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Abstract
Inference of population structure from genetic markers is helpful in diverse situations, such as association and evolutionary studies. In

this paper, we describe a two-stage strategy in inferring population structure using multilocus genotype data. In the first stage, we use

dimension reduction methods such as singular value decomposition to reduce the dimension of the data, and in the second stage, we use

clustering methods on the reduced data to identify population structure. The strategy has the ability to identify population structure

and assign each individual to its corresponding subpopulation. The strategy does not depend on any population genetics assumptions

(such as Hardy–Weinberg equilibrium and linkage equilibrium between loci within populations) and can be used with any genotype

data. When applied to real and simulated data, the strategy is found to have similar or better performance compared with STRUCTURE,

the most popular method in current use. Therefore, the proposed strategy provides a useful alternative to analyse population data.
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Introduction

Information about the population structure of species is

useful in a variety of situations, such as admixture mapping,

subspecies classification, genetic barrier detection and evol-

utionary study.1–5 For example, anthropologists may have the

debris of ancient people, supplied by archaeologists, and want

to learn about the relationship between the ancient people and

modern populations to infer the evolutionary history of

human beings. Population structure can be identified based

on visible characteristics such as language, culture, physical

appearance and geographical region. But this can be subjective

and may bear no relevance to genetics.3 In other situations,

the presence of population structure may constitute a practical

nuisance. In association studies, case-control design is often

used to identify genetic variants underlying complex traits by

comparing allele frequencies between unrelated individuals

who are affected and those who are unaffected. The presence

of population structure can lead to spurious associations

between a candidate marker and a phenotype, however, as a

result of population structure in the sample.6,7 In forensic

studies, the identification of reference groups is very import-

ant, but this can be difficult when population structure

exists.4,8 In all of these situations, the first step is to identify

population substructure.

Pritchard et al. introduced a model-based clustering method

to infer population structure and assign individuals to popu-

lations using multilocus genotype data.3 They used a Bayesian

formulation to generate the posterior distribution using a

Markov chain Monte Carlo (MCMC) method based on

Gibbs sampling. Their main modelling assumptions were

Hardy–Weinberg equilibrium within populations and linkage

equilibrium between loci within each population.3 This is the

predominant method currently used in genetic studies.

Some other methods have been proposed,9–12 but all are

model-based (parametric) methods. These methods have their

own advantages and disadvantages. They all have model

assumptions because of their parametric nature.

Here, we describe a two-stage strategy for inferring popu-

lation structure, which is an alternative and complementary

approach to STRUCTURE3,10 for exploring data. In the first

stage, we use methods such as singular value decomposition

(SVD) to reduce the dimension of data and then perform

clustering on the reduced data. This two-stage strategy is

widely used in knowledge induction and representation to

determine similarities between the meaning of words and

PRIMARY RESEARCH

q HENRY STEWART PUBLICATIONS 1473–9542. HUMAN GENOMICS . VOL 2. NO 6. 353–364 JUNE 2006 353



passages by analysis of large text corpora.13,14 Our method

does not use assumptions such as Hardy–Weinberg equili-

brium for populations or linkage equilibrium for loci. Here

we show that our method is faster and has comparable (when

model assumptions hold) or better performance (when model

assumptions fail) than STRUCTURE when applied to real

and simulated data.3,10

In the next section, we describe the strategy and methods

we use and some of the advantages of the approach we take.

We illustrate our method with examples and make compari-

sons with STRUCTURE in the Results section. In the

Discussion section, we highlight issues in the methods, the

potential use of the methods, and future work.

Methods

It is well known that cluster analysis is difficult in high-

dimensional space because standard clustering algorithms such

as the Expectation-Maximization (EM) algorithm15 and the

K-means method are probably trapped in local minima.13,16

Although many initialisation methods have been proposed to

deal with this problem, they have had only limited success.13

Therefore, a two-stage procedure seems valuable: first

reduce the dimension of the original space and then cluster

in the reduced (low-dimensional) space. In general, any

dimension reduction methods and clustering methods can

be plugged into this two-stage framework. In this paper, we

use SVD as the dimension-reduction method, and the mixture

model and K-means as the clustering methods. We also

propose a non-parametric clustering method, which can

be viewed as a variant of the K-means method, for small

sample sizes.

