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Introduction
Cellular signaling generates a chain of protein–protein 
interactions, often terminating in the activation of transcrip­
tion factors. Such signaling in molecular pathways induces 
and advances many human cancers. In principle, targeting the 
specific signaling pathways responsible for individual malig­
nancies would yield an effective treatment. However, identi­
fying the key signaling pathways relies on first inferring the 
signaling activity in that tumor. Ideally, coordinated changes 
in the phosphorylation state in network proteins could be 
measured to directly implicate specific signaling pathways 

in a malignancy, and the technology to measure such protein 
states is rapidly advancing. In the meantime, however, many 
algorithms use the existing transcriptional data to infer dif­
ferentially regulated pathways. The accuracy of such infer­
ence relies in large part on the sets of genes annotated to each 
pathway (reviewed in Ref. 1–6). In analyses of gene expression 
data, it is essential to select sets of genes whose expression 
is altered because of pathway activation. For example, the 
TRANScription FACtor (TRANSFAC) database2 assembles 
experimentally validated sets of genes resulting from trans­
cription factor activation. Using these data with set statistics 
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to infer coordinated changes in targets of transcription factors 
downstream of cell signaling pathways has been an effective 
substitute for directly inferring differential pathway signaling 
(eg, Ochs et al.3, and Fertig et al.4). Regardless of the mea­
surement technology, inference of signaling pathways thus 
requires statistical techniques to be able to account for changes 
in multiple molecular species.

Historically, analysis of differential pathway regula­
tion from transcriptional data has been divided into two 
major classes of methodologies (reviewed in Irizzary et al.5): 
over-representation methods and enrichment methods. Over-
representation methods compare sets of genes annotated to 
pathways to a list of those genes that are significantly differ­
entially expressed (DE) between two phenotypes. Enrichment 
methods employ a “soft” version of over-representation based 
on a summary statistic to characterize the level of differential 
expression of genes in the pathway relative to a null distribution. 
These methods have been extended to infer pathway members 
or networks from transcriptional data (eg, Tarca et al.6).

Both over-representation and enrichment methods for 
detecting differential pathway regulation are robust at inferring 
consistent up- or down-regulation of pathway genes. However, 
alterations in cell signaling pathways may be associated with 
complex changes in gene expression because of pathway inter­
actions.7 Moreover, expression in individual genes is highly vari­
able in human tumors8,9 in part because of the distinct evolution 
of individual tumors from the same cancer subtype. Thus, indi­
vidual genes may contribute differently to alterations in the same 
pathway. As a result, pathways that are dysregulated in human 
tumors may exhibit complex, multivariate changes in vari­
ability that are not captured by the aggregation of statistics of 
individual genes in over-representation or enrichment analyses. 
Here, we review more recent methods for detecting differential 
regulation based directly on multivariate measures of pathway  
variability. Specifically, we focus on Differential Rank Conser­
vation (DIRAC),10 and a more computationally efficient alter­
native algorithm, expression variation analysis (EVA). We also 
introduce a new R package, gene set regulation (GSReg),11 
that implements these algorithms to facilitate inference of  
pathway dysregulation.

Pathway Analysis Methodologies
In this section, we briefly review algorithms for pathway anal­
ysis from transcriptional data. Currently, all such algorithms 
identify significantly perturbed pathways by applying gene set 
statistics to compare gene expression of pathway targets in one 
phenotype to gene expression of pathway targets in another 
phenotype. As a result, they rely critically on the numerous 
curated databases that annotate genes to pathways.1 Regard­
less of the pathway targets, algorithms for pathway analysis 
can be divided into three major classes: over-representation, 
enrichment, and differential variability analyses. We list soft­
ware that implements each technique in Table 1 and refer the 
reader to Irizarry et  al.5, Khatri et  al.12, and Maciejewski.13 

for more reviews and comparisons of over-representation and 
enrichment analyses. An overview is provided in Figure 1.

The first methodology, over-representation analysis, 
assesses similarity between the set of all DE genes and the set 
of genes annotated to a pathway (Fig. 1A), and was introduced 
in Khatri et al.14 First, significantly DE genes between speci­
fied phenotypes are identified. For example, a set of DE genes 
may be defined by computing a Wilcoxon test to compare 
expression in two phenotypes for each gene measured and 
selecting significant genes as those having a false discovery 
rate below a threshold value of 5%. Then a gene set statistic is 
calculated for each pathway by applying a statistical test (eg, 
Fisher’s test) that compares each set of pathway genes to the 
set of DE genes. Pathways whose members are significantly 
enriched for DE genes are called significant. The methods 
listed in top of the Table 1 are examples from this family.

