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A B S T R A C T   

Objectives: This research aimed to retrospectively construct and authenticate ultrasomics models 
using endoscopic ultrasonography (EUS) images for forecasting the pathological grading of 
pancreatic neuroendocrine tumors (PNETs). 
Methods: After confirmation through pathological examination, a retrospective analysis of 79 
patients was conducted, including 49 with grade 1 PNETs and 30 with grade 2/3 PNETs. These 
patients were randomized to the training or test cohort in a 6:4 proportion. The least absolute 
shrinkage and selection operator (LASSO) algorithm was used to reduce the dimensionality of 
ultrasomics features derived from standard EUS images. These nonzero coefficient features were 
retained and applied to construct prediction models via eight machine-learning algorithms. The 
optimum ulstrasomics model was determined, followed by creating and evaluating a nomogram. 
Results: Ultrasomics features of 107 were extracted, and only those with coefficients greater than 
zero were retained. The XGboost ultrasomics model performed exceptionally well, achieving 
AUCs of 0.987 and 0.781 in the training and test cohorts, respectively. Furthermore, an effective 
nomogram was developed and visually represented. Finally, the calibration curves, decision curve 
analysis (DCA) plots, and clinical impact curve (CIC) displayed in the ulstrasomics model and 
nomogram demonstrated high accuracy. They provided significant net benefits for clinical de-
cision-making. 
Conclusions: A novel ulstrasomics model and nomogram were created and certified to predict the 
pathological grading of PNETs using EUS images. This study has the potential to provide valuable 
insights that improve the clinical applicability and efficacy of EUS in predicting the grading of 
PNETs.   

1. Introduction 

Pancreatic neuroendocrine tumors (PNETs) are uncommon neoplasms arising from the neuroendocrine cells of pancreatic islet 
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tissues, representing practically 1–3% of pancreatic neoplasms as a whole [1–3]. Recent reports indicate an increasing incidence of 
PNETs, due to the advancement of medical imaging modalities [4]. The 2022 World Health Organization (WHO) classifies PNETs as 
well-differentiated (grade 1, G1), intermediately differentiated (grade 2, G2), and poorly differentiated (grade 3, G3) tumors according 
to their mitotic rate and Ki-67 proliferation index [5]. The biological behavior of PNETs varies from low-level malignancy (G1) to 
hyperaggressive tumors (G3) [6]. Among PNETs, tumor grade is the most crucial prognostic determinant [7]. Previous studies indi-
cated that Grade 2 non-functional PNETs should be considered high-risk [8]. In contrast, G1 asymptomatic and non-functional PNETs, 
particularly those with a diameter less than 2 cm, are advised to undergo active surveillance [9]. Contrarily, G2/3 PNETs are strongly 
correlated with worse prognoses and often require more intensive intervention [10]. Given the substantial impact of pathological 
grading on treatment decisions, the precise determination of PNETs grading is essential in clinical practice for optimal patient 
management [11,12]. Identifying and classifying G1 and G2/3 PNETs before surgical intervention poses a notable challenge. 
Currently, the predominant method for diagnosing and grading PNETs remains endoscopic ultrasonography-guided fine-needle 
aspiration/biopsy (EUS-FNA/B) despite its drawbacks, including invasiveness, limited accuracy, difficulty in capturing tumor het-
erogeneity, and a high technical barrier [13–15]. 

Many previous studies have revealed the application of magnetic resonance imaging (MRI), computed tomography (CT), and EUS 
to preoperatively predict the grading of PNETs [16–23]. However, the limited accuracy and/or deficient validation makes it hard to 
accomplish the diagnostic requirements [2]. A major benefit of EUS over other imaging modalities for pancreatic masses is its ability to 
produce high-resolution images [24]. Additionally, in 2023, the European Neuroendocrine Tumor Society (ENETS) established 
guidelines that recommended EUS as the preferred imaging procedure in cases where other noninvasive techniques yield inconclusive 
results [25]. EUS has demonstrated superior efficiency in the detection of PNETs compared to CT, MRI, and abdominal ultrasonog-
raphy, especially for small lesions [26,27]. 

