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Abstract

We use the Glazier-Graner-Hogeweg model to simulate three-dimensional (3D), single-phenotype, avascular tumors
growing in an homogeneous tissue matrix (TM) supplying a single limiting nutrient. We study the effects of two parameters
on tumor morphology: a diffusion-limitation parameter defined as the ratio of the tumor-substrate consumption rate to the
substrate-transport rate, and the tumor-TM surface tension. This initial model omits necrosis and oxidative/hypoxic
metabolism effects, which can further influence tumor morphology, but our simplified model still shows significant
parameter dependencies. The diffusion-limitation parameter determines whether the growing solid tumor develops a
smooth (noninvasive) or fingered (invasive) interface, as in our earlier two-dimensional (2D) simulations. The sensitivity of 3D
tumor morphology to tumor-TM surface tension increases with the size of the diffusion-limitation parameter, as in 2D. The
3D results are unexpectedly close to those in 2D. Our results therefore may justify using simpler 2D simulations of tumor
growth, instead of more realistic but more computationally expensive 3D simulations. While geometrical artifacts mean that
2D sections of connected 3D tumors may be disconnected, the morphologies of 3D simulated tumors nevertheless correlate
with the morphologies of their 2D sections, especially for low-surface-tension tumors, allowing the use of 2D sections to
partially reconstruct medically-important 3D-tumor structures.
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Introduction

In [1] we studied the effects of nutrient limitation and surface

tension in a simplified two-dimensional (2D) model of tumor

invasion using the Glazier-Graner-Hogeweg (GGH) (also known as

the Cellular Potts Model) [2–4], as implemented in the

CompuCell3D (CC3D) modeling environment [5–10]. In 2D, the

selection of smooth-interface (noninvasive) vs. fingered (invasive)

growth depends on the tumor’s substrate-consumption rate per

unit substrate-transport rate, the diffusion-limitation parameter G,

while the detailed morphology also depends on the tumor-tissue-

matrix (TM) surface tension c. Lack of competition for nutrients

promotes spherical, noninvasive tumors. Low concentrations of

nutrients in the environment which cause tumor-cell competition,

or cells with a very high substrate-consumption rate generate a

fingering instability and irregular, invasive tumors. Our results

agree with in vitro experiments showing that tumors branch into the

surrounding tissues if the nutrient supply is too small [11,12], and

with other tumor-model predictions [13–18].

Our three-dimensional (3D) model extension of our 2D model

[1], includes growing, spatially-extended tumor cells, surrounding

TM represented as a nondiffusing field secreting nutrients, a

diffusing field representing matrix-degrading enzymes (MDEs) that

degrade TM, and a diffusing nutrient field (substrate) which governs

the rate of tumor-cell growth. As in our 2D model we assume that

all tumor cells are identical in their capacities and responses, and

that the specific growth rate of tumor cells increases linearly with

the local concentration of a single limiting substrate, with no

concentration threshold for tumor cells to grow.

For a detailed discussion of tumor initiation and progression, see

[19] and [20]. Growth of avascular tumor spheroids depends on

diffusion of nutrients and waste products, usually limiting the

spheroid’s maximum size, as discussed in [1]. Tumors can be benign

(noninvasive) or malignant (invasive). Most tumors are initially

noninvasive and gradually become more invasive as they reduce

their cell-cell adhesiveness and (often) increase their cell-extracel-

lular-matrix (ECM) adhesiveness [21]. Tumor cells can secrete

MDEs that degrade the ECM which maintains the integrity of

normal tissues [22–24] and modifies the distribution in the ECM

of molecules to which cells adhere, e.g., fibronectin, increasing

effective cell motility [22,25–30]. Intrinsic cell motility can also

increase during tumor progression [31–33].

Hypoxia (a shortage of oxygen) [34] activates transcription of the

met proto-oncogene [12], which increases levels of the Met

tyrosine kinase, a receptor for hepatocyte growth factor (HGF)

[35–37]. HGF is a scatter factor [38] that coordinates a number of

specific cytokines [39] which weaken cell-cell contacts and increase

cell motility [40,41]. Thus hypoxia indirectly enhances HGF-
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induced cell motility [12,42]. Hypoxia can also induce epithelial-

mesenchymal transitions (EMT) [43] through Notch signaling

[44], one of the initial steps in metastasis, transforming nonmotile,

epithelial cells into migratory and invasive cells, e.g., through

down-regulation of E-cadherin [45,46].

Mathematical models of tumor growth [47] range from simple

fitting of experimental data on the growth kinetics of tumor

spheroids using various growth laws [48] to more complex

simulations of tumor-induced angiogenesis and capillary network

formation [47,49–52], and tumor spreading at early [53] and later

invasive stages [18,54–58]. Continuum and solid-mechanics

models [14–17,59–62] consider physical forces among cells and

TM, capturing tumor structure at the tissue level, but do not

describe the tumor’s cellular and subcellular properties, making

mechanisms such as cell-cell adhesion difficult to include. Point-

cell models (cellular automata) allow stochastic descriptions at cellular

[63–67] and subcellular levels [68,69] but neglect the shapes of

cells. Hybrid multi-cell models combine discrete representations of

individual tumor cells with continuum representations of diffusible

chemicals [70–74] and either discrete or continuum models of the

surrounding tissue. For comprehensive reviews of mathematical

models of tumor growth see [75,76] and references therein.

Three recent models of tumor growth have analyzed tumor-

growth morphologies in a two-dimensional parameter phase

space. The model of [15] analyzed nonlinear tumor morphological

response to two nondimensional parameters representing the

balance of cell death to birth and tissue mechanics (proliferation-

induced pressure), the model of [16] analyzed fragmenting and

compact morphologies in the nutrient-adhesion phase space, and

the model of [17] analyzed the fragmenting, fingering, and

compact morphologies in the nutrient-mechanics phase space.