Whereas over-representation analysis compares dis­
crete sets of genes, the second methodology – enrich­
ment analysis – formulates set statistics that summarize 
the overall level of differential expression for the pathway 
genes between the phenotypes. The first method of this 
class was gene set enrichment analysis (GSEA).15 Gener­
ally, enrichment analysis calculates the differential activity 
of genes across phenotypes using a differential expression 
statistic (eg, a t- or Z-statistic). Then the differential activity 
of a pathway is calculated by applying another statistic (eg, 
Kolmogrov–Smirnov test, sum, mean, maxmean statistic, 
etc.) to compare the differential expression statistic for genes 
in the pathway to a null distribution of differential expres­
sion statistics, often defined from alternative sets of genes 
or permuting sample labels. The algorithms in the middle 
of Table 1 represent examples from this family accompanied 
by the software implementing them. A full review of these 
algorithms is provided in Khatri.12

Although they use different statistics, both over- 
representation and enrichment methods infer coordinated, 
average expression changes between phenotypes in sets of 
genes annotated to a pathway. Because they do not rely on a 
hard threshold, enrichment methods are more sensitive than 
over-representation methods at inferring coordinated expres­
sion changes in sets of genes. However, they may yield many 
more false positives. Regardless of their relative advantages, 
the false-positive rate of both tests may be dependent upon the 
number of genes in the set.41 Moreover, both methods perform 
the best when changes in genes annotated to a pathway are 
consistent and relatively homogeneous in each phenotype; for 
example, sharply different expression values for a given gene 
are seen in most samples. However, tumor pathway dysregu­
lation based on interactions among multiple genes may cause 
differential variability in gene expression between phenotypes. 
Therefore, the third family of the methods, differential 
variability analysis, is a multivariate approach that assesses 
variability within a pathway for a given phenotype and then 
compares these measures across phenotypes. This emerging 
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Table 1. Examples of software available for gene set analysis, divided into three major families of algorithms: over-representation, enrichment, 
and differential variability analyses.

Analysis Family Methods Availability Reference

Over-representation GeneMAPP
GoMiner
FatiGO
Gostat
FunAssociate
GOToolBox
GeneMerge
GOEAST
ClueGo
FunSpec
GO:TermFinder
WebGestalt
agriGO

http://www.genmapp.org/
http://discover.nci.nih.gov/gominer/
http://bioinfo.cipf.es/babelomicswiki/tool:fatigo
http://gostat.wehi.edu.au/
http://llama.mshri.on.ca/funcassociate/
http://genome.crg.es/GOToolBox/
http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/ 
publications/GeneMerge.html
http://omicslab.genetics.ac.cn/GOEAST/
http://www.ici.upmc.fr/cluego/
http://funspec.med.utoronto.ca/
http://go.princeton.edu/cgi-bin/GOTermFinder
http://bioinfo.vanderbilt.edu/webgestalt/
http://bioinfo.cau.edu.cn/agriGO/

19,20
21
22
23
24
25
26

27
28
29
30
31
32

Enrichment GSEA
SAFE
LIMMA
DAVID
TopGO
Gage
sigPathway

http://www.broadinstitute.org/gsea
Bioconductor (safe)
Bioconductor (LIMMA)
http://david.abcc.ncifcrf.gov/list.jsp
Bioconductor (topGO)
Bioconductor (gage)
Bioconductor (sigPathway)

16
33
34
35
36
37
38

Differential variability DIRAC
EVA
GINEA
IB-GSA
MAVTgsa
synergy

Bioconductor (GS-Reg)
Bioconductor (GS-Reg)
No implementation
No implementation
CRAN
http://www.biomedcentral.com/
content/supplementary/1752–0509–2–10-s3.pdf

10
39
40
18
41
42
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Figure 1. Pathway analysis methodologies from gene expression: (A) Over-representation analysis first performs a statistical test for each gene by 
comparing expression values in phenotypes to identify a set of significantly DE genes, obtaining a gene count ND. The procedure then counts the 
number of DE genes that are also annotated to a specified pathway (ND,P) and calculates a P-value for enrichment of that pathway by testing if ND,P is 
unusually high relative to ND and NP (the number of genes in the pathway). (B) Enrichment analysis first assigns an individual DE score to each of the 
genes annotated to a pathway, and aggregates these into a pathway score ZP. A similar score is computed for a null distribution, ZN. For example, this null 
distribution may be defined empirically from the DE score for alternative sets of genes or permuted sample labels. Enrichment analysis forms a pathway 
statistic by comparing the distribution of DE scores in ZP to that of DE scores in ZN. (C) Differential variability analysis defines a statistic to measure 
variability of the expression of pathway genes for samples from a given phenotype, denoted by VP1 and VP2 for phenotypes 1 and 2, respectively. If the 
variability between two phenotypes is significantly high (ie, |VP1 − VP2|  0), the pathway is identified as dysregulated.

methodology, pioneered in Eddy et al.10, and Zhang et al.38, 
has been extended to a broad set of algorithms summarized in 
Table 1, and is the focus of the remainder of this paper.