The combination of machine learning and radiomics methodologies has demonstrated encouraging outcomes in differentiating and 
prognosticating diverse cancer types [28]. Radiomics enables the extraction and evaluation of multiple quantitative image charac-
teristics through high-throughput approaches [29]. Supervised learning, a subset of machine learning, involves training an artificial 
intelligence (AI) model using a labeled dataset in which the data is pre-categorized or labeled with correct responses. The model is 
subsequently trained to identify patterns within the data and generate predictions based on these patterns [30]. These supervised 
machine learning techniques, as well as LASSO regression analysis utilizing L1-normalization to penalize parameter weights and 
reduce dimensions, are commonly employed in radiomics research to screen relevant radiomics features and construct predictive 
models [31–34]. Previous studies have effectively utilized radiomics techniques on CT and MRI scans to predict the grading of PNETs, 
showcasing their remarkable efficacy [35–37]. Additionally, analysis of ultrasonic B-mode images has demonstrated the potential to 

Fig. 1. Flowchart for enrolling the study population.  
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predict the pathological grade of PNETs based on ultrasomics features [38]. Nevertheless, the effectiveness and authenticity of EUS 
imaging-based ultrasomics in improving the predictive accuracy of preoperative grading of PNETs have not been established. Thus, 
this research sought to assess and validate the predictive potential of ultrasomics features derived from standard EUS images for 
classifying PNET grades. 

2. Materials and methods 

2.1. Study population 

The institutional ethics review board of the First Affiliated Hospital of Guangxi Medical University approved this retrospective 
study (No. 2023-K346-01), thereby exempting the need for patient consent or signed informed consent for the examination of medical 
images and clinical information. A cohort of 79 participants with PNETs were enrolled in this study, including 49 individuals with G1 
PNETs and 30 individuals with G2/3 PNETs, who underwent pancreatic surgery or endoscopic ultrasonography-guided fine-needle 
aspiration/biopsy (EUS-FNA/B) in our hospital during October 2013 and October 2023. 

2.2. Herein are outlined the criteria for inclusion and exclusion 

Patients were included based on the following criteria: (1) underwent meticulous EUS scanning of the pancreas before surgery; (2) 
had confirmed pathological grading; and (3) before preoperative or pathological biopsies, complete, clear EUS images were available; 
(4) before EUS, chemotherapy or radiotherapy could not be administered. Patients with tumors of other types, motion artifacts, or 
noise, or incapable of showing the entire lesion were excluded from the study. Training cohorts and test cohorts were randomized 6:4 
among the registered individuals, as depicted in Fig. 1. 

Analyzing various endoscopic ultrasonic features and clinical parameters, such as age, gender, location of the pancreatic mass, 
maximum diameter, shape, margin characteristics, echo characteristics, uniformity of echo, calcification, and cystic features, was 
carried out in this study, retrospectively. 

2.3. EUS image acquisition 

The research utilized the conventional dynamic EUS technique with the SU-9000 (FUJIFILM, Japan) and EU-ME2 (Olympus, 
Japan) equipment. A proficient EUS specialist, having conducted over 10000 EUS procedures, thoroughly examined the complete 
pancreatic area and captured clear images of the masses. A level of 125 grayscale values and a window of 250 grayscale values were 
consistently used in these images. The imaging data was obtained by accessing information from our institution’s Picture Archive and 
Communication System (PACS). 

2.4. ROI delineation 

Two experienced EUS specialists used ITK-SNAP software (version 3.8.1, http://www.itksnap.org) to manually outline the region 
of interest (ROI) in the DICOM-formatted images. Discrepancies in the specialists’ delineations were resolved through collaborative 
discussion and consensus. Subsequently, two specialists in consultation utilized the EUS macroscopic characteristics of pancreatic 
masses to predict the pathological grading of PNETs. The histopathological diagnoses of the patients were unknown to these specialists. 

Fig. 2. Comprehensive graph of the region of interest (ROI).  
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On conventional EUS images, the lesions were meticulously delineated along their margins, excluding adjacent normal tissue, 
vessels, bile ducts, and pancreatic ducts. The diagram in Fig. 2 provides a comprehensive overview. 

For reproducibility, standardization procedures were applied to the preprocessing of images and data. The intraclass correlation 
coefficient (ICC) was performed to estimate both intraobserver and interobserver reproducibility. Randomly selected 25 patients with 
G1 PNETs and 10 with G2/3 PNETs participated in the study. Following a one-month interval, the same EUS specialists performed ROI 
segmentation again. An ICC value greater than 0.8 signified a high level of agreement. 

2.5. Ultrasomics feature extraction 

The categorization of handcrafted features can be delineated into three discrete groups, namely intensity, geometric, and textural. 
The features of Geometric mainly focus on the shape of tumors, intensity features look at voxel intensity dispersion, and textural 
features analyze intensity patterns and spatial distributions. This study employed various methodologies, such as the gray level co- 
occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM), and neighborhood gray- 
level difference matrix (NGTDM), for the extraction of texture features from the ROI. The extraction of ultrasomics features 
adhered to the guidelines set forth by the Image Biomarker Standardization Initiative (IBSI) [39]. 