In our recent 2D GGH simulations of growing avascular tumors

[1] we found that smaller tumor-TM surface tension speeds

diffusion of tumor cells and that simulated substrate-deprived

tumor morphologies are more sensitive to variations in tumor-TM

surface tension. These results agree with the observation that

hypoxia enhances the sensitivity of tumor cell motility to scatter

factors, and suggest an experimentally-testable hypothesis that

HGF decreases tumor-TM surface tension, which we could

measure, e.g., using compression apparatus [77–80]. They also

agree with a recent study of the analogy between branching

instabilities in a growing tumor and instabilities in a drop of water

impacting a solid surface, which suggested promoting tumor cell-

tumor cell adhesion as a clinical strategy in oncological therapies

[81].

As in [1], we do not model explicitly the haptotactic repulsion

and pressure on the tumor cells from the surrounding normal

tissue. Thus our simulated tumor cells move freely, which is

realistic only for environments that do not constrain tumor-cell

motility, such as idealized gliomas or those growing in mechan-

ically unconfined areas, e.g. in vitro [61,82]. However, the tumor-

TM surface tension creates an effective hydrostatic pressure on the

tumor. While not identical to a tumor growing in an elastic or

viscoelastic tissue, increasing the surface tension reproduces many

of the effects of increasing the rigidity of an explicitly-modeled

external tissue.

Necrosis can be essential to instability mechanisms at later

stages of tumor growth, destabilizing the shape of the tumor [17].

While diffusional instabilities lead to fingering morphologies, the

connecting portions of the fingers experience necrosis due to

prolonged hypoxia and anoxia, leading to a disconnection of the

fingers and a fragmented morphology. Necrosis becomes biolog-

ically significant when hypoxia of a layer of cells surrounding the

necrotic core of the tumor triggers a cascade of signals mediated by

hypoxia-inducible factor-1 (HIF-1) [83] and vascular endothelial

growth factor (VEGF) [84], which initiate angiogenesis, i.e. tumor

vascularization, by inducing growth and extension of nearby blood

vessels. Since we focus on the role of cell-cell adhesion and

competition for nutrients at the tumor-TM interface where the

tumor cells are alive and proliferating, as in [1], we simulate single-

cell-type avascular tumors without angiogenesis, omitting necrotic

and quiescent cells, which are absent at the tumor-TM interface

during early stages of fingering. While necrosis certainly has a

profound effect on the late-stage morphology of fingered tumors,

its primary effect on the instabilities we are studying is to reduce

the competition for substrate, thus changing the G values for the

onset of different instabilities. Since the degree of shift depends on

details of the necrotic mechanism, we feel that studying the effects

of nutrient limitation separately from the effects necrosis is clearer.

We will combine the effects in a later paper. We do not model

quiescence explicitly because the substrate concentration in the

central regions of our simulated tumors is nearly zero, so the cells

there barely grow (see Mathematical Structure of the Tumor

Model), effectively behaving like quiescent cells.

In this paper we extend our 2D model of tumor-interface

instabilities to more realistic 3D tumors. We find that our results

for our 3D simulations agree with our 2D results, which is

surprising because certain relationships, such as mutually pene-

trating connected structures, cannot exist in 2D. Such structures

form in real tumors during neoangiogenesis [85], during which

tumors recruit blood vessels from the surrounding vascular

network to supply nutrients and remove waste. We need to

understand the physics of instabilities in growing avascular 3D

tumors before we proceed to investigate how G and c affect

vascular tumors undergoing neoangiogenesis, extending the recent

GGH simulations in [52].

We aim to answer two questions: 1) what causes front instabilities

and invasiveness in 3D avascular tumors? and 2) can we reconstruct

medically-important 3D tumor structures from 2D sections? We hypothesize

that hypoxia and surface tension will have similar effects on tumor

morphology in 2D and 3D simulations (which is not obvious a

priori). We show that the diffusion-limitation parameter G
determines whether the 3D tumor has a uniform or fingered

margin, while the tumor-TM surface tension c affects the detailed

tumor morphology, as in 2D. We construct a G{c phase diagram

showing the effects of these parameters on simulated 3D avascular

tumors and their 2D sections. Although geometrical artifacts mean

that the 2D sections of many connected 3D simulated tumors are

disconnected, the morphologies of 3D simulated tumors never-

theless correlate strongly with the morphologies of their 2D

sections, especially at later stages, allowing the use of 2D sections

to partially reconstruct 3D tumor structures.

Results

We can describe tumor morphologies in terms of their sphericity

[86],

S~
p1=3 6Vð Þ2=3

A
, ð1Þ

where V is the volume of an object and A is its surface area.

Sphericity is a computationally convenient measure of how round

an object is for 3D images. We study the time dependence of the

sphericity of simulated tumors as a function of G and c. As in [1],

we call structures with pronounced orientational order dendritic,

and structures without apparent orientational order seaweed-like or

diffusion-limited-aggregation-like (DLA-like). We also study how

Instabilities in 3D Tumors
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changes in G and c affect the time at which the middle 2D section

of the simulated tumor reaches the boundary of the simulation

domain, and the conditions under which the simulated tumor

stops proliferating before reaching this boundary. Because 2D

sections of real tumors are more convenient to analyze medically,

we also measure the circularity [1],

C~
2p1=2S1=2

P
, ð2Þ

where P is the perimeter of an object, in our case, of the middle

2D sections of the simulated tumors, and compare it with the

sphericity for the corresponding 3D images. If the sphericity of a

3D simulated tumor corresponds to the circularity of its 2D

section, analysis of 2D sections of real tumors may allow us to

reconstruct their 3D morphology, helping to determine whether

they are invasive or not, and possibly predicting the effectiveness of

antiangiogenic therapies.

