid catalysts and corresponding mechanism for the catalytic cleavage of
glycosidic bonds in cellulose chain.
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TABLE 1 | The catalytic performance of various cellulase-mimetic solid acids catalysts on hydrolyzing cellulose.

Entry Catalyst CBD Binding
interaction

Substrates Reaction
condition

Conv.
(%)

Glu.
(%)

Other
products

(%)

Catalyst
stability

Ref

1 Fe-GO-SO3H -OH,
-COOH

Hydrogen
bonding

Cellulose H2O,
75°C, 44 h

95 50 Cellobiose (4.3)
4-5unit
oligomeric (40)

Kept stable after
recycling five times

Verma
et al.
(2013)

2 PPSAs -OH Hydrogen
bonding

Avicel H2O,
120°C, 48 h

_ 93 _ From 92.6% to
65.1% after four
cycles

Yang
et al.
(2021)

3 CP-SO3H -Cl Hydrogen
bonding

Avicel H2O,
120°C, 10 h

_ 93 _ The activity did not
decline after
recycling three
times

Shuai
et al.
(2012)

4 PTA@MIL-
101-NO2

-NO2 Hydrogen
bonding

Avicel H2O, 180°C,
3–11 h

_ 16.2 _ Decreased by 4.3%
after three times

Han et al.
(2019)

5 PTA@MIL-
101-Br

-Br Hydrogen
bonding

Avicel H2O, 180°C,
3–11 h

_ 10.1 _ Decreased by 3.7%
after three times

Han et al.
(2019)

6 PTA@MIL-
101-NH2

-NH2 Hydrogen
bonding

Avicel H2O, 180°C,
3–11 h

_ 12.8 _ Kept stable after
recycling three
times

Han et al.
(2019)

7 PTA@MIL-
101-Cl

-Cl Hydrogen
bonding

Avicel H2O, 180°C,
3–11 h

_ 15.0 _ Decreased by 3.9%
after three times

Han et al.
(2019)

8 CP-SO3H-1.69 -Cl Hydrogen
bonding

Avicel H2O,
170°C, 10 h

100 2.1 LA (33.1) Deactivated in two
runs

Zuo et al.
(2014)

9 SUCRA-SO3H -Cl Hydrogen
bonding

Hardwood (rice
straw) pretreated
by the ionic liquid

H2O,
120°C, 24 h

_ 12.7
(19.5)

Xylose
(44.4, 57.3)

Remained around
56% after seven
times

Hu et al.
(2014)

10 HA–CC–SO3H -Cl Hydrogen
bonding

Avicel H2O,
155°C, 4 h

11.3 10.8 _ Kept stable after
recycling three
times

Pang
et al.
(2014)

11 SA-TsOH -Cl Hydrogen
bonding

Avicel [BMIM][Cl],
130°C, 1 h

_ _ TRS (67.6) From 67.6 to 60.4%
after eight cycles

Shen
et al.
(2018)

12 Solid acid -Cl Hydrogen
bonding

Ball-milled Avicel H2O,
120°C, 24 h

_ 84.9 _ Lost activity after
four runs

Yang
et al.
(2016)

13 Fe3O4/Cl-
MCMB-SO3H

-Cl Hydrogen
bonding

Cellulose H2O,
140°C, 3 h

_ _ TRS (68.6) From 68.6 to 61.1%
after six cycles

Li et al.
(2020)

14 Cl-MCMB-SO3H -Cl Hydrogen
bonding

Pretreated MCC H2O,
130°C, 3 h

_ _ TRS (70.3) Decreased by 9.6%
after five times

Li et al.
(2020)

15 CMC-SO3H -Cl, -OH,
-COOH

Hydrogen
bonding

RSDC [BMIM][Cl],
130°C, 4 h

_ _ TRS (73.2) Kept stable after
recycling five times

Hu et al.
(2016)

16 SA-SO3H -Cl Hydrogen
bonding

Ball-milled Avicel H2O,
180°C, 12 h

_ 5.7 LA (52.2) Decreased by 11%
after five times

Shen
et al.
(2017)

