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Spatiotemporal tracing 
of pandemic spread from infection 
data
Satyaki Roy1*, Preetom Biswas2 & Preetam Ghosh3

COVID-19, a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus, 
has claimed millions of lives worldwide. Amid soaring contagion due to newer strains of the virus, it 
is imperative to design dynamic, spatiotemporal models to contain the spread of infection during 
future outbreaks of the same or variants of the virus. The reliance on existing prediction and contact 
tracing approaches on prior knowledge of inter- or intra-zone mobility renders them impracticable. 
We present a spatiotemporal approach that employs a network inference approach with sliding time 
windows solely on the date and number of daily infection numbers of zones within a geographical 
region to generate temporal networks capturing the influence of each zone on another. It helps 
analyze the spatial interaction among the hotspot or spreader zones and highly affected zones based 
on the flow of network contagion traffic. We apply the proposed approach to the daily infection counts 
of New York State as well as the states of USA to show that it effectively measures the phase shifts in 
the pandemic timeline. It identifies the spreaders and affected zones at different time points and helps 
infer the trajectory of the pandemic spread across the country. A small set of zones periodically exhibit 
a very high outflow of contagion traffic over time, suggesting that they act as the key spreaders of 
infection. Moreover, the strong influence between the majority of non-neighbor regions suggests that 
the overall spread of infection is a result of the unavoidable long-distance trips by a large number of 
people as opposed to the shorter trips at a county level, thereby informing future mitigation measures 
and public policies.

COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 and declared a global pandemic 
by the World Health Organization, has claimed millions of lives and disrupted social and economic  order1. 
With a death toll of over 4 million worldwide, most countries are straddling the existential question on whether 
lockdown or the resulting poverty will claim more  lives2. The infectious disease scientists believe that large-
scale vaccination campaigns may help achieve herd immunity and restore normalcy by the end of  20213. While 
vaccines are expected to check contagion and save over 3 million people from losing their livelihood, there are 
concerns about the limited manufacture and distribution as well as the debilitating physiological effects of the 
newer variants of the  virus4.

There is consensus in the infectious disease research community that COVID—the third coronavirus outbreak 
in the last two  decades5—is here to stay, impelling widespread behavioral changes with regard to social mixing 
and prompt government  policymaking6. It is imperative to not only prepare for a rapidly changing socioeconomic 
and demographic landscape in the post-COVID-19 world, but also build an epidemiological knowledge base 
that can inform decision-making on the basis of the current trends like the susceptibility, duration of immunity 
of immunized population to the virus, effect of seasonality on spread, etc. Models used to build such knowledge 
bases must be dynamic, adaptive and incorporate the spatial and temporal context to be able to make more 
accurate predictions on spread.

Existing studies discuss factors, symptoms and preventive measures of COVID-197. Machine learning-based 
prediction models leverage epidemiological and clinical data to identify vulnerable  individuals8,9, trace the trends 
in infection  dynamics10 and measure the long-term effects of testing in identifying affected  individuals11. We 
proposed a time-varying linear optimization-based approach, which incorporated epidemiological factors, like 
population density, susceptible count and infected ratio as well as transportation costs, to distribute vaccines 
among  zones12 and optimization measures based on network science to guide human mobility and restrict contact 
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of susceptible and infective  individuals13. Regression and topic models have been used to pinpoint socioeconomic 
factors controlling contagion and the economic sectors affected by  it14,15, while reinforcement learning has been 
employed to design a dynamic pandemic lockdown strategy to control mobility of individuals within zones based 
on its healthcare resource  budget16.

There have been efforts to trace the path of the pandemic to predict and mitigate  contagion17. All these models 
rely heavily on the knowledge of inter- and intra-zone mobility patterns. For instance, first, Ahmed et al. study 
the functioning of contact tracing apps based on proximity and duration of contact with infected  individuals18, 
while InfluenzaNet and Flutracking build a repository from online surveys on geographic location of  patients19,20. 
By examining the parameters of the Susceptible–Exposed–Infected–Recovered (SEIR)-like transmission model 
on a network of 107 provinces characterized by high inter-zone mobility, Gatto et al. analyzed the effects of 
intervention on the diffusion of infection from hotspot  zones21. However, it is still infeasible to possess a prior 
(satellite- or mobile application survey-based) knowledge of mobility under all circumstances.

Network and population-based models show that human mobility, especially long-distance travels, has been 
deemed as a significant cause for contagion. Ohsawa et al. have characterized the effect of travel on infection 
spread through Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) model on newly infected cases, 
where they considered susceptible individuals contracting the disease from locally infected people or  travelers22. 
Verma et al. employed daily infection and mortality numbers of six nations to demonstrate the effects of mobility 
restriction on  contagion23. Livatiodis also utilized the daily infected numbers in the US and Italy to elucidate the 
relationship between environmental temperature and infection  spread24. Barreiro et al. highlighted the impor-
tance of time lapse between identification and isolation of infected individuals in modeling spread  dynamics25.