Small G (Gv100) corresponds to a growth-limited regime [1,87].

The substrate penetrates most of the tumor and reaches most cells,

so the simulated tumor remains spherical [1]. Larger G slows the

growth of the tumor (since the local substrate concentration

decreases in the presence of tumor cells), and diffusing substrate

penetrates fewer cell diameters past the surface layer of the tumor.

Initially, substrate is present throughout the tumor, which grows in

all directions. As the tumor grows, its cells consume substrate and

the substrate concentration develops a gradient, the concentration

increasing in the radial direction away from the tumor centroid.

Locally, cells near the tumor surface in protruding regions

experience higher concentrations of substrate and hence grow

faster than others. These cells proliferate more quickly, while the

cells in the narrow valleys, where the interface between the tumor

and TM lags significantly behind the furthest local radial position

of the tumor, experience low concentrations of substrate and slow

their growth. Figure 1 shows the time evolution of a simulated

tumor with G~50 (which is near the value G0~50 corresponding

to the parameters used in [70]), for c~6 (a), c~4 (b), c~2 (c), and

Figure 1. Simulated growing tumors with G~~~50. (a) c~6. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane
(third row). The developing tumor is initially spherical; it then becomes slightly irregular. Fourth row: 3D visualization of the same simulation. (b) c~4.
2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor is initially spherical; it then
becomes grooved. Fourth row: 3D visualization of the same simulation. (c) c~2. 2D sections of a 3D simulation along the XY (first row), XZ (second
row) and YZ plane (third row). The developing tumor is initially spherical; it then becomes grooved. Fourth row: 3D visualization of the same
simulation. (d) c~0. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor is
initially spherical; it then becomes grooved with a rough surface. Fourth row: 3D visualization of the same simulation. The simulation time is indicated
in days beneath each column, where 1 day = 400 MCS.
doi:10.1371/journal.pone.0010641.g001
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c~0 (d). The simulated tumors are dense, fast-growing and

initially spherical. As they grow, their tumor-TM interfaces

become slightly irregular (grooved) (the lower c, the rougher the

surface of the developing tumor) but remain compact.

Large G corresponds to a transport-limited or diffusion-limited regime

[1,87]. The substrate penetrates only a short distance into the

tumor, so the tumor grows more slowly than for smaller values of

G. Figure 2 shows the time evolution of simulated tumors with

G~100, for c~6 (a), c~4 (b), c~2 (c), and c~0 (d). For high

TM-tumor surface tensions, the simulated tumors are compact

and dendritic (with anisotropic branches), while for low TM-tumor

surface tensions, the simulated tumors are DLA-like (with isotropic

branches), as in our previous 2D simulations [1]. The effect of

surface tension on morphology is more dramatic for larger G,

again as in 2D [1]. Figure 3 shows the time evolution of simulated

tumors with G~150, for c~6 (a), c~4 (b), c~2 (c), and c~0 (d).

At G~200 for a high surface tension, c~6, the tumor occupies

a region with a high concentration of MDE that has degraded all

the TM Field. TM far from the tumor still produces substrate, but

the substrate is essentially exhausted at the tumor surface. The

availability of nutrients is so limited that cell proliferation nearly

stops; the simulated tumor does not reach the boundary of the

simulation domain (Figure 4 (a)). For a lower surface tension, c~4,

the simulated tumor does reach the boundary of the simulation

domain but so many cells stop dividing that some branches of the

dendritic tumor stop growing (Figure 4 (b)). Figures 4 (c) and 4 (d)

show the time evolution of simulated tumors for c~2 and c~0,

respectively. For such low surface tensions, DLA-like structures

form.

Figure 1 shows that, for small G, the substrate reaches most

cells, which grow in all directions, no valleys form and the tumor-

TM interface remains smooth. As we increase G, the substrate

Figure 2. Simulated growing tumors with G~~~100. (a) c~6. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ
plane (third row). The developing tumor is initially compact; it then becomes dendritic. The disconnected parts in the last image connect to the
backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. (b) c~4. 2D sections of a 3D simulation along
the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor is initially compact; it then becomes dendritic. The disconnected
parts in the last two images connect to the backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. (c)
c~2. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor is initially compact with
a rough surface; it then becomes seaweed-like. The disconnected parts in the last two images connect to the backbone of the tumor out of the
section plate. Fourth row: 3D visualization of the same simulation. (d) c~0. 2D sections of a 3D simulation along the XY (first row), XZ (second row)
and YZ plane (third row). The developing tumor is seaweed-like with a rough surface. The disconnected parts in the images connect to the backbone
of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. The simulation time is indicated in days beneath each
column, where 1 day = 400 MCS.
doi:10.1371/journal.pone.0010641.g002
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penetrates less deeply into the tumor. Cells near the tumor surface

experience higher concentrations of substrate and proliferate more

quickly, producing fingers, while the space between fingers fills

slowly or not at all with new cells, as Figures 2–4 show. Thus the

competition for substrate between tumor cells results in a fingering

instability [15,88–90] which generates a fingered tumor morphol-

ogy [1]. Table 1 shows the mean circularity SCT, defined as the

average of the circularities of 2D sections of 3D tumors taken at

the midplanes XY, XZ and YZ, for different values of G and c at

the moment when the tumor reaches the boundaries of the

simulation domain (*6 mm). Figure 5 summarizes the morphol-

ogies and shows the sphericity S of 3D tumors for different values

of G and c at the moment when the tumor reaches the boundaries

of the simulation domain (*6 mm). Although the 2D sections of

many simulated tumors are disconnected, the underlying 3D

tumors are connected (except for c~0 where a few cells migrate

out of the backbone of the tumor). Thus the disconnectedness of

tumors simulated in 2D results from the underlying physics of

growth and diffusion and provides fundamental information about

the growth dynamics, while the disconnectedness of 2D sections of

connected 3D simulated tumors is a geometrical artifact and does

not provide much information beyond indicating a rough tumor

surface.