2.6. Ultrasomics feature selection 

To evaluate the reliability of these ultrasomics features, a Mann‒Whitney U test was performed to compare the training and test 
cohorts, followed by feature selection. Only ultrasomics features with a significance level of p < 0.05 were retained for further analysis. 
Spearman’s rank correlation coefficient was employed to assess the interrelationships among features to verify their reliability. 
Features with a correlation coefficient exceeding 0.9 were preserved, and a greedy recursive deletion strategy was employed to 
enhance feature representation by iteratively removing the most redundant feature within the current set. 

Consequently, a 10-fold cross-validation technique was utilized to identify features with nonzero coefficients through the appli-
cation of the LASSO regression algorithm. The feature-selecting procedures were carried out within the training cohort and eventually 
implemented in the test cohort. Features with nonzero coefficients were preserved, conclusively. The Python scikit-learn package was 
utilized to perform the LASSO regression analysis. 

A signature of ultrasomics was created by amalgamating features exhibiting nonzero coefficients. To determine the ultrasomics 
scores for each patient, a linear combination of the retained features and their corresponding model coefficients was applied. 

2.7. Construction of ultrasomics models 

Multiple prevailing machine learning algorithms were applied to construct categorization models for the superlative prediction of 
G1 and G2/3 PNETs. 

After LASSO feature filtering was applied, commonly utilized supervised machine learning models, such as random forest (RF), 
logistic regression (LR), light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), k nearest neighbors 
(KNN), support vector machine (SVM), extra tree, and multilayer perceptron (MLP), were performed to construct ultrasomics models, 
based on the retained ultrasomics features. The definitive ultrasomics signature was established by utilizing a 5-fold cross-validation 
technique. 

Finally, the diagnostic performance of various machine learning algorithms was evaluated through the use of metrics. Eventually, 
the most superlative ultrasomics model was comprehensively identified. 

2.8. Ultrasomics model assessment 

The alignment between the prognostic forecasts generated by the optimal ultrasomics model and the actual results was assessed 
through the computation of the calibration curve, which juxtaposed the model’s predictions against the theoretically perfect obser-
vations. The calibration efficacy of the optimal ultrasomics models was appraised by applying calibration curves and employing the 
Hosmer-Lemeshow (H-L) test to measure this efficacy. Furthermore, decision curve analysis (DCA) was utilized to assess the practical 
clinical value of this predictive model. 

2.9. Ultrasomics nomogram establishment and assessment 

The R rms package was employed in the development of an ultrasomics nomogram to assess the predictive utility of retained 
ultrasomics features in distinguishing between G1 and G2/3 PNETs intuitively and efficiently. The calibration curve was produced to 
confirm the calibration of the nomogram, utilizing mean absolute error and 1000 bootstrap samples. DCA and clinical impact curve 
(CIC) were further utilized to evaluate the net benefit and predictive performance of the nomogram, respectively. 

2.10. Statistical analysis 

A comparison of clinical parameters and ultrasomics features among participants was conducted using appropriate statistical tests 
such as independent sample t-test, Mann‒Whitney U test, or X2 test. Statistical significance was determined at a two-tailed p-value 
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<0.05. Prediction performance was evaluated based on metrics including area under the curve (AUC), specificity, sensitivity, accuracy, 
positive predictive value (PPV), and negative predictive value (NPV). The comprehensive methodology for this research is illustrated 
in Fig. 3. 

3. Results 

3.1. Clinical and baseline characteristics 

This retrospective study included a group of 79 patients, with 47 women and 32 men, divided into training (N = 47) and test (N =
32) cohorts. Patients with G1 PNETs presented consistent characteristics of age, gender, echo characteristic, uniformity of echo, 
calcification, and location compared to those with G2/3 PNETs. Correspondingly, the results demonstrated notable differences in 
maximum diameter, margin characteristics, shape, and cystic degeneration between participants with G1 and G2/3 PNETs. Notably, 
G1 PNETs displayed a significantly smaller diameter, regular shape, clear margin, and less presence of cystic degeneration when 
compared to G2/3 PNETs (Table 1). 

3.2. Univariate and multivariate logistic regression 

Clinical and ultrasonic features were analyzed via univariate and multivariate methods. The significant features identified in the 
univariate analysis, including maximum diameter, shape, and margin characteristics, were further analyzed in the multivariate 
analysis. However, the multivariate logistic regression did not reveal any independent clinical and ultrasonic features that were 
significantly associated, indicating limited diagnostic performance based solely on the population and macroscopic EUS features 
(Table 2). 

3.3. Ultrasomics feature extraction and screening 

PyRadiomics, an internal feature analysis tool, was applied to extract all handcrafted features. A thorough analysis was conducted 

Fig. 3. The workflow of this study.  
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to identify a total of 107 manually derived radiomic features across 7 categories, including 14 shape features, 18 first-order features, 
and the remaining texture features. Detailed definitions regarding these handcrafted features can be found in this literature [40]. 