Contributions. We present a spatiotemporal approach to trace the path of the COVID-19 pandemic by 
leveraging a network inference algorithm (called GENIE3) solely based on the daily infection counts of the 
different zones comprising a region. As evidenced by the existing literature, the daily infection count over time 
is considered to be a comprehensive measure of the extent of infection spread. This is because it is difficult to 
quantify the real asymptomatic (or exposed) count, while the mortality rates are contingent on several socio-
economic and demographic  covariates14,26. The proposed approach generates a complete network of zones (viz., 
counties, boroughs, states, etc.), where the weight of each directed link measures the strength of influence of one 
zone on another. It factors in time by tracing the evolution of the influence of zones through a sliding window 
considering a prespecified time interval of infection count, while it addresses the spatial aspect by quantifying the 
interaction (or absence thereof) among neighboring zones that affect contagion. Our analysis identifies zones, 
called spreader zones, that posses strong outgoing links in the influence networks over time. While we show these 
zones to contribute significantly to contagion, they may or may not be drivers of infection (or causal) in nature.

We demonstrate the efficacy of the approach on a micro scale of the counties in New York as well as the 
macro scale of the states of USA, while studying the variations in spread dynamics in regions varying in size. 
We employ cosine similarity and a variant of topological sorting to derive directed acyclic graphs to measure 
shifts in interaction pattern among zones as well as the trajectory of contagion during the early phases of the 
pandemic. Moreover, we identify specific zones that (1) act as major hotspots (or spreaders) and also the most 
affected zones at different timepoints, based on their inflow and outflow of network contagion traffic; and (2) 
exhibit the highest and least variation in interaction with other zones. Finally, we collate our findings to trace 
the likely path of the pandemic, analyze the role human mobility has had on the early and later waves, and infer 
ways to contain future spread.

Materials and methods
Graph theory preliminaries. A graph is an ordered pair G = (V ,E) where V is a finite, non-empty set of 
objects called vertices (or nodes); and E is a (possibly empty) set of 2-subsets of V, called edges27. A directed graph 
is a graph in which edges have directions. A directed edge (u, v) ∈ E , allowing unidirectional information flow 
from vertex u to v and not necessarily from v to u. Each node u ∈ V  has in-neighbors defined as a set of nodes v 
such that there exists an edge from v into u, i.e., e(v, u) ∈ E . Similarly, the out-neighborhood of u ∈ V  consists of 
nodes v such that there exists an edge u into v, i.e., e(u, v) ∈ E . In a weighted directed graph, (u, v) ∈ E is associ-
ated with a weight wu,v ∈ [0, 1] , which is measure of the strength of influence of u on v.

Network inference. Let us discuss the features of the network inference approach. Given a time 
window of W days, let X = {x1, x2, . . . , xn} (shown in Fig.  1a), where n is the number of zones and 
xu = [x

tlow
u , x

tlow+1
u , . . . , x

tlow+W−1
u ] is the data corresponding to the u− th zone (i.e., xtu is the measurement of 

zone u on day t ∈ [tlow , thigh] ) (where thigh = tlow +W − 1 ). Given any pair of zones u and v (s.t. 0 ≤ u, v ≤ n ), 
the purpose of network inference is to predict from X how u influences v ( u  = v ), and vice versa. We employ 
 GENIE328 (which was conceived to derive the regulatory information among genes from expression data) to 
learn the influence of each zone (instead of gene) on another in terms of contagion spread. GENIE3 functions on 
the assumption that any xtu is a function f of the expression of xv ( u  = v ) plus random noise ǫ , i.e.,

Here Xt
−u is the vector containing the t-th measurement of all vectors except xu , i.e.,

At each time interval starting at tlow , GENIE3 solves Eq. (1) to calculate W ∈ R
n×n , where each element 

wu,v ∈ [0, 1] captures the influence of node u on node v28. Specifically, for each node v, GENIE3 employs 
machine learning feature ranking technique to find confidence value wu,v that minimizes the squared error 

(1)xtu = f (Xt
−u)+ ǫt∀t ∈ [tlow , thigh − 1]

(2){x1, x2, . . . , xu−1, xu+1, . . . , xn}



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17689  | https://doi.org/10.1038/s41598-021-97207-5

www.nature.com/scientificreports/

∑
t(x

t
v − f (Xt

−v))
2 (shown in Fig. 1b). Matrix W can be represented as a fully-connected, network G of V nodes, 

where wu,v is the weight of the directed link (u, v).