Sphericity increases with surface tension c and decreases with

increasing G (the structure for G~200 and c~4 deviates from this

general behavior because its growth is truncated). These

dependencies of S are consistent with our observation that

competition for substrate favors branching instabilities while

surface tension stabilizes the tumor-TM interface, as in 2D [1].

Table 2 shows how the sphericity of simulated tumors with 1000

Generalized Cells (which represent *3:5|105 real tumor cells)

depends on G and c. Figure 6 shows how the sphericity S of

simulated tumors, when they reach the boundaries of the

simulation domain (a) or contain 1000 Generalized Cells (b),

Figure 3. Simulated growing tumors with G~~~150. (a) c~6. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ
plane (third row). The developing tumor is initially compact; it then becomes dendritic. The disconnected parts in the last two images connect to the
backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. (b) c~4. 2D sections of a 3D simulation along
the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor becomes dendritic. The disconnected parts in the last two images
connect to the backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. (c) c~2. 2D sections of a 3D
simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor has a form intermediate between dendrite and
seaweed. The disconnected parts in the images connect to the backbone of the tumor out of the section plate. Fourth row: 3D visualization of the
same simulation. (d) c~0. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor is
seaweed-like. The disconnected parts in the images connect to the backbone of the tumor out of the section plate. Fourth row: 3D visualization of
the same simulation. The simulation time is indicated in days beneath each column, where 1 day = 400 MCS.
doi:10.1371/journal.pone.0010641.g003
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depends on surface tension c for different G. This dependence,

more monotonic for a fixed number of cells than for a fixed size,

suggests that the mass of the tumor, which is proportional to the

number of tumor cells, is a more accurate description of the tumor

stage than its size.

Table 1 and Figure 5 show that the sphericity S of 3D simulated

tumors and the mean circularity SCT of their 2D sections differ by

0.05 or less, except for c~4 and G~200 (truncated growth) and

for c~0 and G~50. The sphericity S is smaller than the mean

circularity SCT, except for c~2 and G~100. Our results indicate

a close relationship between the numerical values of S and SCT
for a given tumor and provide a simple method for partial

reconstruction of 3D tumor structure from 2D sections: the sphericity

of a real 3D tumor of a size on the order of a millimeter approximately equals

the mean circularity of the 2D sections taken at the midplanes XY, XZ and YZ

through the 3D tumor. This partial reconstruction is the first step in

Figure 4. Simulated growing tumors with G~~~200. (a) c~6. 2D sections of a 3D simulation along the XY plane. The developing tumor remains
compact and ceases proliferating. We do not show 2D sections along the XZ and YZ planes because they are essentially indistinguishable from those
along the XY plane. We do not show 3D visualization of the same simulation because it does not provide any new information about the simulated
tumor. (b) c~4. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor forms a
truncated dendrite. The disconnected parts in the last image connect to the backbone of the tumor out of the section plate. Fourth row: 3D
visualization of the same simulation. (c) c~2. 2D sections of a 3D simulation along the XY (first row), XZ (second row) and YZ plane (third row). The
developing tumor has a form intermediate between dendrite and seaweed, with thinner fingers. The disconnected parts in the images connect to the
backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. (d) c~0. 2D sections of a 3D simulation along
the XY (first row), XZ (second row) and YZ plane (third row). The developing tumor forms a seaweed. The disconnected parts in the images connect to
the backbone of the tumor out of the section plate. Fourth row: 3D visualization of the same simulation. The simulation time is indicated in days
beneath each column, where 1 day = 400 MCS.
doi:10.1371/journal.pone.0010641.g004

Table 1. The dependence on G and c of the mean circularity
SCT of 2D sections of the simulated 3D tumors, observed
when the tumor reaches the boundaries of the simulation
domain (*6 mm).

ª\\G 50 100 150 200

6 0.74+0.02 0.37+0.03 0.35+0.03

4 0.69+0.02 0.31+0.02 0.29+0.07 0.51+0.04

2 0.62+0.03 0.25+0.04 0.22+0.01 0.21+0.02

0 0.54+0.02 0.23+0.03 0.16+0.01 0.15+0.02

The space for G~200 and c~6 is blank because the corresponding tumor
never grows to this size.
doi:10.1371/journal.pone.0010641.t001
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determining the 3D tumor’s morphology, and thus potentially has

medical value in predicting its behavior.

Figures 7 and 8 show that the sphericity S of 3D simulated

tumors and the mean circularity SCT of their 2D sections both

decrease in time t for all G and c. S varies less with G than SCT
does. The S tð Þ curves for G~100,150 at c~4,6, and for

G~100,150,200 at c~0,2 lie close to each other, indicating that

G does not strongly affect how the sphericity of simulated low-

surface-tension tumors changes in time. The S tð Þ curve for c~4
and G~200 deviates from the curves for the other Gs because

tumor growth is truncated. We do not show the S tð Þ curve for

c~6 and G~200 because the simulated tumor does not grow.

The S tð Þ curves are more concave (have larger slopes) for lower

surface tensions. The absolute value of the difference between

SCT and S for almost all simulated tumors initially increases in

time and then decreases, as Figure 9 shows (except for G~50,

where it is not monotonic and remains small). Also, DSCT{SD
decreases with c. Therefore, reconstructing 3D tumor structure

from 2D sections is more accurate for avascular tumors either at

very early or at later stages, and is more accurate for low-

surface-tension tumors which grow faster and thus are medically

relevant.