Dimension reduction
SVD is widely used in knowledge induction and represen-

tation and information retrieval. For example, SVD plays a

key role in latent semantic analysis (LSA) or latent semantic

indexing (LSI). The semantic dimensions are thought to

contain redundant and noisy information, which can be

separated out and should be ignored. Bartell et al. showed

that the document representations given by LSI are equivalent

to the optimal representations found when solving a particular

multidimensional scaling problem in which the given inter-

object similarity information is provided by the inner

product similarities between the documents themselves.17 LSI

automatically computes a much smaller semantic subspace

from the original text collection. This improves recall and

precision in information retrieval; information filtering or text

classification; word sense disambiguation; word sorting and

relatedness judgments; the prediction of learning from text;

and summarising skills.14,18 The effectiveness of LSI in

empirical studies is often attributed to the reduction of noise,

redundancy and ambiguity.14,18,19 By introducing a dual

probabilistic model based on similarity concepts, Ding showed

that semantic correlations could be characterised quantitatively

by their statistical significance — that is, the likelihood.18 He

further showed that LSI is the optimal solution of the model

and proved the existence of the optimal semantic

subspace. This model explains theoretically the performance

improvements observed for LSI.

Mathematically speaking, SVD is a matrix decomposition

technique. A real-valued m-by-n matrix (say X) can be

represented uniquely (up to certain trivial rearrangements of

columns and subspace rotations, in the case of duplicated

singular values) as the product of three matrices:

X ¼ USV T ; ð1Þ
where both U and V are column orthonormal and S is a

diagonal matrix of singular values.20 There is a direct

relationship between SVD and principal component analysis

(PCA) when PCA is performed from the covariance matrix

using the following equations:

XX T ¼ ðUSV T ÞðUSV T ÞT ¼ US 2U T ; ð2Þ

X TX ¼ ðUSV T ÞT ðUSV T Þ ¼ VS 2V T : ð3Þ
If each row of X is normalised (centred and unitary), the

covariance matrix S of data X is XX T. We know that:

S ¼ AVAT ¼ A

l1 0

. .
.

0 lp

0BBB@
1CCCAAT ; ð4Þ

where A is an orthonormal matrix and the l values are the
eigenvalues of S. The decomposition is unique up to some
trivial column rearrangements. Matrix A contains the princi-

pal components of columns of X. From equations (2) and (4),

we can see that the left singular vectors U are the same as the

principal components of columns of X. Similarly, the right

singular vectors V are the same as the principal components

of rows of X.

Clustering
We choose to use two clustering methods: one is mixture 4,

proposed by Figueiredo et al., based on the mixture model,21

the other is K-means. The advantages of mixture 4 are that

it is capable of selecting the number of components (ie the

number of clusters) and that it is relatively robust to the

initialisation of the parameters. Figueiredo et al.21 used the

following finite mixture models:

pðyjuÞ ¼
Xk
m¼1

ampðyjumÞ;

where Y ¼ ½Y 1; . . .;Y d
T , a d-dimensional random variable

with y ¼ ½y1; . . .; yd T being a realisation of Y; a1; . . .;ak are
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the mixing probabilities; each um is the set of parameters
defining the mth component; and u ¼ {u1; . . .; uk;a1; . . .;ak}

is the complete set of parameters needed to specify the

mixture. They used the minimum message length criterion

and the component-wise EM algorithm to integrate

estimation and model selection in a single algorithm.22 This

method can avoid another well-known drawback of the EM

algorithm for mixture fitting — namely, the possibility of

convergence towards a singular estimate at the boundary of

the parameter space.21

K-means is a commonly used non-parametric clustering

method, but it has some drawbacks. We propose a clustering

method (density-based mean clustering [DBMC]), which is

a variant of K-means but can avoid some of its drawbacks.

The details of DBMC are provided in Appendix 1.

Number of subpopulations
There are many methods for estimating the number of clusters

which can also be used for estimating the number of sub-

populations. Zhu et al. showed that Bayesian information

criterion (BIC) from their mixture model performed better

than STRUCTURE in inferring the number of subpopu-

lations.23 All of these methods can be integrated into the

clustering procedure.

Missing data imputation
It is not uncommon to have missing values in genetic studies.