17 CCSA -Cl, -OH,
-COOH

Hydrogen
bonding

Cellobiose H2O,
120°C, 6 h

_ 44.76 _ Leached about
10–25% of -Cl after
recycling three
times

Shen
et al.
(2014)

18 MCMPS-Cl-
SO3H

-Cl, -OH Hydrogen
bonding

Pretreated MCC [BMIM][Cl],
120°C, 6 h

_ _ TRS (84.7) Kept stable after
recycling three
times

Ding
et al.
(2019)

19 BCSA-IL-Cu IL groups Hydrogen
bonding

Bamboo
pretreated by
microwave

[BMIM][Cl]:
H2O � 1:1,
120°C, 2 h

_ _ TRS (27.6)
HMF (8.2)

Lost activity after
four runs

Zhang
et al.
(2013)

20 Porous polymers
solid acids

Boronic
acids
groups

Reversible
chemical
bonding

Avicel H2O,
120°C, 48 h

_ 94.6 _ _ Yang
et al.
(2016)

GO, graphene oxide; PPSAs, porous polymeric solid acids; CP-SO3H, sulfonated chloromethyl polystyrene resin; PTA, Phosphotungstic acid; MIL-101, a metal organic framework; LA,
levulinic acid; SUCRA-SO3H, sucralose-derived solid acid catalyst; HA–CC–SO3H, hydrochloric acid-treated cellulose derived carbon solid acid catalyst; SA, sucralose; TsOH,
p-toluenesulfonic acid; TRS, total reducing sugar, consisting of soluble glucose and oligosaccharides; MCMB, magnetic mesocarbon microbead; MCC, microcrystalline cellulose; CMC,
chlorine-doped magnetic amorphous carbon; RSDC, rice straw-derived cellulose; CCSA, a chlorine functionalized carbon-based solid acids; MCMPS-Cl-SO3H, a magnetically cellulase-
mimetic resin catalyst; BCSA, biochar sulfonic acid; HMF, 5-hydroxymethyl furfural; IL, 1-(trimethoxypropylsilane)-3-methyl imidazolium chloride.
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cellulose-binding groups. The apparent activation energies for the
hydrolysis of cellobiose and microcrystalline cellulose (Avicel)
catalyzed by a polymer-based catalyst bearing chlorine (-Cl) and
-SO3H (CP-SO3H) were reduced to 78 and 83 kJ mol−1,
respectively, which are much lower than those of sulfuric acid-
catalyzed hydrolysis (133 and 170 kJ mol−1, respectively)
(Figure 3; Shuai et al., 2012). The CP-SO3H catalyst adsorbed
both cellobiose and glucose and meanwhile showed higher
affinity to cellobiose, which is presumably because more
hydrogen bonds formed between the catalyst and cellobiose
due to more hydroxyl groups available in cellobiose. The
catalysts bearing -NH2 and -OH groups showed lower activity
than that bearing -Cl but higher catalytic activity than support
(Amberlyst-15) without any binding and catalytic sites (Shuai
et al., 2012). This comparison indicates that a more
electronegative group has higher affinity to cellulosic materials.
Similarly, a metal-organic framework material (MIL-101) carrier
bearing various electronegative groups (X � -Br, -NH2, -Cl, and
-NO2) and phosphotungstic acids (PTA) (PTA@MIL-101-X) also
showed enhanced catalyst-cellulose interactions (Figure 3). NO2-
grafted catalyst PTA@MIL-101-NO2 achieved the highest glucose
yield due to its highest affinity to cellulosic materials (Han et al.,
2019). The efficiency of cellulose hydrolysis increases with the
increase of the electronegativity (-NO2 > -Cl > -NH2 > -Br) of the
binding groups (Han et al., 2019), which is consistent with the
observation by Shuai and Pan (Shuai et al., 2012). A series of solid
acid catalysts bearing -Cl were synthesized with different methods
and enhanced glucose yields by about 2.5 times (93%) compared
to the catalysts without -Cl (37%) (Pang et al., 2014; Shen et al.,
2014; Zhao et al., 2014; Zuo et al., 2014; Hu et al., 2016; Yang et al.,
2016; Shen et al., 2017; Shen et al., 2018; Ding et al., 2019; Li et al.,
2020; Li et al., 2020). These catalysts follow the same binding
mechanism that proposed above for promoting cellulose
hydrolysis efficiency.