Table 3 shows how the time at which the simulated tumor

reaches the boundary of the simulation domain, which has a size

of 6 mm, depends on G and c. The smaller the tumor-TM surface

tension, c, the faster the growth of the tumor, because for large G,

tumor cells must diffuse to find substrate to maintain their growth

rather than having substrate diffuse to reach them. The smaller c,

the larger the diffusion coefficient of the tumor cells [91]. Small

surface tension enhances spreading of the tumor cells, so the tumor

grows continuously. This result agrees with experiments showing

that less adhesive tumors grow faster [43]. Table 4 shows how the

time at which the simulated tumor grows to 1000 cells depends on

G and c.

Almost all the S tð Þ curves in Figure 8 have a quasi-Gaussian

profile. Thus we can fit them to a function of form

S tð Þ~S0e{t2= 2t2ð Þ, where S0 and t are constants. The characteristic

time t then characterizes how fast the tumor develops fingers and

thus is a useful way to characterize tumor morphology dynamics.

Table 5 shows t as a function of G and c. Sensitivity of simulated-

tumor morphology dynamics to changes in c decreases with

increasing G in the growth-limited regime, then increases with

increasing G in the diffusion-limited regime, in agreement with

experiments showing that hypoxia enhances the sensitivity of

diffusion-limited tumors to scatter factors which increase cells’

motility [12,42].

Figure 5. Morphologies of 3D tumors visualized in 3D and sphericity S as a function of ª and G , observed when the simulated
tumor reaches the boundaries of the simulation domain (**6 mm). The standard deviation for S is less than 0.02. The panel for G~200 and
c~6 is blank because the corresponding tumor never grows to this size.
doi:10.1371/journal.pone.0010641.g005

Table 2. The dependence on G and c of the sphericity S of
the simulated tumors with 1000 Generalized Cells.

ª\\G 50 100 150 200

6 0.75 0.68 0.50

4 0.72 0.61 0.45 0.39

2 0.66 0.47 0.33 0.28

0 0.58 0.32 0.22 0.18

The space for G~200 and c~6 is blank because the corresponding tumor
ceases to grow before reaching 1000 Generalized Cells.
doi:10.1371/journal.pone.0010641.t002
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Discussion

We have shown that whether a simulated growing 3D tumor

develops a smooth or fingered interface depends primarily on G, in

agreement with in vitro experimental observations in [12], where

tumor spheroids embedded in a 3D collagen matrix in hypoxic

conditions developed a branched tubular structure, while in

normoxic conditions they remained unbranched, confirming the

previous results of [11] and recent studies employing different

modeling approaches [17,18,92]. The transition from a smooth to

fingered interface for GGH-simulated 3D avascular tumors occurs

between G~50 and G~100, while for GGH-simulated 2D

avascular tumors it occurs between G~40 and G~80 [1]. The

transition regions overlap, which shows that the fingering

instability is essentially dimension-independent and justifies using

simpler 2D models of tumor growth instead of computationally

Figure 6. Sphericity S of simulated tumors as a function of ª for different G. (a) When they reach the boundary of the simulation domain,
(b) with 1000 Generalized Cells.
doi:10.1371/journal.pone.0010641.g006

Figure 7. Mean circularity SSSCTTT as a function of time for 2D sections of 3D simulations of tumor growth. (a) c~6, (b) c~4, (c) c~2, and
(d) c~0.
doi:10.1371/journal.pone.0010641.g007
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expensive 3D models. Our GGH simulations of biofilm growth

showed that changing the vertical dimension of the simulation

domain, lz, greatly affected biofilm morphology, because G was

proportional to l2
z in those simulations. However, changing lz and

keeping G constant by changing, for instance, the background

concentration of substrate did not significantly affect biofilm

morphology [87]. Since the interaction between the growing

tumor and the substrate does not depend on the boundaries of the

simulation domain, G is a convenient parameter to define tumor-

morphology regimes. In our simulations, we set the size of the

cubic simulation domain L to the order of the typical size of

avascular tumors, so G is an accurate, relative measure of how

much the tumor cells compete for substrate.

Figures 1–5 show that while the tumor-TM surface tension does

not affect the overall morphology significantly for low G, its effect

grows for higher G. For low G, the tumor cells near the tumor-TM

interface grow fast enough to find more substrate. For larger G,

they grow more slowly, and in order to maintain their growth, they

must migrate to reach substrate. The results of our 3D simulations

agree with hypoxia’s observed enhancement of the sensitivity of

tumor cell motility to scatter factors, and support the hypothesis

we suggested in [1] that HGF decreases tumor-TM surface

tension.

2D simulated tumors [1] were partially disconnected for c~0
and for larger G. Our 3D simulated tumors always remain

connected (except again for c~0 where a few cells migrate out of

the backbone of the tumor), although their 2D sections appear

disconnected in most cases. The ratio Gc=Gs, where Gc is the G at

which simulated tumors at high surface tensions cease to grow or

produce truncated dendrites and Gs is the G at which simulated

tumors are roughly spherical, is about 5–7 in both 2D [1] and 3D.

Thus the range in G which spans all morphological regimes is very

similar in 3D and 2D, i.e. 3D simulated tumors are as sensitive to

competition for substrate as 2D tumors, which again justifies using

simpler 2D models of tumor growth instead of more realistic, but

computationally expensive 3D models.