Temporal influence. Given any window size W ∈ Z , we generate a series of time-varying influence networks, 
capturing the evolution of the influence of each zone on another. Given thigh = tlow +W − 1 , each temporal 
network Gtlow→thigh is a fully-connected graph constructed on daily infection numbers of all zones over a period 
[tlow , thigh] by GENIE network inference algorithm. It comprises of |V| zones as nodes and directed weighted 
links wu,v for each pair of u, v ∈ V  ( u  = v ). We apply a sliding window to calculate a series of temporal influ-
ence networks G1→W ,G2→W+1,G3→W+2, . . . ,GT→T+W−1 to understand the evolving inter-zone influence. 
Furthermore, we adapt the notion of topological  sorting29 to generate a graph of the relative ordering of the 
zones V = {1, 2, . . . , n} based on the dates associated with each zone u, D(u). We employ Algorithm 1 that finds 
a directed acyclic graph of groups of zones ranked in the increasing order of their first documented infection 
dates ( zs ). The DAG Ŵ has links between successive batches of zone nodes. Figure 1c shows the DAG from the 
dates of 5 zones.

Spatial influence. For each instance of influence network, we gauge the influence of each zone on its neighbor 
resulting in flow (i.e., inflow and outflow) of infection. Inflow and outflow for a node indicates the amount of 
traffic entering and leaving that node in a given directed network. Nalluri et al.30 proposed an influence diffusion 
model in a miRNA-miRNA regulation network, where each node (miRNA) weight is the expression score and 
the weights of the links leaving a node determine its influence on the neighboring miRNA. In our context, we 
calculate the traffic inflow and outflow of all zones based on the influence weights of the temporal network and 
daily infection counts. Specifically, we posit that each zone u has a weight φ(u) , which is equal to the total daily 
infection count within time window W = [tlow , thigh] . 

Figure 1.  Graph structures. (a) Temporal influence networks created from matrix X using sliding time window 
( W = 5 ), (b) GENIE3 feature ranking technique employed to learn influence of X−1 on node 1, (c) Directed 
acyclic graph showing relative order of 5 zones based on topological sorting of dates, and (d) Inflow and outflow 
based on weighted degree centrality of node 4.
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1. Weighted in-degree centrality. It is the traffic flowing into a node and is calculated as 
F−(u) =

∑
v∈V wv,u × φ(v) , where wu,v is the weight on the directed link (u, v) in the temporal network.

2. Weighted out-degree centrality. It is the traffic flowing out of a node and is calculated as 
F+(u) = φ(u)×

∑
v∈V wu,v , where wu,v is the weight on the directed link (u, v) in the temporal network.

We argue that the zones with high F+(u)− F−(u) is one with a high inflow but a low outflow of contagion and is 
likely to have a surge in infection in future time intervals, while nodes with high weighted out-degree centrality 
( F+(u) ) are good spreaders. In Fig. 1d, we illustrate the weighted in- and out-degree centrality for node labelled 4 
in a 7-node graph. Following this, we also employ the following measures to estimate the similarity in contagion 
profiles of zones. Consider any two weighted directed graphs Gi(V ,Ei) and Gj(V ,Ej).

In-degree neighborhood similarity  Given any node u ∈ V  , let vectors au = {wv,u : (v, u) ∈ Ei} and 
bu = {wv,u : (v, u) ∈ Ej} . Then, in-degree neighborhood similarity S−i,j(u) = cos(au, bu).

Out-degree neighborhood similarity  Given any node u ∈ V  , let vectors au = {wu,v : (u, v) ∈ Ei} and 
bu = {wu,v : (u, v) ∈ Ej} . Then, out-degree neighborhood similarity S+i,j(u) = cos(au, bu).

Algorithm 1: Relative ordering
1 Input. Date vector D, set of zones V ;
2 Output. Directed acyclic graph Γ;
3 Γ = ∅;
4 V (Γ) = V (Γ) ∪ V ;
5 z0s = ∅;
6 while Z �= ∅ do
7 zs = Set of zones in V with the earliest date D(u) ∀z ∈ zs ;
8 V = V − zs ;
9 for u ∈ z0s do

10 for v ∈ zs do
11 E(Γ) = E(Γ) ∪ e(u, v);
12 end
13 end
14 z0s = zs ;
15 end

Metrics. We employ the following similarity metrics.

Cosine similarity. It is the similarity between two vectors a and b on a scale of 0 and 1, calculated as the 
cosine angle between them, i.e., cos(a, b) = a.b

||a||.||b|| . We calculate cosine similarities between two tempo-
ral networks Gi and Gj (where i,  j are both time intervals) as cos(vi , vj) , where vi = {wu,v; ∀u, v ∈ V(Gi)} and 
vj = {wu,v; ∀u, v ∈ V(Gj)} . Cosine similarities between temporal networks Gt→t+W−1 and Gt+1→t+W capture 
the overall variation in mutual interaction among zones across time intervals [t, t +W − 1] and [t + 1, t +W].