Differential Variability Analysis
Differential variability analysis first measures the level 
of variability in gene expression in a pathway for a given 

phenotype and then compares these levels for different 
phenotypes to determine differential pathway regulation. For 
example, different pathway genes may have expression out­
liers in distinct tumor samples relative to normal controls, 
captured with methods such as Open Grid Services Architec­
ture (OGSA).42 Such distinct alterations in individual tumors 
may also increase variability of expression in individual 
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genes, motivating approaches that apply over-representation 
or enrichment analysis to variability statistics for individual 
genes.43 Nonetheless, in general, alterations in expression may 
depend strongly on interactions among the genes in the path­
way. Consequently, new algorithms employing multivariate 
statistics are emerging in order to model such complex shifts 
in variability from one phenotype to another.

Zhang et al.38 developed one of the first methods of this 
type. Their algorithm calculates correlations between all pairs 
of genes within a pathway given a phenotype as a measure of 
pairwise interactions, and then a z-score for the difference in 
pairwise interactions between two phenotypes. To summarize 
the change in the correlation pattern, the algorithm applies a 
“maxmean” statistic to compute the maximum of the mean of 
positive and negative z-scores corresponding to all gene pairs 
in the pathway and then ranks pathways by this maxmean sta­
tistic. Watkinson et al.40 extended this algorithm by defining 
synergy between pairs of genes, using an information-theoretic  
approach. Recently, Liu et al.37 have developed a more sophis­
ticated analysis of variability called gene interaction enrich­
ment and network analysis (GIENA). Instead of correlation, 
they consider four possible statistics on the expression of two 
genes: their sum, difference, maximum, and minimum. These 
operations are assumed to correspond to gene pair coopera­
tion, competition, redundancy, and dependency, respectively. 
Thereafter, pathway activity is summarized by applying a max­
mean statistic over all pairs of interactions within the gene set, 
similar to Zhang et al.38 In contrast to both Liu et al.37, and 
Zhang et al.38,  Ochs et al.42 provide a formulation for pathway 
analysis based upon outliers to account for pathway dysregula­
tion and tumor heterogeneity, thereby utilizing a simpler algo­
rithm that does not rely on selecting a variability statistic.

Regrettably, none of the algorithms described above 
provide a robust software package to facilitate application 
to new data. They also rely on continuous, normalized gene 
expression measurements. We have previously shown that 
rank-based techniques (ie, methods that depend only on the 
relative ordering of expression values) (i) are more robust to 
the preprocessing and normalization of data44 than techniques 
relying on normalized gene expression, (ii) are competitive 
with the best classification methods in discriminating among 
phenotypes (eg, Geman et al.45), and (iii) can be far simpler to 
explain and interpret in biological terms.46,47 Therefore, Eddy 
et al proposed DIRAC10 as an ordering-based method for dif­
ferential variability analysis. Given a pathway and a pheno­
type, DIRAC generates a binary template (one component for 
each pair of genes) for the ordering of the expression values 
for the genes in the pathway, and then calculates the aver­
age “distance” between training samples and the template as 
the measure of the pathway variability of the phenotype. The 
“distance” used in DIRAC involves the Hamming distance 
over the pairwise comparisons. Permutation tests are used to 
estimate P-values associated with differences in this variabil­
ity score between phenotypes, and pathways with significant 

P-values are identified as perturbed. Consistent with increased 
complexity in more advanced stages of diseases,10 they found 
that most dysregulated pathways have higher variability in 
phenotypes with worse prognosis.

Although DIRAC is effective in inferring dysregulated 
pathways, the permutation test on which it is based is compu­
tationally inefficient, and becomes infeasible when applied to 
large numbers of pathways and samples. Therefore, we pro­
pose an alternative approach called EVA.36 Given a phenotype 
and pathway, EVA measures the average distance between 
two randomly chosen expression profiles for the phenotype. 
More specifically, the EVA variability statistic is the expected 
Kendall-τ distance48 between the rank vectors corresponding to 
two independent copies of expression profiles over the pathway. 
Kendall-τ is a distance that quantifies the difference between 
the orderings of two vectors. In this case, the permutation dis­
tance is defined for the rank vectors of gene expression profiles 
for pathway genes. The Kendall-τ distance between the two 
gene expression profiles is essentially the number of disagreeing 
comparisons between all pairs of genes in the pathway, analo­
gous to the change of rank in DIRAC. To estimate a variability 
statistic from samples in each phenotype, the EVA algorithm 
then averages the Kendall-τ distance between each pair of sam­
ples from that phenotype. These variability statistics are then 
compared between two phenotypes for each pathway to esti­
mate pathway dysregulation between phenotypes. The P-values 
for pathway deregulation are computed analytically from the 
difference between the empirical Kendall-τ statistics using an 
approximation for the asymptotic distribution from the theory 
of U-statistics described in detail in Afsari et al.36 A general 
description about U-statistics can be found in Van der Vaart.49