While the diffusion-limitation parameter G determines whether

the tumor has a uniform or fingered margin, the tumor-TM

surface tension c affects the detailed tumor morphology. These

effects are also visible in 2D sections of simulated 3D tumors. Also

as in 2D, the sensitivity of 3D tumor morphology to tumor-TM

surface tension increases with G, causing a directional-solidifica-

tion-like transition at high G between dendritic structures,

produced when the tumor-TM surface tension c is high, and

seaweed-like or DLA-like structures, produced when c is low. Thus

our 3D results support the idea, suggested in [12] and supported

by our 2D simulations [1] and several other studies [16,93,94],

that we need to therapeutically suppress cell motility and increase

tumor cell-tumor cell adhesion when targeting tumor angiogenesis,

in order to prevent the spread of tumor cells because of substrate

deprivation.

Using a cubic lattice for our GGH simulations may introduce

artifacts related to anisotropic spatial evolution of the simulated

tumor, which can influence high-rank tensor observables. Such

artifacts are of limited significance in our simulations, but do

appear to a limited extent in Figure 1 (a), and more prevalently in

Figures 2 (a), 2 (b), 3 (a) and 3 (b). In general, anisotropy is

significant for large values of tumor-TM surface tension (large c),

Figure 8. Sphericity S as a function of time for 3D simulations of tumor growth. (a) c~6, (b) c~4, (c) c~2, and (d) c~0.
doi:10.1371/journal.pone.0010641.g008
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though the anisotropy does not appear to affect our general results.

In these cases, we plan to cross-check our conclusions concerning

orientational observables, such as dendritic orientation, with

simulations on a higher-symmetry hexagonal lattice.

As in [1], we coarse-grained tumor cells to speed our

simulations. Thus our Generalized Cells represent tumor-cell

clusters, describing the averaged behavior of many cells. Although

our model discretizes tumors at approximately the same spatial

resolution as continuum methods, it introduces surface energy and

cell adhesion in a correct, physical manner. Moreover, the

inclusion of cells as extended and deformable objects will allow us

to study in the future the effects of elasticity on simulated tumor

morphology.

In our study of the effects of G and c on tumor growth we did

not include quiescence and necrosis explicitly. Because the

substrate concentration in the central regions of our simulated

tumors is nearly zero, we would expect the cells there to behave

like quiescent cells (no growth). We repeated our simulations with

quiescence for G~50 and G~100, both with c~2. To simulate

quiescence, we impose a rule that a tumor cell stops growing,

consuming substrate and producing MDE if the substrate

concentration inside the cell drops below a threshold cn.

Figures 10 (a) and 10 (b) show the morphologies of 2D sections

of 3D tumors with quiescence for G~50 and G~100,

respectively. These morphologies are slightly more compact than

the corresponding structures in Figures 1 (c) and Figure 2 (c). The

tumors reach the boundaries of the simulation domain (*6 mm)

after 14 days (G~50) and 26 days (G~100). Their mean

circularities at the moment when the tumors reach the boundaries

of the simulation domain are slightly larger than without

quiescence, 0:67+0:02 and 0:35+0:03. This difference arises

Figure 9. DSCT{SD as a function of time for 3D simulations of tumor growth. (a) c~6, (b) c~4, (c) c~2, and (d) c~0.
doi:10.1371/journal.pone.0010641.g009

Table 3. The dependence on G and c of the time (in days) at
which the simulated tumor reaches the boundary of the
simulation domain.

ª\\G 50 100 150 200

6 18 44 100 ?

4 16 40 68 100

2 14 32 40 64

0 12 20 28 32

doi:10.1371/journal.pone.0010641.t003

Table 4. The dependence on G and c of the time (in days) at
which the simulated tumor grows to 1000 Generalized Cells.

ª\G 50 100 150 200

6 2 5 14 ?

4 2 5 11 35

2 2 5 8 13

0 2 4 6 9

doi:10.1371/journal.pone.0010641.t004
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because quiescent cells do not grow and do not consume substrate,

reducing the competition for substrate. The net effect is slightly

faster growth (for G~100) than without quiescence and

morphologies corresponding to smaller values of G.

We also repeated our simulations with necrosis for G~50 and

G~100, both with c~2. To simulate necrosis, we impose a rule

that a tumor cell stops consuming substrate and producing MDE

and shrinks (grows with a negative growth rate gn) if the substrate

concentration inside the cell drops below cn. Figures 10 (c) and 10

(d) show the morphologies of 2D sections of 3D tumors with

necrosis for G~50 and G~100, respectively. These morphologies

do not differ appreciably from the corresponding structures in

Figure 1 (c) and Figure 2 (c). The tumors reach the boundaries of

the simulation domain (*6 mm) after 14 days (G~50) and 28

days (G~100). Their mean circularities at the moment when the

tumors reach the boundaries of the simulation domain are slightly

larger than without necrosis, 0:66+0:02 and 0:26+0:03. This

difference arises because necrotic cells do not grow and do not

consume substrate, reducing the competition for substrate. The

net effect is slightly faster growth (for G~100) than without

necrosis (but slower than with quiescence) and morphologies

corresponding to slightly smaller values of G. In addition, as we

would expect, at late times, the tumors are more fragmented than

without necrosis, which could affect their biomedically significant

degree of invasiveness. However, at early times, tumor morphol-

ogies are essentially indistinguishable with and without necrosis.

We will examine effects of quiescence and necrosis in more detail

in a future paper.

While we recognize that most tumors are much more complex

than our simple simulations, our goal was to understand the

physics of the initial phase of the fingering instability as a function

of the tumor-cell adhesivity and substrate consumption rate. We

have shown that in 3D simulations, which are more expensive

computationally, the physics of front instabilities and invasiveness

in GGH-simulated tumors is the same as in 2D simulations (which

was not obvious a priori). Therefore, our results justify using simpler

2D models of tumor growth instead of 3D models in some cases.