Such data can be manually flagged and excluded from

subsequent analyses.24 Many analytical methods, such as PCA

or SVD, require complete matrices.25 Although some studies

reported dealing with SVD/PCA with missing data,26–29 they

often rely on specific probabilistic models and have limited

generalisability. Although one solution to the missing data

problem is to repeat the experiment, and this method has been

used in the validation of microarray analysis algorithms,30

this strategy may be too expensive and impractical for most

studies. Therefore, we need to estimate the missing values

from non-experimental methods.

There is little published literature concerning missing

value estimations for genotype data from human populations.

The uniqueness of this issue is that the genotype data are

categorical by nature. Note that Sen and Churchill31 and

Broman et al.32 discussed using the EM algorithm and the

hidden Markov model to deal with missing genotypes, but

they were mostly concerned with experiments involving

inbred animals.

Genotype data are usually in the form of large matrices of

genotypes of marker loci (columns) from different persons

(rows).3 Without loss of information, we can transform this

person-marker matrix into a genotype–person matrix. For

each marker, all of the genotypes appearing in the data are

listed, one genotype per row, with a value of one for the

cell if a person (column) has this genotype, and zero otherwise.

Using this reformatting we now have a large 0–1 matrix.

We can view this genotype–person matrix as a frequency

matrix, with each cell denoting the frequency of the person

(its column) who has the genotype that is denoted by its row.

Such frequency matrices are commonly used in LSA and are

called ‘word–document matrices’ or ‘term–document

matrices’.14,18,33 Because we can fully reconstruct the original

person–marker matrix from this genotype–person matrix,

there is no information loss in this transformation. We impute

the missing values on the basis of this genotype–person

matrix. In this study, we used an imputation method which is

similar to the ‘K nearest-neighbour’ (KNN)-based method

used in Troyanskaya et al.34 The rationale underlying this

method is that where data points are clustered together

(similar) in the lower dimension, we can expect them to be

clustered together (similar) in the higher dimension as well.

In this way, the missing dimensions of a data point (individual

in our case) can be estimated by its neighbours (those which

are very similar to the data points under study), with no

missing data in these dimensions. Details of this method are

provided in Appendix 2. In this study, we did not iterate to

impute the missing values (ie we only use KNN once).

Results

Data
To evaluate fully the performance of the proposed strategy, we

applied it to two real datasets and two simulated datasets. The

first real dataset was that reported in Rosenberg et al.,5 which

has genotypes at 377 autosomal microsatellite markers in 1,056

individuals from 52 populations. Here, we considered the

whole dataset, as well as two American populations, the Pima

and Surui populations, with 25 and 21 individuals, respect-

ively, to demonstrate our methods. The other real dataset was

from the HapMap project;35 we used genotype data from 45

Chinese and 44 Japanese on chromosome 17 which was

released in October 2005. A dataset is formed by the 500 most

informative single nucleotide polymorphisms (SNPs) using the

methods proposed in Rosenberg et al.36

One simulated dataset was generated under the coalescent

model using MS, a program developed by Hudson.37 A

progenitor population gave rise to two subpopulations 3,000

generations ago. Subpopulation 1 had a constant size of

10,000, began to grow exponentially 1,000 generations ago

and has now reached 40,000. Subpopulation 2 had a constant

size of 2,000 before 2,000 generations, and then instan-

taneously expanded to 10,000 and has remained at that size

until the present. We also assume that the mutation rate per

site per generation is 1028 and that we are interested in a

segment of 10 kilobases. No recombination is set. In this

fashion, we have generated 100 such chromosomal segments,

each segment harbouring 27–77 SNPs. The chromosomal

segments are pooled together to produce more genotype data.

A dataset is formed by randomly sampling 400 haplotypes
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(200 individuals) from subpopulation 1 and 200 haplotypes

(100 individuals) from subpopulation 2. The second simulated

dataset was taken from Tang et al.12 (http://www.fhcrc.org/

science/labs/tang/). This dataset contains 50 individuals from

each of the two ancestral populations and 200 individuals from

the admixed population. The true individual admixture values

of the admixed individuals are also available.

Population structure identification
We used STRUCTURE 2.010 and our SVD-based procedure

on the datasets. In the second stage (the clustering stage) of our

procedure, we used both the mixture model and K-means

methods for clustering. For STRUCTURE, we tried the four

available models. If not stated explicitly, we used the default

model with admixture and correlated allele frequencies and set

both burnin length and number of MCMC replications after

burnin to be 20,000.