Pearson correlation coefficient. It measures the strength of a linear association between two vectors, where cor-
relation 1 is a positive correlation and −1 is perfect negative correlation.

Results
We consider two scenarios, namely the counties of New York (NY) and US states. We utilize the counts and dates 
of COVID-19 daily infection in the (1) NY counties from 1st March to November 4 (data shared on https:// 
github. com/ satunr/ COVID- 19/ blob/ master/ US- COVID- Datas et/ county_ daily_ inf_ (spatio- temp). csv) and (2) 
states from 21st January to 4 November, 2020 (https:// github. com/ satunr/ COVID- 19/ blob/ master/ US- COVID- 
Datas et/ us- states_ cumul ative_ (spatio- temp). csv). The temporal influence networks for the NY state counties 
and US states (as discussed in “Network inference”) are shared as animations (in .gif format) in https:// github. 
com/ satunr/ COVID- 19/ tree/ master/ Netwo rkInf erence, along with the Python script that were used to generate 
them. The experimental results are organized into the following four subsections: (1) phases in the pandemic 
timeline and (2) interaction among neighboring zones.

Phases in the pandemic timeline. In Fig. 2a, we generate temporal networks using GENIE3 (as described 
in “Network inference”) on the NY counties. We consider window sizes W = 30, 60, 90, 120 days and plot the 
cosine similarity between consecutive pairs of temporal networks (using approach described in “Metrics”), while 
noting the standard deviations in the corresponding curves equal to 0.0111, 0.0084, 0.0090 and 0.0095. Note that 
the cosine similarity curves for all window sizes follow a similar trend. Subsequently W = 60 , which exhibits the 
least standard deviation, is used in subsequent experiments. We discuss the implications of variations in window 
size later in  “Discussions”.

Fig. 2b,c show the cosine similarities between consecutive temporal networks for NY counties and US states, 
along with the daily total infected numbers, for W = 60 . We intuit that the drop in similarity is indicative of 
a phase shift in the interaction (determined by weights wi,j ) among zones. The sharp rise and fall in total daily 
infected count in the NY counties (in Fig. 2b) correspond to the brief decline in cosine similarity roughly at day 
30 (shown in black dotted line), suggesting a change in mutual interaction among zones. Conversely, despite 

https://github.com/satunr/COVID-19/blob/master/US-COVID-Dataset/county_daily_inf_%28spatio-temp%29.csv
https://github.com/satunr/COVID-19/blob/master/US-COVID-Dataset/county_daily_inf_%28spatio-temp%29.csv
https://github.com/satunr/COVID-19/blob/master/US-COVID-Dataset/us-states_cumulative_%28spatio-temp%29.csv
https://github.com/satunr/COVID-19/blob/master/US-COVID-Dataset/us-states_cumulative_%28spatio-temp%29.csv
https://github.com/satunr/COVID-19/tree/master/NetworkInference
https://github.com/satunr/COVID-19/tree/master/NetworkInference
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the rise and fall in daily infected numbers, the cosine similarities of the temporal networks derived from the US 
states undergo a much smaller dip—showing phase shifts in COVID timeline—at around day 70 and later at day 
180 (shown as dotted lines in Fig. 2b,c).

Interaction among neighboring zones. We next trace the path of contagion through the zones (i.e., NY 
counties and US states) during the different stages of the COVID-19 timeline.

First wave. For the first wave of contagion across zones, we rank the zones in the increasing order of their first 
documented infection date and calculate the directed acyclic graphs (DAGs) of zones (refer to “Network infer-
ence”). The opaqueness of directed edge in the DAG from zone u to v is proportional to the mean edge weight 
of the temporal networks from u to v. For NY counties and US states, the edges with weights ( wu,v ) ≥ 0.05, 0.07 , 
respectively, are preserved in the DAGs.

Figure 3a shows that the zone-wise interaction are the strongest from Westchester → Kings, New York → 
Nassau, Queens → Rockland. Figure 3c (depicting counties marked on a map attributed to Andre Koehne, https:// 
commo ns. wikim edia. org/ wiki/ File: New_ York_ Count ies. svg, via Wikimedia Commons) shows that Westchester, 
Kings, New York, Nassau, Queens and Rockland are neighboring counties serving as gateway and spreaders of 
contagion into New York state. Similarly, Fig. 3b depicts that Washington showed one of the first cases of COVID-
19. However, the flow of contagion is the strongest from New Jersey → Colorado, Maryland, Nevada, Tennes-
see → Hawaii, Indiana, Kentucky, Minnesota, Oklahoma, Pennsylvania, South Carolina → Columbia, Kansas, 
Missouri, Vermont Virginia. Figure 3d (depicting US states marked on a map attributed to Eric Pierce, https:// 
commo ns. wikim edia. org/ wiki/ File: Map_ of_ USA_ showi ng_ state_ names. png, via Wikimedia Commons) shows 
that few neighboring states are one level apart or on the same level in the DAG, namely, (1) Montana, Wyoming, 
North Dakota and South Dakota, (2) Missouri and Iowa, (3) New Jersey and Nevada, (4) Kentucky, Tennessee, 
South Carolina, are neighbors on the US map, (4) California, Arizona and (5) Michigan, Ohio. The labels on both 
Fig. 3c,d have been added using Adobe Photoshop CS6 (https:// www. adobe. com/ produ cts/ photo shop. html).