We also found that the sphericity of 3D simulated tumors of a size

on the order of a few mm (the typical size that avascular tumors

reach) correlates strongly with the mean circularity of their 2D

sections, especially for faster-growing, low-surface-tension tumors.

Our results suggest that analyzing 2D sections of real avascular

tumors at later stages should allow us to reconstruct the

morphology of the underlying 3D tumors for use in tumor staging

and guidance of therapeutic choices.

In future work, we will check for lattice artifacts and coarse-

graining effects, and study the effects of necrosis and hypoxia-

dependent growth rates on the morphological instability of

growing tumors. We also plan to study the sensitivity of the

tumor morphology to the other parameters in the simulations and

the variability of morphology from replica to replica.

Methods

Mathematical Structure of the Tumor Model
We have discussed our model in detail in [1] and review it very

briefly here. In our simplified solid, avascular tumor model, cells

are spatially extended and deformable, move, adhere to each

Table 5. The dependence of t (in days) on G and c.

ª\G 50 100 150 200

6 52 35 79 ?

4 37 29 47 101

2 23 21 27 46

0 15 14 18 21

doi:10.1371/journal.pone.0010641.t005

Figure 10. Simulated growing tumors with quiescence or necrosis for ª~2. (a) 2D sections of 3D simulations with quiescence with G~50.
(b) 2D sections of 3D simulations with quiescence with G~100. Green - proliferating cells, blue - quiescent cells. (c) 2D sections of 3D simulations
with necrosis with G~50. (d) 2D sections of 3D simulations with necrosis with G~100. Green - proliferating cells, red - necrotic cells.
doi:10.1371/journal.pone.0010641.g010
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other, consume substrate, grow at a rate proportional to the local

substrate concentration, divide when their volume doubles, and

secrete MDE. Our choice of biological mechanisms follows our

recent 2D model [1], which simplifies the HDC model of [70].

We use the GGH model [2–4] to represent tumor cells. As in

[1,70], we include three fields: a TM field representing a

homogenized version of the cells and ECM of the normal tissue

surrounding the tumor, an MDE field produced by tumor cells,

which degrades the TM field, and a substrate field representing the

concentration of a substrate limiting tumor-cell growth. The

equations for these fields are the same as in [1]. MDE (denoted by

m, which ranges between 0 and 1) degrades TM (denoted by f ,

which ranges between 0 and 1) according to [95,96] (equation (1)

in [1]):

Lf

Lt
~{df mf , ð3Þ

where df is a positive constant. Degradation does not consume

MDE and MDE does not decay. However, the maximum MDE

concentration is 1, which effectively imposes a decay in regions of

high concentration. Tumor cells produce MDE at a constant rate

Smw0 (the rate of MDE production per tumor cell); MDE then

diffuses uniformly (equation (2) in [1]):

Lm

Lt
~Dm+2mzSmN ~xxð Þ, ð4Þ

where Dmw0 is the diffusion constant of MDE. N ~xxð Þ equals 1

inside tumor cells, otherwise it is 0. To model the transport of

nutrient in surrounding normal tissue, TM produces substrate at a

constant rate per unit density. We denote the substrate

concentration c as a fraction of the maximum soluble concentra-

tion c0, so we require 0ƒcƒ1. The substrate diffuses and is

consumed by the tumor cells at a constant rate per cell (equation

(3) in [1]). Including saturation:

Lc

Lt
~Dc+2czH 1{cð ÞSc

c0
f {H cð ÞCc

c0
N ~xxð Þ, ð5Þ

where Dc, Sc and Cc are positive constants representing

respectively the substrate-diffusion constant, the substrate-produc-

tion rate per unit TM and the substrate-consumption rate per

tumor cell, and H is the Heaviside step function. The substrate-

consumption rate for the normalized substrate field is:

k~
Cc

c0
: ð6Þ

Initially c~1, m~0 and f ~1 everywhere.

In [1] we showed that 2D-tumor morphology depended mainly

on a single parameter, the nondimensional ratio of the maximum

tumor-growth rate to the maximum substrate-transport rate: the

Diffusion-Limitation Parameter (equation (8) in [1]):

G~
L2gk

DcCc

, ð7Þ

where L is the size of the simulation domain and g is the maximum

specific growth rate (amount of new tumor produced per unit time per

unit tumor). We vary G by varying k. Cells grow by increasing

their volume V at a rate proportional to the local substrate

concentration.

GGH Implementation of the Tumor Model
For a detailed description of GGH simulations, see [1] and [4].

For additional information on CC3D and open-source downloads

of CC3D software for Windows, Mac OSX and Linux platforms,

please visit: http://www.compucell3d.org/.

In our simulation, Generalized Cells are spatially-extended

domains, which represent either tumor cells or non-tumor tissue

and reside on a single 3D, square Cell Lattice [4,97]. Generalized

Cells carry state descriptors, e.g., cells’ target volumes and volumes

at which mitosis occurs. Fields are continuously-variable concen-

trations, each of which resides on its own lattice, here diffusing

MDE and substrate, and nondiffusing TM, evolving according to

equations (3), (4) and (5). The Effective Energy creates forces which

determine a Generalized Cell’s shape, motility, adhesion and

response to extracellular signals [4].

We denote the unique index of a Generalized Cell by s, where

the value at a Cell-Lattice site (voxel) ~ii is s if this site lies in

Generalized Cell s. Each Generalized Cell has an associated

Generalized-Cell type t. In our model, TM denotes tissue medium

and t tumor cells.