For Rosenberg et al.’s full dataset,5 we followed their

procedure and ran analyses (STRUCTURE 2.0 and mixture 4)

multiple times for the number of populations (clusters) from

two to six. Table 1 shows the Pearson correlation coefficients

between the results of the STRUCTURE and mixture 4

analyses using the first five principal components. For number

of populations (clusters) K ¼ 5 and 6, the relatively small

correlation coefficients of two clusters (cluster 5 for K ¼ 5 and

cluster 1 for K ¼ 6) are caused by the accumulated differences

between the estimates of the two methods (the probabilities

of belonging to one cluster, or membership coefficients, must

sum to 1 across clusters).

We tried the four models available in STRUCTURE 2.0

on the Pima–Surui data subset with 100 randomly chosen

markers. The model assuming independent allele frequencies

among populations with no admixture yielded the best results.

Burnin length and number of MCMC replications after

burnin were all 10,000 in the analyses. The results are

summarised in Table 2. Clearly, it is difficult to draw the

conclusion that there are two populations in the dataset from

the above results, but once we set K ¼ 2, STRUCTURE 2.0

can assign each individual correctly to the population it

belongs to.

Before performing SVD, we first transformed the data

into the genotype–person format. Wall et al. reported that

pre-processing is critical in SVD/PCA,38 which is well

known in LSA.14,18,19,39 We applied the so-called tf-idf

transformation18,39 on the genotype–person matrix. For the

Pima–Surui sub-dataset with 100 randomly chosen markers,

on the reduced two-dimensional space, mixture 4 finds two

clusters. The mixture 4 and K-means methods assign indi-

viduals correctly to their populations with two clusters.

Figure 1 plots pairwise cosine similarities between indi-

viduals in the reduced two-dimensional space. Figure 2 shows

the pairwise cosine similarities between individuals using

the original data without reduction. It seems that the original

data are noisier and that SVD not only reduces the dimension

but also reduces noise.

To evaluate our method’s performance, we reduced the

number of markers. When the numbers of markers were 80,

60, 40 and 20, both methods performed equally well (data not

shown). When the number of markers was reduced to ten,

both methods still performed well, with STRUCTURE

slightly better when the marker information was limited

(data not shown).

To compare the performance of the methods fully, we

conducted a simulation study using population genetics

models. Table 3 shows the results for three datasets from the

simulation study. It has been reported that STRUCTURE

provides very stable estimates when the model assumptions

hold.5 In the presence of tightly linked SNPs, STRUCTURE

not only performed worse but was also not very stable. For

example, Table 3 shows that when 494 SNPs were used, the

best performance of STRUCTURE only misclassified three

individuals; however, the median number of misclassified

individuals by STRUCTURE was 33. For the same dataset,

the time taken for the analyses (using a laptop with Intel

Table 1. Correlation coefficients between the estimates of STRUCTURE and the singular value decomposition (SVD)-based method

from the full data of Rosenberg et al.5

Cluster/population

Ka 1 2 3 4 5 6

2 0.9602 0.9602

3 0.9756 0.9695 0.9826

4 0.9824 0.9853 0.9667 0.9708

5 0.9602 0.9836 0.9470 0.9719 0.5715

6 0.5688 0.9473 0.9473 0.9719 0.9642 0.9596
aK is the number of clusters/populations.
Note: For the SVD-based method, the first five principal components were used. The mixture model was used for clustering.
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Pentium M 1.80GHz CPU, 512MB RAM and Windows

XP) was about 30minutes for STRUCTURE and about

28 seconds for the proposed method computing 100 largest

singular values in MatLab software (The Mathworks, Inc.).

For the dataset from the HapMap project, STRUCTURE

best performance’s misclassified two of the 45 Chinese

individuals and two of the 44 Japanese individuals, whereas

the best performance of the proposed strategy classified

Table 2. Results from STRUCTURE 2.0 on the Pima–Surui data with 100 randomly selected markers without missing genotypes.