Fig. 4a summarizes all ultrasomics features with their corresponding p-values. All ultrasomics features with P values less than 0.05, 
and their correlation coefficient heat maps are presented in Fig. 4b. Ultimately, five ultrasomics features with non-zero coefficients 
were identified. The coefficients and mean standard errors (MSEs) obtained from the 10-fold validation process are illustrated in 
Fig. 5a and b, respectively. In contrast, while the selected ultrasomics features with their corresponding coefficients are depicted in 
Fig. 5c. The optimal value of λ was found to be 0.0450, and subsequently, these five ultrasomics features were incorporated into a 
linear prediction model. The linear expression is as follows:  

Ultrasomics Score = 0.379746835443038                                                                                                                                        

+0.087928*original_glszm_SizeZoneNonUniformity                                                                                                                          

+0.032006 * original_ngtdm_Busyness                                                                                                                                            

Table 1 
Clinical and ultrasonic characteristics between the G1 and G2/3 groups.  

Variable Pathological Grades 

G1 G2/3 P-value 

Age 50.00 [37.00, 56.00] 50.50 [42.25, 62.25] 0.368 
Maximum diameter 21.00 [13.40, 32.00] 34.85 [27.00, 47.50] <0.001 
Gender   0.524 

0 31 (63.27 %) 16 (53.33 %)  
1 18 (36.73 %) 14 (46.67 %)  

Shape   <0.001 
0 11 (22.45 %) 19 (63.33 %)  
1 38 (77.55 %) 11 (36.67 %)  

Margin   0.002 
0 2 (4.08 %) 9 (30.00 %)  
1 47 (95.92 %) 21 (70.00 %)  

Echo   0.080 
0 9 (18.37 %) 1 (3.33 %)  
1 40 (81.63 %) 29 (96.67 %)  

uniformity   0.110 
0 24 (48.98 %) 21 (70.00 %)  
1 25 (51.02 %) 9 (30.00 %)  

Calcification   >0.999 
0 48 (97.96 %) 29 (96.67 %)  
1 1 (2.04 %) 1 (3.33 %)  

Cystic areas   0.037 
0 46 (93.88 %) 23 (76.67 %)  
1 3 (6.12 %) 7 (23.33 %)  

Location    
0 23 (46.94 %) 15 (50.00 %)  
1 26 (53.06 %) 15 (50.00 %)  

Gender: “0” means female, “1” means male; Shape: “0” means irregular shape, “1” means regular shape; Margin: “0” means unclear margin of lesion, 
“1” means clear margin of lesion; Echo: “0” means means not hypoechoic of lesion, “1” means hypoechoic of lesion; uniformity: “0” means 
nonuniformity of echo; “1” means uniformity of echo; Calcification: “0” means no calcification, “1” means calcification; Cystic areas: “0” means no 
cystic areas, “1” means cystic areas; Location: “0” means head and uncinate process of the pancreas, “1” means body and tail of the pancreas. 

Table 2 
Univariate and multivariable logistic regression analyses for selecting clinical and radiological features.  

Variable Univariate analysis Multivariate analysis 

OR（95 % CI） P-value OR(95 % CI) P-value 

Age 1.002(0.993, 1.011) 0.719   
Maximum diameter 1.011(1.003, 1.018) 0.028* 1.008(1.000,1.015) 0.090 
Shape 0.711(0.563,0.899) 0.018* 0.833(0.645,1.075) 0.234 
Margin 0.587(0.427,0.807) 0.007** 0.713(0.499,1.020) 0.120 
Echo 1.184(0.763, 1.835) 0.522   
uniformity 0.822(0.647,1.046) 0.179   
Calcification 1.000(1.000,1.000) NA   
Cystic areas 1.459(0.949, 2.243) 0.147   
Location 1.079(0.845,1.380) 0.604   
Gender 1.124(0.876,1.441) 0.435   

OR，odds ratio; CI, confidence interval. 
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+0.029176 * original_shape_VoxelVolume                                                                                                                                       

− 0.059119 * original_shape_Sphericity                                                                                                                                            

− 0.060709*original_glszm_GrayLevelNonUniformityNormalized                                                                                                       

3.4. Ultrasomics models and performance 

As shown in Fig. 6a and b, the ROC curves and AUCs of each ultrasomics model derived from the eight widely used machine 
learning algorithms are shown for the training and test cohorts. A comprehensive overview of the results can be found in Table 3. Note 
that the RF and ExtraTrees models have a clear tendency to overfit. The AUCs of the LR model, the KNN model, the LightGBM model, 
and the MLP model in the test cohort exceeded those in the training cohort, which was both inaccurate and unobjective. Compara-
tively, the XGBoost model displayed better performance and showed stronger consistency between training (AUC = 0.987, 95 % CI 

Fig. 4. (A)Violin plot for differential analyses of ultrasomics features with their corresponding p values. (B) Heat map of correlation coefficient of 
differential ultrasomics features. 