GSReg Package
We develop GSReg R package to perform differential vari­
ability analysis using DIRAC and EVA, available through 
Bioconductor. Here, we demonstrate our software by repro­
ducing the results from the DIRAC paper and replicating 
these results with EVA. Since the original data of DIRAC 
paper was in Matlab format, we provide the data in a comple­
mentary R package, GSBenchMark,50 also available through 
Bioconductor.

Figure 2 shows the results of variability pathway analysis 
comparing head and neck squamous cell carcinoma samples to 
matched normal controls.51 Figure 2 compares variability statis­
tics of pathways in tumors (y-axis) to normal controls (x-axis), 
revealing that most of the dysregulated pathways have higher 
variability in tumor samples than normal samples. This was the 
general trend found for DIRAC10 (Fig. 2A) and persists for 
EVA (Fig. 2B). In total, DIRAC found 48 dysregulated path­
ways and EVA discovered 64; there are 45 pathways in common 
and 68 in total. The general trend that most of the dysregulated 
pathways have higher variability in the phenotype with poor 
prognosis remains true for EVA in other datasets compared in 
DIRAC and provided in GSBenchMark (results not shown).
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DIRAC and EVA have been shown mathematically sim­
ilar.36 The main advantages of the EVA are efficiency in calcu­
lation and a more straightforward interpretation that does not 
involve a “template” but rather is simply the average distance 
between two samples. To illustrate the computational advan­
tage, for the head and neck cancer data, using a Lenovo Think­
Pad with Core i7–3720QM Intel CPU at 2.6 GHz and only 
1000 permutations of phenotype labels, the DIRAC analysis 
required 207 seconds while the EVA analytical computation 
only took 0.3 seconds. Figure 3 compares the corresponding 
P-values of the differential variability measure generated by 
DIRAC and EVA. These P-values are highly correlated, with 
a 0.88 Pearson correlation coefficient (P-value  ,2  ×  10−16). 
Taken together, these results indicate that EVA can be used as 
a more efficient alternative for DIRAC analysis.

To illustrate the difference between the outcomes of 
EVA and enrichment analysis, we chose a well-known enrich­
ment method, the Wilcoxon gene set test implemented in 
Linear Models for Microarray Data (LIMMA).31 For these 
analyses, we apply the Benjamini–Hotchberg procedure52 to 
account for multiple hypothesis testing, which was not fea­
sible in the previous comparison with the DIRAC analysis 
because of the relatively coarse resolution of P-values from 
the computationally intensive permutation test. In the case 
of the head and neck squamous tumors, both LIMMA and 
EVA infer a similar number of differentially regulated path­
ways (11 and 21, respectively). However, consistent with the 
test statistic, the significant pathways from EVA have con­
sistently higher variability in the tumor group than those 
identified with the enrichment statistic. On the other hand, 
if we apply LIMMA on the univariate F-test statistic for 
the difference of variances, LIMMA does not identify any 
pathway as dysregulated. This shows that analyses based on 
differential variability and enrichment may result in differ­
ent outcomes.

Conclusion
Cancer is known to be the result of the perturbations in sig­
naling pathways. Many algorithms have been proposed to 
identify and analyze these perturbations from transcriptional 
data. We reviewed three major families of pathway analysis 
methods, each having different criteria for calling a pathway 
perturbed: over-representation of DE genes, enrichment of 
large DE statistics in pathway genes, and significant difference 
in variability of gene expression. This last class of methods is 
particularly adept at inferring dysregulated pathways with dif­
ferential variability in multivariate gene expression patterns. 
Here, we implemented one such variability analysis algorithm, 
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DIRAC,10 and a novel, more efficient alternative EVA in an 
R package GSReg.

For future work, methods that incorporate more infor­
mation about biological mechanism may enhance interpre­
tation and reproducibility of learned dysregulated pathways. 
Also, methods that can assess variability across more than 
two phenotypes are needed to infer dysregulated pathways 
in distinct tumor subtypes. Moreover, existing methods for 
gene set analysis either detect the differential expression 
or differential variability to identify differential regulation 
across phenotypes. A more versatile methodology might be a 
combination of both types of pathway analyses. These combi­
nations may be implemented by using the Kendall-τ distance 
to compare two independent samples, but from two differ­
ent phenotypes. Thus, extending the sample comparisons in 
EVA would provide an algorithm to compare pathway vari­
ability within phenotypes with pathway variability between 
phenotypes.
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