Ka Run 1b Run 2b Run 3b Run 4b Run 5b

1 210849.6 210847.8 210850.1 210848.9 210849.5

2 29616.9 29619.3 29619.4 29629.2 29614.2

3 29417 29418.3 29412.9 29529.3 29498.3

4 29648.8 29369.8 29557 29397.9 29445.7

5 29303.7 29472.3 29346.6 29405.1 29317

6 29541.6 210457.2 29315.6 29484.1 211348.8

7 29408.4 210576.9 210151.4 29443.4 210938.6

8 29451.9 29369.1 210715.4 29393.1 210304.5

9 210403.1 29450.7 29489.1 210100.8 29205.1
aK is the number of clusters/subpopulations; bDifferent runs of STRUCTURE 2.0.

Figure 1. Pairwise cosine similarities between individuals in the reduced two-dimensional space of the Pima–Surui data with 100

randomly selected markers without missing genotypes.
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all individuals correctly. The inferior performance of

STRUCTURE was partly due to the fact that some of the

markers in the dataset were tightly linked. For example, the

distances between some SNPs were less than 100 base pairs.

It is well known that Chinese and Japanese populations

are closely related and very difficult to distinguish in genetics

studies. It is not too difficult, however, to distinguish between

informative markers. This also confirms that SNPs can be very

informative in inferring population structures.40

We used the simulated data with admixed individuals to

evaluate the performance of the proposed strategy on data

exhibiting population admixture. Figure 3 shows the results.

The membership coefficients were calculated following the

method of Nascimento et al.41 We found that STRUCTURE

performed slightly better than the proposed strategy. This is

expected because when the model assumptions hold,

parametric methods with correct assumptions should always

perform better.

Evaluation of DBMC
We used our DBMC method on the reduced data to evaluate

its performance. DBMC performed well in different reduced

dimensions. Figure 4 shows the formation of the initial par-

titioning by DBMC. There were four points (blue circles

without other symbols superimposed) left ungrouped by Gap

statistics. They were classified into the second cluster by the

initialisation procedure. Therefore, after the density-based

initialisation, all but one individual (number 42 in the figures

with coordinates 25.95710, 20.19782) were correctly
classified. Only one iteration was required to finish the clus-

tering correctly.

Figure 2. Pairwise cosine similarities between individuals using the original Pima–Surui data with the same 100 markers as in Figure 1.

Table 3. The performance of STRUCTURE 2.0 and the singular

value decomposition (SVD)-based method on the simulated data.

Number of single

nucleotide

polymorphisms

Number of misclassified

individuals

STRUCTURE SVD-based

401 36 (12%) 3 (1%)

453 34 (11.3%) 1 (0.3%)

494 3 (1%) 0 (0%)

Note: The numbers in the table are the numbers of misclassified individuals and
the numbers in parentheses are the misclassification rates. For the SVD-based
method, the K-means method was employed for clustering using 30 principal com-
ponents. The three datasets in the table correspond to the combinations of the first
eight, nine and ten chromosomal segments from the original simulated data,
respectively.
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Discussion

We have described a two-stage strategy for using multilocus

genotype data to examine population structure and to assign

individuals to populations. We prefer to call this approach a

strategy, instead of a method, because it provides a

framework, not just one method. One can choose different

dimension reduction and clustering methods to fit into the

framework.

Our strategy does not rely on any population genetic

assumptions, such as Hardy–Weinberg equilibrium and

linkage equilibrium between loci within populations. This

means that violation of the assumptions does not invalidate

our strategy. For model-based methods, the violation of

assumptions makes these methods invalid, at least theoretically,

although some methods may be robust to certain departures

from assumptions. We have shown, through simulation and

real data analyses, that the proposed approach is not affected

by departure from the linkage equilibrium assumption for

markers in the data; however, tightly linked markers may

provide redundant information, so more markers are usually

needed. In this situation, the validity of our strategy is not

affected, but the validity of model-based methods becomes

questionable.

It is reported that pre-transformation is critical in

SVD.18,38,39We choose to use the tf-idf transformation, which

is widely used in information retrieval, but other pre-

transformations are possible. Before the pre-transformation,

it would be helpful to eliminate the non-informative rows

and columns.19 In our experiment, we only eliminated the

markers in situations where just one genotype appears in the

whole sample. It is possible to use some criteria (such as

entropy) to filter out the non-informative data. This would

make the analysis faster (because the matrix becomes smaller)

and more efficient (because the remaining matrix is more

informative).