Subsequent waves. We identify the spreader zones (by calculating the weighted out-degree centrality as defined 
in “Network inference”) on the temporal networks derived from the NY counties and US state infection data. 
Figure 4a shows that Queens, Kings, Bronx, Nassau and Suffolk emerge as the counties with the highest out-
degree centrality while New York, Illinois, Texas, California and Florida are states with the highest out-degree 
centrality. The spreader counties as well as states are highlighted in red circles in Fig. 3c,d. Moreover, it is worth 
noting that the out-degree centralities of counties peak at nearly the same time, whereas the out-degree central-
ity of states peak at different timepoints. This suggests that, unlike the spreader states, there is a strong mutual 
interaction among the spreader counties. To validate this, we record the set of zones that each spreader zone 
influences the most when its out-degree centrality peaks. Specifically, we pick out temporal network at each 
timepoint when a spreader zone u has the highest weighted out-degree centrality. Following this, we identify the 
zone(s) v that are highly influenced by u, i.e., wu,v is the highest. We report such zones and corresponding wu,v 
in Table 1.

In Table 1 we summarize adequate evidence of the notion that there is a strong mutual influence among 
the spreader counties (Queens, Kings, Bronx, Nassau, Suffolk). Also, the weighted out-degree centrality of the 
spreaders subsided after day 75, while showing another sign of rising after day 150, marking the start of another 
wave. On the other hand, there is little mutual interaction among the US states. The strongest interaction, with 
the exception of Florida → South Carolina, Texas → Oklahoma, New York → New Jersey, Illinois → Indiana, exist 
between the spreader states and relatively distant states. This suggests that at a state level, the spread of infection 
takes place via longer trips during the subsequent stages of the COVID-19 pandemic.

Zone-wise variation of neighborhood in temporal networks. Recall that the series of temporal influence net-
works are obtained by applying GENIE3 on the daily infection count of zones at specific time intervals in the 

Figure 2.  Phases in the pandemic timeline. (a) Cosine similarities of consecutive temporal influence networks 
generated from the NY county COVID-19 infection data for varying time windows (W); Cosine similarities 
between consecutive temporal networks and total daily infected numbers for W = 60 for (b) NY state counties 
(starting 1st March, 2020) and (c) US states (starting 21st January, 2020), with the black dotted lines indicating 
phase shifts.

https://commons.wikimedia.org/wiki/File:New_York_Counties.svg
https://commons.wikimedia.org/wiki/File:New_York_Counties.svg
https://commons.wikimedia.org/wiki/File:Map_of_USA_showing_state_names.png
https://commons.wikimedia.org/wiki/File:Map_of_USA_showing_state_names.png
https://www.adobe.com/products/photoshop.html
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Figure 3.  Interaction among neighboring zones. (a,b) Directed acyclic graph (DAG) of NY counties (Queens, 
Kings, Bronx, Nassau and Suffolk) and US states (New York, Illinois, Texas, California and Florida). The position 
of a zone (and not the links per se) on the DAG is important as they represent the relative order based on the 
first date of infection; (c,d) USA map showing the counties and states with strong interaction, with the circles 
marking regions with high spread. The legends represent the day (starting on March 1st and January 21, 2020 
starting in NY counties and US states, respectively) when the daily infection peaked. Each black directed dotted 
line ( u → v ) in (d) shows the high Pearson correlation coefficient ( ≥ 0.7 ) between the weighted out-degree 
centrality ( F−(u) ) of spreader zone u curve and any weighted in-degree centrality—out-degree centrality 
( F+(u)− F−(u) ) curve of affected zone v over a 10-day period starting when the F−(u) curve of u reached its 
peak. The numbers in the red circles in (d) represent the level of the corresponding states (and their neighbor 
states) in the DAG.
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COVID-19 timeline (see “Network inference” for details). Each temporal network is directed, fully-connected 
and weighted with each node (representing a zone) having a set of incoming and outgoing edge weights from all 
other nodes defined as in- and out-neighborhood respectively in  “Graph theory preliminaries”. The change in 
in- and out-neighborhood of a zone indicates the variation in the extent to which the zone is influenced by or 
influencing contagion in other nodes.