Ionic liquids consisting of electronegative anions such as -Cl
and -Br that can effectively disrupt cellulose crystalline via
forming new hydrogen bonds with cellulose hydroxyls are
also potential candidates for cellulose-binding sites. A
sulfonated biochar material grafted with ionic liquid

molecules (e.g. 1-(trimethoxy propyl silane)-3-
methylimidazolium chloride) could convert about 35.8% of
microwave-pretreated bamboo(750W) at 120°C in 2 h
(Figure 4; Zhang et al., 2013). The IL groups flexibly joined
to biochar, similar to the CBD and interdomain linker of
cellulase, can efficiently break the hydrogen bonding network
of cellulose crystalline and form new hydrogen bonds with
cellulose hydroxyls (Figure 4). Therefore, ionic liquid
molecules, compared to other binding sites discussed
previously, can act as very promising binding sites for
converting cellulose and real lignocellulosic biomass that
contain crystalline structures. Such a unique property of
ionic liquids is worth more attention in future work towards
developing a more practical catalyst for biorefineries.

(B) Binding Via Hydrophobic Interaction
Inspired by the hydrophobic interaction mechanism between
cellulose and the CBD of cellulase, Mosier et al. screened amino

FIGURE 3 | A summary of functional groups as binding sites of cellulase-
mimetic solid acid catalysts and the proposed catalysis mechanism for
cellulose hydrolysis.

FIGURE 4 | A sulfonated biochar material grafted with ionic liquid
molecules as a cellulase-mimetic solid acid catalyst.

FIGURE 5 | Adsorption of cellulose onto carbon materials via the
hydrophobic interactions between the axial faces of cellulosic materials and
the polycyclic aromatic rings of carbon materials.
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acids that could bind cellulose. Indoles and tryptophan blue that
have aromatic moieties were found to have high affinities to
cellulose (Mosier et al., 2004), which highly indicates that
hydrophobic interactions are essential for cellulose-cellulase
binding other than hydrogen bonding interactions.
Consistently, a variety of carbon materials demonstrate high
adsorption capacity for cellulose via hydrophobic interactions
(Chung et al., 2012; Chung et al., 2015; Onda et al., 2008;
Yabushita et al., 2016). For example, a mesoporous carbon
material with a pore diameter of 3.2 nm was able to adsorb
soluble sugars (glucose and cello-oligosaccharides) in a quantity
up to 670 mg g−1 (Chung et al., 2012); 1 g of a zeolite-templated
carbon material (ZTC) could adsorb 800 mg of cellulosic
molecules (Chung et al., 2015). The adsorption is mainly
attributed to the CH–π hydrophobic interactions between the
CH groups on the axial face of cellulose and the polycyclic
aromatics of carbon materials, whereas no hydrogen bonding
interaction between the mesoporous carbon materials and
cellulosic materials was observed (Figure 5; Chung et al.,
2012). The adsorption strength increased with the increasing
number of glucose units (Chung et al., 2015), which is consistent
with the study reported by Shuai and Pan (Shuai et al., 2012).
Negative enthalpy change was observed during the adsorption
of cello-oligosaccharides on carbon materials due to the CH–π
interactions (Yabushita et al., 2014). The hydrophobic
interaction between cellulose and carbon aromatic rings
exists considerably only in the presence of water as a solvent
because water molecules can drive the interaction of
hydrophobic interfaces of cellulose and carbon materials
(Meyer et al., 2006). The GO sheets in the carbon-based
solid acids can also guide the assembly of cellulose via both
π-π and hydrogen bonding interactions, facilitating the spread
of glucose and reducing the occurrence of side reactions (Zhang
et al., 2017).