There are many dimension reduction techniques besides

SVD, such as PCA and its variants (probabilistic PCA,

non-linear PCA etc), correspondence analysis, multidimen-

sional scaling, independent component analysis, projection

pursuit and projection pursuit regression, principal curves and

methods based on topologically continuous maps and neural

networks.42 The reason we chose SVD is that many efficient

algorithms exist for this method. Because we only need a few

principal components, even more efficient algorithms are

available for this purpose. Although the person–marker matrix

can be large if there are many markers or individuals, the

SVD procedure can be performed very quickly. In addition,

Figure 3. The results of STRUCTURE and the singular value decomposition (SVD)-based method based on the simulated data set of

Tang et al.12 For the SVD-based method, ten principal components were used. The K-means method was used for clustering. The indi-

vidual admixture (IA) values were calculated using the method of Nascimento et al.41
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SVD seems to reduce noise, as shown in Figures 1 and 2. It is

likely that other dimension reduction methods may also yield

good results.

It would be more statistically sound to view our genotype–

person matrix as a binary matrix. Several methods have been

proposed for PCA on binary data,43–45 but they implicitly

assume that the observations are independent across the

dimensions, which does not apply in our case—the genotypes

are by no means independent at each marker. Nevertheless, we

have tried the logistic PCA44 on our data, but the results were

not as good as those achieved by treating the genotype–person

matrix as a real matrix. Figure 5 shows the first three principal

components from logistic PCA using the criterion that the log

likelihood change is less than 0.1. It is obvious that the two

clusters are not clearly separated. Although we could perform

dimension reduction using probabilistic PCA on the original

genotype data matrix, which is a categorical matrix, no

methods are available for such analyses. One PCA method for

categorical data is implemented in SPSS software (SPSS Inc.)

through the use of the optimal scaling (or optimal scoring)

approach to turn the categorical problem into a quantitative

one,46 and applies PCA to the numeric matrix. The coding

scheme of the categorical data in the original matrix may affect

the resulting numeric matrix, however; moreover, one needs

to set the optimal scaling level for analysis variables

subjectively, whereas we intend to avoid subjective choices

in our strategy.

It is an open question as to how to choose dimensionality

for the reduced space when using SVD or PCA. Much work

has been done on this topic, including likelihood ratio,

Minimum Description Length (MDL), Akaike information

criterion (AIC), BIC,47 Laplace’s method,48 and probabilistic

PCA model.26 All of these methods are based on some

probabilistic model, however — usually the normality

assumption. In our case, the assumption is obviously not

appropriate. Laplace’s method seems to give a more reasonable

choice than others, but can only serve as a guideline. Because

our purpose is clustering, one possible way for choosing the

optimal dimension is by clustering results. For each given

dimension, we can perform cluster analysis on the reduced

space and evaluate the resulting clusters — for example,

between to within-cluster variation. We can then select the

optimal dimension as the one with the best clustering evalu-

ation. Methods based on appropriate models (perhaps binary

or categorical models) or non-parametric (empirical)

approaches should be more appropriate for our problem —

and we are planning to investigate this in the future.

Ando observed that, in LSA, using SVD, the topics

underlying outlier documents (ie those documents that are

very different from other documents) tend to be lost as lower

numbers of dimensions are chosen.33 A general explanation

of the good performance of LSI is that when eigenvectors

with smaller eigenvalues are left out, noise is eliminated, and,
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V
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Figure 4. Illustration of the formation of the initial partitioning

by density-based mean clustering on the first two principal

components of the Pima–Surui data with 100 randomly

selected markers without missing genotypes. The numbers (1

and 2 here) over the triangles indicate the order of cluster

starting points identified. Points with black plus signs indicate

the points identified as the first cluster by Gap statistics. Points

with red crosses indicate the points identified by Gap statistics

as the second cluster. Blue circles represent the original points

in the two-dimensional space after singular value decompo-

sition. Downward triangles indicate the starting points for each

cluster. Points with red crosses indicate the points identified by

Gap statistics as the second cluster.

Figure 5. The first three principal components from logistic

principal component analysis using the criterion that the log

likelihood change is less than 0.1 in the Pima–Surui data.
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as a result, the similarities among the linguistic units are

measured more accurately than in the original space.