Fig. 5. Ultrasomics feature selection with the LASSO regression model. (A) The LASSO model’s tuning parameter (λ) was selected using 10-fold 
cross-validation via the minimum criterion. The vertical lines illustrate the optimal value of the LASSO tuning parameter (λ) for the ultrasomics 
features. (B) A LASSO coefficient profile plot with different log(λ) values is displayed. The vertical dashed lines represent 5 ultrasomics features with 
nonzero coefficients selected with the optimal λ value. (C) The bar graph of ultrasomics features with their nonzero coefficients. 
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0.9650–1.0000) and test cohorts (AUC = 0.781, 95 % CI 0.5933–0.9695). Furthermore, the XGBoost model performed better in both 
training and test cohorts than the SVM model, demonstrating its effectiveness as an ultrasomics model. The XGBoost model demon-
strated an accuracy of 0.781, sensitivity of 0.636, specificity of 0.857, positive predictive value PPV of 0.700, and NPV of 0.818 in the 
test cohort (Table 3). As a consequence, the XGBoost model was deemed appropriate for further analyses and chosen as the foun-
dational model. The XGBoost model’s prediction accuracy was demonstrated through the use of a confusion matrix (Fig. 6c and d), 
which accurately predicted the pathological grades of 45 cases (45/47) and 25 (25/32) cases of PNETs in the training and test cohorts, 
respectively. The prediction scores of the XGBoost-based ultransomics model are shown in Fig. 6e and f. Following consultation, the 
two specialists utilized macroscopic features observed through EUS to predict the pathological grading of PNETs. This approach 
successfully predicted the pathological grades of 28 out of 47 PNETs in the training cohort and 17 out of 32 PNETs in the test cohort. 
According to the data presented in Table 4, the XGBoost-based ultransomics model demonstrated a notably superior accuracy in 
predicting the pathological grading of PNETs compared to EUS specialists in both the training and test cohorts. 

Furthermore, the ROC curve of the XGboost model is displayed in Fig. 7a. An illustration of the ultrasomics features retained in the 
XGboost models is shown in Fig. 7b. 

Both the calibration curves of the XGboost model and perfectly calibrated G2/3 PNETs in the test and training cohorts showed 
remarkable consistency (Fig. 7c and d). The calibrations were confirmed by the H-L test. Finally, DCA was performed to evaluate 
XGboost’s performance, as shown in Fig. 7e and f. Compared to hypothetical scenarios where there was no prediction model available, 
such as the treat-all or treat-none approaches, the XGboost model demonstrated a notable net benefit for patient intervention in both 
(Fig. 7e) and test (Fig. 7f) cohorts. 

3.5. Construction and validation of ultrasomics nomogram 

A nomogram was constructed to represent the five selected ultrasomics features with non-zero coefficients and facilitate clinical 
application (Fig. 8). Subsequently, the nomogram model was then evaluated with a calibration curve. With a mean absolute error of 

Fig. 6. (A)The ROC curves of different ultrasomics models based on eight machine learning algorithms for predicting G2/3 PNETs in the training 
cohort. (B) The ROC curves of different ultrasomics models in the test cohort. (C) The confusion matrix of the XGboost-based ultrasomics model in 
the training cohort. (D) The confusion matrix of the XGboost -based ultrasomics model in the test cohort. (E) XGboost-based prediction scores of the 
ultrasomics model in the training cohorts. (F) XGboost-based prediction scores of the ultrasomics model in the test cohorts. (“label = 0” means “G1 
PNETs”; “label = 1” means “G2/3 PNETs”). 

Table 3 
Diagnostic performance of different models for predicting Grade 1 and Grade 2/3 PNETs in training and test cohorts.  

Model Cohort AUC(95 % CI) Accuracy Sensitivity Specificity PPV NPV 

LR Training 0.774(0.6275–0.9214) 0.766 0.632 0.857 0.750 0.774  
Test 0.840(0.6768–1.0000) 0.781 0.781 0.781 0.781 0.781 

SVM Training 0.752(0.5846–0.9192) 0.787 0.526 0.964 0.909 0.750  
Test 0.684(0.4354–0.9326) 0.812 0.545 0.952 0.857 0.800 

KNN Training 0.802(0.6809–0.9225) 0.723 0.474 0.893 0.750 0.714  
Test 0.810(0.6630–0.9560) 0.781 0.455 0.952 0.833 0.769 

RF Training 1.000(1.0000–1.0000) 0.957 0.895 1.000 1.000 0.933  
Test 0.866(0.7259–1.0000) 0.812 0.545 0.952 0.857 0.800 