For a node u, we find weight vectors of in- and out-neighborhoods for graph Gt,t+W−1 as 
V in
t,t+W−1(u) = {wv,u; ∀v ∈ V} and Vout

t,t+W−1(u) = {wu,v; ∀v ∈ V} . We determine the neighborhood variation 
of u by calculating the mean cosine similarity (see “Metrics”) between its in- (or out-neighborhood) vector 
between pairs of consecutive temporal networks Gt,t+W−1 and Gt+1,t+W , i.e.,

For in-neighbors:

For out-neighbors:

(3)Sin(u) =
1

T −W + 1

T−W+1∑

t=1

cos(V in
t,t+W−1(u),V

in
t,t+W (u))

(4)Sout(u) =
1

T −W + 1

T−W∑

t=1

cos(Vout
t+1,t+W (u),Vout

t+1,t+W (u))

Figure 4.  The 5 zones, i.e., (a) NY counties and (b) US states exhibiting the highest weighted out-degree 
centrality (and thereby acting as spreaders) in the temporal networks.

Table 1.  The set of zones (counties and states) that each spreader zone influences the most in the temporal 
network where its out-degree centrality peaks (single or multiple times).

Spreader zone Influenced zone and weight

NY counties

Queens (Kings, 0.10), (Bronx, 0.10), (Nassau, 0.09)

Kings (NY, 0.11), (Bronx, 0.11), (Queens, 0.11)

Bronx (Kings, 0.08), (NY, 0.08), (Suffolk, 0.08)

Nassau (Suffolk, 0.11), (Queens, 0.10), (Richmond, 0.10)

Suffolk (Richmond, 0.12), (Nassau, 0.11), (Bronx, 0.08)

US states

FL peak 1 (AZ, 0.12), (SC, 0.10), (NM, 0.10)

FL peak 2 (SC, 0.11), (OH, 0.09), (NV, 0.09)

CA peak 1 (GA, 0.11), (TN, 0.09), (MS, 0.09)

CA peak 2 (SD, 0.11), (ID, 0.09), (ND, 0.09)

TX peak 1 (OK, 0.07), (AZ, 0.07), (MS, 0.06)

TX peak 2 (ID, 0.11), (CA, 0.06), (SD, 0.06)

NY (NJ, 0.13), (MN, 0.13), (MI, 0.08)

IL peak 1 (CO, 0.08), (NJ, 0.08), (OH, 0.07)

IL peak 2 (CN, 0.07), (IN, 0.07), (MD, 0.06)
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Figure 5a shows that the key spreader counties Kings, Nassau, Queens, Suffolk and Bronx exhibit the high-
est similarity in the in- and out-neighborhoods, reaffirming the strong mutual interaction between them as we 
reported in Table. 1. Lesser infected counties such as Tioga, Chemung, Otsega, Seneca and Wyoming have a 
highly variable neighborhood. For the US states, the same zones do not have the highest (or least) in- and out-
neighborhood. While the spreader states do not feature among zones with similar in-neighbors, three spreader 
states (Florida, New York and Illinois) have similar outgoing neighbors, implying that they influence similar set 
of states (Fig. 5b).

Most affected zones. We hint in “Network inference” that the zones with high inflow but low outflow, i.e., 
F+(u)− F−(u) are likely to be the most affected by the pandemic. We show the counties and US states with the 
highest peaks in F+(u)− F−(u) . Figure 6a shows that Dutchess, Monroe, New York, Onondaga and Westchester 
are the most affected with 62, 91, 414, 68 and 461 mean cases per day between day 0 and day 90. Earlier we have 
shown that most of the highly infected counties (viz., Dutchess, Monroe, New York and Westchester) are placed 

Figure 5.  Zone-wise temporal variations in the neighborhood of influence. Cosine similarity on consecutive 
temporal networks to determine the counties with highly similar (shown in orange) and dissimilar (shown 
in blue) (a) in-neighborhood (b) out-neighborhood; US states with highly similar and dissimilar (c) 
in-neighborhood (d) out-neighborhood.
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at the top of the DAGs in Fig. 3a showing the first affected counties. Just as different US states (namely, New York, 
Illinois, Florida, California and Texas) have been shown (in Fig. 4b) to act as spreaders at different timepoints, 
Fig. 5b shows high temporal heterogeneity in highly affected states. Alabama, Arizona, Iowa, Louisiana, Mas-
sachusetts, Mississippi, New York, North Carolina, Puerto Rico and Utah all undergo wavelike rise and fall in 
F+(u)− F−(u) and register significantly high daily infection counts over the COVID-19 timeline and has been 
recorded in brackets in Fig. 6b.