According to the mathematical formulation of SVD,

dimensional reduction comes from two sources: outlier

documents and minor terms. These two types of noise are

mathematically equivalent and are inseparable under SVD.

However, people do not want to consider the outlier docu-

ments as ‘noise’, when their interest is in characterising the

relationships among the documents while all the documents

are assumed to be equal. In our case, fine structure (small

numbers of individuals who are very different from others)

may be lost, especially when the sample size is small. Hastie

et al. noted that finer structure can be lost with any dimension

reduction method.49 Ando proposed an algorithm which

differs from SVD in that terms and documents are treated in a

non-symmetrical way.33 By scaling the vectors in each

computation of eigenvectors, his algorithm tries to eliminate

noise from the minor terms without eliminating the influence

of the outlier documents. Further analyses are needed to

evaluate this method.

In this paper, we chose to use mixture models as our

clustering methods. The advantages of the mixture models

include their readiness for use, their ability to choose the

number of clusters automatically and their computational

efficiency. These are by no means the only choice, however,

and we have also considered K-means methods here. In fact,

both mixture models and DBMC perform well. Conventional

K-means performs a little worse (given the number of clusters

as a priori). In our analysis it happened that some initial values

produced very different (worse) clustering results by the

conventional K-means. In general, when the sample size is

large and the model provides a reasonable description of

the data, mixture models (model-based methods in general)

perform well. When the clusters are restricted to globular

regions, K-means should work well. In our analysis of the

Pima–Surui dataset, our sample size was not small (25 and 21

for two clusters) and the cluster shapes were convex (data not

shown), so it is not surprising that both mixture models and

K-means performed well.

We used cosine similarity to measure ‘similarity’ between

individuals. Because cosine similarity is easy to interpret and

simple to compute, it is widely used in text mining and

information retrieval.14,18,19 It is natural to measure ‘similarity’

between vectors by their inner product. Cosine is closely

related to inner product and correlation. If the vectors have

unit length, cosine is equivalent to inner product. If the

vectors are centred, cosine is the same as correlation.

Our strategy can be used for identifying populations and

assigning individuals in situations where there is little infor-

mation about population structure. It should also be useful in

situations where cryptic population structure is a concern,

such as in case-control studies in association mapping.

In summary, we find that the strategy we have described in

this paper has the ability to identify population structure, make

correct inferences of the number of subpopulations and assign

individuals to their corresponding subpopulation. Most of all,

it is model free and does not depend on any genetics

assumptions. Although it has several advantages over its para-

metric counterpart, as pointed out by Tang et al.:12 ‘no one

method is universally preferable’; however, it provides a useful

alternative to analyse genetic data for population structure

inferences.
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Appendix 1

A variant of the K-means method
K-means is a commonly used non-parametric clustering

method, but it has the following drawbacks:

(1) The initial partition may affect the results. Randomisation

is often used but has limited success.13

(2) The procedure may not converge. If the procedure is not

well defined, it is quite possible for the procedure to

oscillate indefinitely between two or more partitions and

never converge. This defect was recognised by the

developer of the K-means method.50

(3) It cannot determine the number of clusters, which is

either preset or visually determined.

We propose a clustering method which is based on K-

means and can avoid the above drawbacks. The basic idea of

our method is that to identify a cluster starting from the

point with the highest density around it in the current dataset.

To be more specific, suppose we are given n data points

X1;X2; . . .;Xn. Let p1, p2, . . ., pk denote a partitioning of
the data into k disjoint clusters such that

<
k

j¼1
pj ¼ {X1;X2; . . .;Xn} and pj > pl ¼ f if j – l:

The algorithm of this method (density-based mean

clustering [DBMC]) is as follows. Vary the total number of

clusters from k ¼ 1, 2, . . ., K. For each k, perform the

following procedure:
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1. For every data point in the sample, calculate the distance

to its mth (usually three or four) nearest neighbour and

identify the point that has the smallest value (highest

density). Choose this point as the starting point.

2. Find the point nearest to the starting point and merge

these two points to form a cluster. Repeat until all the

points are in the cluster. This results in a sequence of

nested clusters.

3. Use the Gap statistic49 to obtain the cluster size and form

one cluster. The Gap statistic uses the criterion of

between-to-total variance for the goodness of a cluster.