ExtraTrees Training 1.000(1.0000–1.0000) 0.596 0.000 1.000 0.000 0.596  
Test 0.807(0.6222–0.9926) 0.812 0.545 0.952 0.857 0.800 

XGBoosta Training 0.987(0.9650–1.0000) 0.936 0.895 0.964 0.944 0.931  
Test 0.781(0.5933–0.9695) 0.781 0.636 0.857 0.700 0.818 

LightGBM Training 0.690(0.5371–0.8426) 0.596 0.000 1.000 0.000 0.596  
Test 0.833(0.6822–0.9845) 0.812 0.636 0.905 0.778 0.826 

MLP Training 0.791(0.6543–0.9284) 0.745 0.632 0.821 0.706 0.767  
Test 0.853(0.7108–0.9948) 0.750 0.818 0.714 0.600 0.882 

LR, logistic regression; SVM, support vector machine; RF, random forest; KNN, k nearest neighbors; LightGBM, light gradient boosting machine; MLP, 
multilayer perceptron; XGBoost, extreme gradient boosting. 

a Represents optimal models were constructed based on XGBoost. 

Table 4 
Comparison of the prediction accuracy of pathological grading of PNETs between XGBoost model and EUS specialists.  

Model Training cohort(N = 47) Test cohort（N = 32） 

Correct Incorrect Correct Incorrect 

XGboost 45(95.74 %) 2（4.26 %） 25(78.13 %) 7(21.87 %) 
EUS specialists 28(59.57 %) 19(40.43 %) 17(53.13 %) 15(46.87 %) 
X2 17.7208 4.4329 
P-value <0.0001 0.0353  
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Fig. 7. (A)The ROC curves of the ultrasomics model based on XGboost in both the training and test cohorts. (B) The weight bars graph of the 
retained ultrasomics features in the XGboost model. (C-D) Calibration curve for the ultrasomics model based on XGboost in the training (C) and test 
(D) cohort. (E-F) The DCA curves for the ultrasomics model based on XGboost in the training (E) and test (F) cohorts. 
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0.059, the calibration curve revealed that the error between the predicted and actual probability of G2/3 PNETs is extremely negligible 
in the training cohort (Fig. 9a). Additionally, As shown in Fig. 9b, this nomogram model offers outstanding net benefits. As displayed in 
the CIC (Fig. 9c), it demonstrated that this nomogram model exhibited extraordinary performance for G2/3 PNETs prediction. 
Similarly, the test cohort showed highly analogous performances for this nomogram (Fig. 10a, b, and c). 

4. Discussion 

This study constructed various models for predicting the pathological grading of PNETs by combining EUS-based ultrasomics 
features with eight machine-learning algorithms based on ROI data. Results from our investigation revealed that combining endo-
scopic ultrasomics features and machine learning yielded remarkably accurate prediction performance for G2/3 PNETs, especially the 
XGboost model demonstrated high-performance metrics in the training (AUC = 0.987, 95 % CI 0.9650–1.0000) and test (AUC = 0.781, 
95 % CI 0.5933–0.9695) cohorts. Additionally, the nonzero-coefficient ultrasomics features were utilized to develop a nomogram for 
predicting G2/3 PNETs, which exhibited exceptional efficacy and accuracy in both training and test cohorts as evidenced by cali-
bration curves, DCA curves, and CICs. Thus, it was deemed a dependable and valid instrument for predicting grades of PNETs and 
guiding treatment decisions. These results indicate that EUS ultrasomics features may offer additional diagnostic information to 
improve the detection of G2/3 PNETs. Similarly, it has previously been shown that deep learning contrast-enhanced ultrasound 
combined with clinical characteristics is effective in identifying preoperative aggressiveness in PNETs [41]. Additionally, previous 
research has demonstrated that EUS imaging can be used to detect gastrointestinal stromal tumors and pancreatic ductal adenocar-
cinomas by using ultrasomics, machine learning, and deep learning methods [29,42,43]. However, this is the first investigation to 
report that a novel model and nomogram based on EUS imaging are capable of predicting PNETs grading with remarkable accuracy, as 
far as our knowledge extends. 

Many previous researches have assessed the potential association between medical imaging characteristics and PNETs grading. Zhu 
H demonstrated that a well-defined margin on the EUS image was mostly associated with lower pathological grade [22]. Similarly, A 
study indicated that obscure boundaries were more common in G2/3 PNETs with a high specificity of 90.3 % [16]. Claudio R found 
that the diameter of tumors was positively correlated with the risk of G2/3 PNETs [44]. A high-grade malignancy and a poor prognosis 
are closely associated with cystic degeneration, calcification, and necrosis [45,46]. Toshima F’s research revealed a significant 
connection between calcification, cystic degeneration, and necrosis and the likelihood of high-grade malignancy and unfavorable 
outcomes in individuals with PNETs. Utilizing univariate analysis, Toshima F found that tumor shape, maximum size, and cystic 
degeneration were predictive factors for distinguishing between G1/2 and G3 PNETs. Furthermore, multivariate regression analysis 
indicated that the presence of an irregular lobulated mass was suggestive of a G3 tumor diagnosis [47]. 