We take this analysis a step further by tracing the path of contagion by analysing the relationship between 
the spreader and the most affected US states. For any zone u, let Cout

t1→t2
(u) and Cin−out

t1→t2 (u) be vectors of F−(u) 
and F+(u)− F−(u) between time interval [t1, t2] . For each peak (say, at time t1 ) in the F+(u) curve of a US state 
spreader u in Fig. 4b, we calculate the Pearson correlation coefficient (see “Metrics”) between Cout

t1→t1+k(u) and 
Cin−out
t1→t1+k(v) , where k is the time period of observation and v is an affected state shown in Fig. 5b. We posit that 

the high correlation ( ≥ 0.7 ) between each F−(u) spreader curve and any F+(u)− F−(u) curve of affected zones 
over the k = 10-, 20- and 30-day period, may be a consequence of the influence of the spreader on that affected 
zone and help trace the path of contagion.

Table 2 shows the (mean, standard deviation) in Pearson correlation coefficient for the spreader vs. affected 
zone curves over k = 10, 20, 30 ; and correlation ≥ 0.7 is marked in red. (Individual correlation tables for 
k = 10, 20, 30 are provided as supplementary materials; the correlations do not vary significantly across tables.) 
While Florida (FL) and New York (NY) emerge as the strongest spreaders, since the table only represents the 
major spreader and affected states, there are some spreaders (shown as columns with peak day in the COVID-19 
timeline) and affected zones (rows) that do not participate in high correlation. It is worth noting that the cor-
relation between NY spreader and NY affected zone is negative ( −0.58 ). Albeit counter-intuitive, this is because 
we are capturing the relationship between the potential of a zone to act as spreader (i.e., outflow) and another 
zone receiving the contagion (i.e., inflow - outflow) and it is not possible for NY to act as the spreader and also 
as the affected zone at the same time. We represent the high correlations with directed black dotted lines from 

Figure 6.  Most affected zones with the corresponding COVID-19 daily infection numbers. (a) NY counties and 
(b) US states showing a high difference between inflow and outflow measured in terms of difference between 
weighted out-degree from weighted in-degree.

Table 2.  (Mean, standard deviation) of Pearson correlation between each weighted out-degree centrality 
( F−(u) ) spreader (column) curve and a weighted in-degree centrality - out-degree centrality ( F+(u)− F−(u) ) 
curve of affected zones (row) over 10-, 20- and 30-day windows, where correlation ≥ 0.7 is marked in red.

State FL(170) FL(128) CA(126) CA(170) TX(125) TX(167) NY(69) IL(95)

AL 0.88, 0.07 -0.34, 0.43 -0.51, 0.54 0.82, 0.09 -0.34, 0.42 0.72, 0.25 0.87, 0.13 0.29, 0.62

AZ -0.49, 0.73 0.61, 0.41 0.65, 0.40 -0.49, 0.70 0.51, 0.38 -0.38, 0.7 0.9, 0.02 -0.83, 0.13

IA 0.84, 0.08 -0.15, 0.43 0.34, 0.28 0.89, 0.04 0.11, 0.38 0.82, 0.06 -0.96, 0.02 -0.55, 0.24

LO -0.50, 0.17 -0.43, 0.27 0.04, 0.4 -0.66, 0.06 -0.16, 0.46 -0.63, 0.12 -0.74, 0.13 -0.74, 0.16

MA 0.48, 0.31 0.77, 0.12 0.66, 0.23 0.52, 0.28 0.44, 0.42 0.41, 0.3 0.89, 0.09 -0.89, 0.13

MI 0.72, 0.25 0.54, 0.41 0.79, 0.05 0.59, 0.24 0.86, 0.04 0.54, 0.32 -0.89, 0.07 -0.29, 0.67

NY 0.82, 0.17 0.54, 0.35 0.46, 0.35 0.71, 0.16 0.25, 0.53 0.86, 0.03 -0.58, 0.29 -0.88, 0.15

NC 0.73, 0.28 -0.18, 0.22 0.23, 0.35 0.64, 0.43 0.31, 0.41 0.62, 0.35 0.72, 0.32 -0.90, 0.08

PR 0.16, 0.54 0.73, 0.23 0.92, 0.06 0.07, 0.62 0.92, 0.03 0.30, 0.29 -0.25, 0.46 -0.85, 0.04

UT 0.89, 0.15 0.45, 0.28 0.44, 0.72 0.84, 0.19 0.18, 0.75 0.55, 0.63 0.92, 0.09 -0.91, 0.06
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spreaders to affected zones Fig. 3d. There are only a few directed links between neighbor states, suggesting that 
long distance (and not short distance) trips are major means of contagion spread among the US states.