The Gap statistic selects the optimal cluster among the

nested clusters as the one with the biggest difference

(Gap) between the observed and the expected variance by

permutation.

4. For the remaining data, repeat steps 1 to 3, until k clusters

are found or all points are included (no point left).

This leads to the initial partitioning, namely {pð0Þ
j }

k

j¼1:
Calculate the centroids for each cluster, denoted as

{c
ð0Þ
j }

k

j¼1; and set the index of iteration to t ¼ 0.

5. For each data point, find the nearest centroid and assign

the point to the cluster represented by this centroid. This

results in a new partitioning:

pðtþ1Þ
j ¼ {X [ {X i}

n
i¼1 : dðX ; cðtÞj Þ , dðX ; cðtÞl Þ; 1 # l

# k; l – j}; 1 # j # k:

Compute the new centroids and repeat this updating

procedure until a certain stopping criterion described

below is met.

6. Evaluate the resulting clusters as described below.

Among all of the k values studied, select the best clustering

according to the quality evaluated in step 6.

For step 5, a stopping criterion is needed, an example is:

E {pðtÞ
j }

k

j¼1 2 E {pðtþ1Þ
j }

k

j¼1 # 1;

where one choice for E( ) is the objective function discussed by

Dhillon and Modha19 and an alternative candidate is the

between- to total (between-cluster plus within-cluster) sums of

squares.51 To ensure the convergence of {pðtÞ
j }

k

j¼1 when we use
the between- to total sums of squares as the stopping criterion at

each iteration, we choose the new partitioning to have a larger

value of the between- to within-sums of squares, or else the

iteration stops. Therefore, the algorithm outlined above never

results in a decrease in the E(.) value, which is bounded from

above by some constant.19 Therefore, if DBMC is iterated

indefinitely, then the value of E(.) will eventually converge.

Note that this only means that the algorithm procedure will

converge, but it does not imply that the underlying partitioning

{pðtÞ
j }

k

j¼1 converges.
19,52

There are a number of methods for estimating the number of

clusters.53Here, we chose the Gap statistic using the resampling

method.54 Suppose that the maximum possible number of

clusters in the data is M. The basic idea of the Gap method for

estimating the number of cluster K is to identify K̂; 1 , K̂ # M ;
which provides the strongest significant evidence against the null

hypothesis H0 ofK ¼ 1, that is, ‘no cluster’ in the data. The Gap

method employs the so-called uniformity hypothesis, which

states that the data are sampled from a uniform distribution in the

d-dimensional space. It compares an observed internal index,

such as the within-clusters sum of squares, to its expectation

under a reference null distribution via resampling, and chooses

the smallest kwhichmaximises the Gap statistic as the number of

clusters.53,54 The basic idea of the Gap statistics for estimating

cluster size49 is similar to that of the Gap method for estimating

the number of clusters.

Appendix 2

Missing genotype imputation
If we consider a person A who has a missing value in marker

G, the KNN-based method would find K other persons, who

have observed genotypes for marker G and are most similar to

A in genotypes in markers other than G. A weighted average

of frequencies of genotypes of marker G from the K closest

persons is then used as an estimate for the missing value in

person A. In the weighted average, the contribution of each

person is weighted by the similarity of his/her genotypes to

those of person A. We then use SVD on the imputed matrix

to obtain the projections of each person onto a reduced space;

choose the K nearest neighbours for person A in the reduced

space; and repeat the KNN imputation. This iteration is

repeated until some preset criteria are met. In summary, the

algorithm works as follows.

1. Start with the genotype–person matrix X which has

missing values.

2. Compute cosine similarity between x*, who has missing
values, and all other persons, using only those coordinates

not missing in x*. Identify the K nearest neighbours.

3. Impute the missing coordinates of x* by the weighted
average of the corresponding coordinates of the K

individuals closest to produce X 0. Set i ¼ 0.

4. Apply SVD to the complete matrix X i to derive the

reduced space and identify the K nearest neighbours in

the reduced space.

Set i,2 i þ 1 and repeat steps 3 and 4 until a preset number

of iterations is reached, or kM i2M iþ 1k/kM ik is below some
threshold, whereM i is the entire imputed matrix at the ith stage.
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