The findings of our study demonstrate a significant association between larger maximum diameter, irregular shape, and unclear 
margin with G2/3 PNETs based on univariate analysis, in line with existing literature [48]. However, multivariate logistic regression 
analysis did not identify any EUS macroscopic characteristics as independent risk factors for predicting tumor grading. Significantly, 
while preoperative EUS imaging has shown effectiveness in assessing the characteristics and proximity of functional PNETs [49], 

Fig. 8. The Nomogram for predicting G2/3 PNETs based on five retained ultrasomics features. The nomogram is used by summing all points 
identified on the scale for each variable. The total points projected on the bottom scales indicate the probabilities of G2/3 PNETs. 
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EUS currently differentiates pancreatic masses predominantly based on macroscopic anatomical features. This reliance on 
anatomical characteristics results in insufficient specificity and the risk of subjective interpretation. Furthermore, the limited 
enrollment of small-scale populations and the utilization of subjective features in these studies may be attributed to the low incidence 
and challenges in grading PNETs. Thus, a reliable approach that can preoperatively promote grading prediction of PNETs is an 
imperative need. 

Medical imaging can be analyzed in a way that is more efficient and accurate than visual diagnosis, thanks to radiomics. It can 
improve the accuracy of predictive models for different tumor types, allowing more accurate cancer diagnoses [50–52]. Non-contrast 
MRI radiomics and combined models demonstrated superior predictive ability to distinguish G1 and G2/3 NF-PNETs, outperforming 
models based on clinical and radiological features in a multicenter study [53]. Additionally, Gu D’s research illustrated that radiomic 
signatures derived from CT imaging are more accurate in predicting the pathological grading of PNETs [2]. Similarly, Bian Y conducted 
a study utilizing non-contrast MRI and developed an effective radiomics model to differentiate between G1 and G2/3 tumors and 
facilitate clinical decision-making [35]. In a recent study, MRI and contrast-enhanced CT features were incorporated into a composite 
model, which showed improved predictive performance for grading PNETs in both the training (AUC = 0.92) and validation (AUC =
0.85) cohorts compared to single-modality radiomics models [54]. We found that EUS image-based ulstrasomics models and nomo-
grams are precise and effective for predicting PNET grading, similar to previous literature. 

In this research, a total of 107 ultrasomics features were reduced to five potential predictors for the development of the ultrasomics 
model. The most influential ultrasomics predictor, with the highest weight in the XGboost model, is a GLSZM-based feature known as 
“Size Zone Non-uniformity”. Previous studies have indicated that GLSZM features derived from MRI images exhibit varying levels of 
robustness in the segmentation of gliomas [55]. Another study demonstrated that texture features, particularly GLSZM, were 
important markers for distinguishing non-small cell lung cancer subtypes [56]. An investigation of the correlation between GLSZM 
features and histopathology grading is needed. Battistella Anna noted that tumors with low micro-vessel density could indicate high 
aggressiveness in patients with non-functional PNETs [57], suggesting a potential explanation for this phenomenon. 

While the ultrasomics model and nomogram utilizing EUS imaging showed significant efficacy, this study is limited by various 
factors. It is possible to introduce selection bias into retrospective analyses conducted at one center, and bias may also be present in the 

Fig. 9. (A) The calibration curves for the nomogram with the mean absolute error = 0.065 in the training cohort. (B) DCA of the nomogram in the 
training cohort (“Treat all” means diagnosis-all strategy; “Treat none” means diagnosis-none strategy). (C)The CIC of the nomogram in the 
training cohort. 
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image segmentation process due to manual segmentation [58]. Additionally, we used EUS imaging with two heterogeneous devices 
from two different companies, which may cause potential noise and bias, although stand standardization procedures were applied. 
Ultimately, the limited sample size, particularly among patients with G3 PNETs. Thus, the importance of encompassing multiple 
centers, large sample sizes, prospective designs, and multimodal approaches for future EUS-based ultrasomics research for the grading 
of PNETs might be imperative. Additionally, integrating deep learning methodologies and exploring the underlying biological changes 
in peritumor imaging characteristics could mitigate bias and enhance the interpretability of the models. 