Discussions
The experimental results provide several insights into the dynamics of COVID-19 spread. First, the cosine 
similarity analysis of consecutive temporal network snapshots show that the pairwise influence among zones 
change with the variations in overall infection count. Although the drop in cosine similarity is more pronounced 
in case of a smaller region (namely, NY counties) than for a larger region (namely, US states), the dissimilarity, 
which may vary in extent depending on scale or region, in the temporal networks can be a measure of phase 
shifts in the pandemic timeline. Second, in a smaller region like NY state, there are neighboring counties (like 
Queens, Kings, Bronx, Suffolk and Nassau) that exhibit high mutual influence (see Table 1) that remain largely 
invariant over time (Fig. 5c,d). This suggests that travel restrictions between counties or setting up quarantine 
zones by clustering the neighboring high mutual influence zones can provide effective policy making avenues to 
curb pandemic spread. On the other hand, upon consideration of the larger scenario comprising all the states of 
USA, only a few neighboring states are influencing the contagion spread into one another. This suggests that the 
overall spread of infection is a consequence of essential long-distance trips in bulk as opposed to short distance 
trips between neighbor states; such long distance trips are more likely to be an outcome of air-traffic between 
different states in the USA. Furthermore, Fig. 2c shows that the change in infection counts are not always reflected 
by the dissimilarity of temporal networks depicting US states at different timepoints; this is in contrast to the 
effects seen in Fig. 2b where the phase shift is significantly more pronounced. This suggests that travel restrictions 
imposed between US states based on their instantaneous infection counts may not turn out to be an effective 
public policy strategy of mitigating contagion spread; instead the high contagion spread edges from the directed 
graphs inferred by our proposed method may serve as a better indicator of devising such restrictions in the future.

Third, the proposed approach considers the most affected zones are the ones with high inflow but low out-
flow (termed in - out) of contagion traffic measured in terms of weighted degree centrality. Interestingly, for NY 
counties as well as US states, a small subset of nodes emerge as highly affected. Figure 6 shows that Alabama, 
Arizona, Iowa, Louisiana, Mississippi, New York, North Carolina, Puerto Rico and  Utah31–35 not only have high 
daily infection rates but also show a near-periodic rise and fall in in-out score over time. This goes to show that 
the same set of zones in a region may repeatedly emerge as most affected at varying stages in the pandemic period 
as a result of the combined influence of other zones. Fourth, it is worth asking how the proposed approach can 
be useful in the event of an ongoing pandemic when one does not have the time-series infection numbers for 
the entire cycle of the pandemic. Since the cosine similarity between consecutive temporal networks does not 
vary considerably over time (except when the daily infection count changes drastically), we posit that the cur-
rent infection counts may be utilized to infer zone-level influence weights to inform travel restriction measures 
to contain mobility between the affected zones and other zones they influence heavily at a given time instance.

Fourth, as we discuss in  “Introduction” that the daily infected count is one of the accessible epidemiologi-
cal information. To study the effect of minor discrepancy between the actual and reported infection count on 
the accuracy of the resultant influence network, we add random noise (sampled from normal distribution with 
mean 2000 to 20000 and standard deviation equal to 5% of the mean noise) to the daily infected numbers of 
US states. Figure 7a shows that the cosine similarity between the network derived from the original infected 
numbers and its noisy counterpart is over 0.8, suggesting that the approach is fairly accurate despite approxima-
tions. Moreover, we generate the 5 influence networks i.e., one pre-lockdown (January to mid-March 2020) and 
four post-lockdown (each created with time window W = 60 days, namely, March 15–May 14, May 15th–July 

Figure 7.  Effectiveness of network inference in predicting contagion. (a) Cosine similarity between original 
network on US infected data and noise data created by adding random noise; (b) Frequency of states emerging 
as top 10 spreaders in five influence networks (one pre-lockdown January to mid-March 2020 and four post-
lockdown mid-March to November 2020).
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14, July 15–September 14, September 15–November 10, 2020). Then, we calculate the top 10 spreader zones 
(with high out-degree centrality as discussed in “Network inference”). Figure 7b shows that specific US states 
like California, Illinois, Texas, etc. consistently emerge as top spreaders across the five influence networks. A 
network inference approach that leverages this information can thus be a highly robust way of understanding 
overall contagion patterns.

Finally, the choice of the window size (W) controlling the duration of infection data to be considered while 
generating the influence graph for a single timepoint may influence the findings. In Fig. 2a we showed that the 
overall trends in the cosine similarity is retained for varying W = 30, 60, 90, 120 days. While we used the W = 60 
since it results in the least noisy similarity curve (calculated in terms of standard deviation), we shall explore a 
more comprehensive criterion to determine the ideal W. Given that too large a W will prevent the model from 
recognizing minor phase shifts in contagion and too small W may render the resultant influence graph unin-
formative, a more dynamic, adaptive approach, keeping socioeconomic and demographic factors in mind, may 
be useful in determining its value.
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