(C) Binding Via Reversible Chemical
Bonding
Other than the aforementioned physical interactions, a
reversible chemical binding strategy was also explored by

Yang and Pan (Figure 6; Yang et al., 2016). Boronic acid
can form reversible covalent bonds with the vicinal hydroxyls
of carbohydrates (Springsteen et al., 2002; John Griffin et al.,
2004; Matsumoto et al., 2005) and therefore can be used as the
binding site of cellulase-mimetic solid acids. A bifunctional
porous polymer bearing boronic and sulfonic acids achieved
glucose yields of 43% in 24 h and 95% in 48 h, respectively, for
cellulose hydrolysis (Figure 5). Specifically, the boronic acid
group reacts with two vicinal hydroxyl groups of cellulose to
form a reversible five-element ring structure, which brings
cellulose close to the catalytic sites of the catalyst for
hydrolysis.

PERSPECTIVES

Cellulase-mimetic solid acid catalysts are excellent candidates
to replace traditional solid acid catalysts, in which the catalytic
sites and binding sites play a crucial role in efficient cellulose
hydrolysis. Cellulase-mimetic solid acids usually demonstrate
higher hydrolysis efficiencies than conventional solid acids
without tailored catalytic and binding sites; however, most of
the current studies use cellobiose, amorphous cellulose, or
ball-milled cellulose as the substrate for catalyst performance
testing. The selective hydrolysis of more practical substrates
such as untreated cellulose that has crystalline structures and
lignocellulosic biomass that has unremoved lignin is still
challenging and problematic for such a type of solid
catalysts due to the limited interaction between the solid
catalysts and bulk cellulosic materials. A few attempts to
use pretreated lignocelluloses as substrates only got limited
glucose yields (almost all less than 20%, Table 1) (Zhang et al.,
2012; Hu et al., 2014; Hu et al., 2016). To overcome the
limitation of current catalysts for hydrolyzing crystalline
cellulose and lignocellulosic materials, future research could
be focused on green solvents or activators that can be
developed as a cellulase-mimetic morphogenesis for
disrupting the crystalline structure of cellulose prior to the
binding (Brandt et al., 2013; da Costa Lopes et al., 2013; Lee
et al., 2014).

Developing water-soluble cellulase-mimetic solid acid
catalysts could be a potential solution to the slow mass
transfer problem. The water solubility of such catalysts could
facilitate the fast adsorption of water-soluble catalyst molecules
to cellulose surface. This is particularly necessary for
hydrolyzing cellulosic materials that exist in the solid form
and with lignin. In this way, the water-soluble catalyst can be
easily separated from lignin. With molecular design,
temperature-, pH- and light-sensitive functional groups can
be incorporated into the water-soluble catalysts to
manipulate their solubility and absorptivity for the recovery
of the catalysts after hydrolysis. The effects of lignin and
hemicellulose on stability of cellulase-mimetic acid catalysts
remains to be further studied.

The structure of the polyaromatic ring as a binding site of
cellulase-mimetic catalysts has a great application prospect in
future work. Although carbon materials have promising
cellulose adsorption potential, the unique structural features

FIGURE 6 | Proposed cellulose hydrolysis mechanism for the cellulase-
mimetic catalyst bearing boronic and sulfonic acids on porous polymer.
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of carbon polyaromatics are not fully optimized. Typically, the
activity is defined by aromatic structure (Basal plane) and the
specific functional groups on edges while other important
properties of carbon such as electron density,
hybridizations, defects, and electrophilicity are not well
understood. The current advancement in material
development may provide the internal local surface
constrains for better interaction between the catalyst
framework and cellulose in an intracrystalline free space for
enhanced enzyme-like activity. Furthermore, a deeper
understanding of the nature of the active and reactive sites
could provide a pathway towards next-generation
functionalized polyaromatic as a biomimetic catalyst for
cellulose hydrolysis.
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