5. Conclusion 

In conclusion, a novel ulstrasomics model and visual nomogram based on EUS images were constructed and validated, incorpo-
rating machine learning algorithms. A comparison of different machine learning algorithms revealed that the XGboost model 
demonstrated the most favorable diagnostic efficacy. There is encouraging potential for promoting the clinical applicability of EUS in 
predicting PNETs grading, providing valuable perceptions for future study and implementation. 
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[24] G. Melita, S. Pallio, A. Tortora, S.F. Crinò, A. Macrì, G. Dionigi, Diagnostic and interventional role of endoscopic ultrasonography for the management of 
pancreatic neuroendocrine neoplasms, J. Clin. Med. 10 (2021). 

[25] J. Hofland, M. Falconi, E. Christ, J.P. Castaño, A. Faggiano, A. Lamarca, A. Perren, S. Petrucci, V. Prasad, P. Ruszniewski, C. Thirlwell, M.P. Vullierme, S. Welin, 
D.K. Bartsch, European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes, J. Neuroendocrinol. 
35 (2023) e13318. 

[26] M.I. Costache, I.M. Cazacu, C.F. Dietrich, M.C. Petrone, P.G. Arcidiacono, M. Giovannini, E. Bories, J.I. Garcia, S. Siyu, E. Santo, C.F. Popescu, A. Constantin, M. 
S. Bhutani, A. Saftoiu, Clinical impact of strain histogram EUS elastography and contrast-enhanced EUS for the differential diagnosis of focal pancreatic masses: 
a prospective multicentric study, Endoscopic ultrasound 9 (2020) 116–121. 

[27] P.H. Kann, Is endoscopic ultrasonography more sensitive than magnetic resonance imaging in detecting and localizing pancreatic neuroendocrine tumors? Rev. 
Endocr. Metab. Disord. 19 (2018) 133–137. 

[28] P. Tong, D. Sun, G. Chen, J. Ni, Y. Li, Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal 
cancer, BMC Cancer 23 (2023) 61. 

[29] G. Parasher, M. Wong, M. Rawat, Evolving role of artificial intelligence in gastrointestinal endoscopy, World J. Gastroenterol. 26 (2020) 7287–7298. 
[30] A. Eccher, F. Pagni, S. Marletta, E. Munari, A.P. Dei Tos, Perspective of a pathologist on benchmark strategies for artificial intelligence development in organ 

transplantation, Crit. Rev. Oncog. 28 (2023) 1–6. 
[31] W. Duan, B. Xiong, T. Tian, X. Zou, Z. He, L. Zhang, Radiomics in nasopharyngeal carcinoma. Clinical medicine insights, Oncology 16 (2022) 

11795549221079186. 
[32] B. Chen, C. Chen, J. Wang, Y. Teng, X. Ma, J. Xu, Differentiation of low-grade astrocytoma from anaplastic astrocytoma using radiomics-based machine learning 

techniques, Front. Oncol. 11 (2021) 521313. 
[33] T. Yang, L. Hao, R. Cui, H. Liu, J. Chen, J. An, S. Qi, Z. Li, Identification of an immune prognostic 11-gene signature for lung adenocarcinoma, PeerJ 9 (2021) 

e10749. 
[34] W. Lu, D. Zhang, Y. Zhang, X. Qian, C. Qian, Y. Wei, Z. Xia, W. Ding, X. Ni, Ultrasound radiomics nomogram to diagnose sub-centimeter thyroid nodules based 

on ACR TI-RADS, Cancers 14 (2022). 
[35] Y. Bian, Z. Zhao, H. Jiang, X. Fang, J. Li, K. Cao, C. Ma, S. Guo, L. Wang, G. Jin, J. Lu, J. Xu, Noncontrast radiomics approach for predicting grades of 

nonfunctional pancreatic neuroendocrine tumors, J. Magn. Reson. Imag. : JMRI 52 (2020) 1124–1136. 
[36] C.G. Guo, S. Ren, X. Chen, Q.D. Wang, W.B. Xiao, J.F. Zhang, S.F. Duan, Z.Q. Wang, Pancreatic neuroendocrine tumor: prediction of the tumor grade using 

magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance, Cancer Manag. Res. 11 (2019) 1933–1944. 
[37] J.Y. Ye, P. Fang, Z.P. Peng, X.T. Huang, J.Z. Xie, X.Y. Yin, A radiomics-based interpretable model to predict the pathological grade of pancreatic neuroendocrine 

tumors, Eur. Radiol. 34 (3) (2024) 1994–2005. 
[38] Y. Dong, D.H. Yang, X.F. Tian, W.H. Lou, H.Z. Wang, S. Chen, Y.J. Qiu, W. Wang, C.F. Dietrich, Pancreatic neuroendocrine tumor: prediction of tumor grades by 

radiomics models based on ultrasound images, Br. J. Radiol. 96 (2023) 20220783. 
[39] A. Zwanenburg, M. Vallières, M.A. Abdalah, H. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, 

I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, 
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