The Effective Energy e in our tumor simulations includes three

terms [1–4]:

e~
X

~ii,~jj neighbors

J t s ~ii
� �� �

,t s ~jj
� �� �� �

1{d s ~ii
� �

,s ~jj
� �� �� �

z
X

s

lV t sð Þð Þ V sð Þ{Vt t sð Þð Þð Þ2

z
X

s

lS t sð Þð Þ S sð Þ{St t sð Þð Þð Þ2:

ð8Þ

The first term describes the surface adhesion between Generalized

Cells in terms of Contact Energies J t,t’ð Þ~J t’,tð Þ [1–4]. The units

of J in 3D are energy/unit boundary surface area. We use a

fourth-neighbor interaction range (32 neighbors for each voxel) to

calculate the Contact Energies, which reduces Cell-Lattice

anisotropy effects [98]. The second term constrains the General-

ized Cells’ volumes; V sð Þ is the volume in Cell-Lattice sites of

Generalized Cell s, Vt its Target Volume, and lV its inverse

compressibility. The third term represents the elasticity of a cell

membrane; S sð Þ is the surface area of Generalized Cell s, St its

Target Surface Area, and lS its inverse membrane elasticity. We

model TM as one unconstrained Generalized Cell:

lV TMð Þ~lS TMð Þ~0.

We define the tumor surface tension c in terms of the Contact

Energies J [2,3]:

c:J t,TMð Þ{ J t, tð Þ
2

: ð9Þ

The surface tension controls the tendency of tumor cells to

disperse or cluster.

To model cell motility, the Cell Lattice evolves through

stochastic attempts by Generalized Cells to extend their bound-

aries into neighboring Cell-Lattice sites, slightly displacing the

Generalized Cells which currently occupy those sites [2–4]. At

each step, we randomly select a Cell-Lattice site~ii and attempt to

change its index from s ~ii
� �

to the index s’~s’ ~ii0
� �

of a Cell-

Lattice site~ii0 randomly chosen in its fourth-order neighborhood. If

the difference in Effective Energy produced by the change Dev0
then we accept the change. If De§0 then we accept the change

with a probability P:
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P sð ~ii?s’ ~ii0
��� �

~e{De=T , ð10Þ

where T represents the cell’s intrinsic cytoskeletally-driven mot ility.

One Monte Carlo Step (MCS) corresponds to n attempts, where n is

the total number of Cell-Lattice sites.

The dimension of our Cell Lattice in voxels is 100|100|100.

In our simulations, each simulated tumor cell (Generalized Cell of

type t) initially occupies a 3|3|3 voxel cube. The initial 3D

configuration of these simulations consists of 8 Generalized Cells

of type t forming a cube in the middle of the simulation domain.

We set the linear size of 1 voxel to 60 mm, which is on the order of

the scale in [1], so the size of the simulation domain corresponds to

6 mm. Therefore the linear size of 1 simulated tumor cell is

180 mm, which is about 7 times greater than the size of real tumor

cells [70,99,100], so 1 simulated tumor cell represents *350 real

tumor cells. Since the size of tumor cells is much smaller than the

substrate-penetration and capillary lengths (see [1]), the cell size is

not critical. Coarse-graining the cells greatly speeds our simula-

tions. Since G is dimensionless, its value is independent of our

choice of length scale.

We simulate growth of tumor cells by increasing their Vt at a

rate proportional to the local limiting-substrate concentration c at

the cell’s center of mass [1,52,87,101]:

1

V0
t

dVt

dt
~gc, ð11Þ

where g is a growth rate. For tumor cells, the initial V0
t ~27. When a

tumor cell reaches the doubling volume Vd~2V0
t ~54, it divides and

splits along a random axis into two tumor cells (of the same phenotype)

with Target Volumes V0
t [97]. To prevent growing cells from changing

shape, we adjust St so that the nondimensional ratio StV
{2=3
t remains

constant, i.e. St~ Vt

�
V0

t

� �2=3
S0

t . We set S0
t ~27, which produces

roughly spherical cells. Since we do not set a substrate-concentration

threshold for cells to grow, all cells can proliferate. However, the

substrate concentration in the inner part of the growing tumor spheroid

is nearly zero. Thus only tumor cells near the surface of the spheroid

grow appreciably, while cells in the middle of the spheroid effectively

do not grow during the duration of the simulation.

As in [1], we define three Fields: 1) diffusible substrate c, 2)

diffusing MDE m, 3) nondiffusing TM f . These Fields can have

nonzero values at each point simultaneously and co-occupy space

with cells.

Tumor cells produce MDE at a constant rate at the cell’s center

of mass. Tumor cells absorb substrate at their respective centers of

mass. Substrate and MDE diffuse uniformly on their Field lattices

using a forward-Euler algorithm. If 1 voxel corresponds to a
meters and 1 MCS to b seconds then, for example, Dc (in

voxel2=MCS) relates to the physical diffusion constant of substrate

D (in m2=s) via: Dc~bD=a2. In our simulations, we use no-flux

boundary conditions at all Field edges.

Parameter Values
To the best of our knowledge, no one has measured the

adhesion parameters for a tumor cell line, although measurement

should be possible [77–80]. Because the Contact Energy between

two Cell-Lattice sites that belong to the same Generalized Cell is

defined to be zero, we set all J t,t’ð Þ positive to prevent

Generalized Cells from dissociating. We also require c§0 to keep

the tumor cells from floating off into the TM spontaneously.

Following our previous paper, our simulations use

J TM,TMð Þ~0 and J t,TMð Þ~8, and vary J t,tð Þ from 4, for

which c~6, to 16, for which c~0. For cw6, the simulated

morphologies do not differ much from those for c~6. We set

lV~20 and lS~0:4, which prevents Generalized Cells from

nonbiological disappearing or freezing.

As in our earlier paper, we take Dt~1:7|10{13m2s{1 and

D~2:5|10{11m2s{1. For T~60, the diffusion constant for our

simulated tumor cells is about 0:01voxel2MCS{1, as in our

previous 2D simulations, so 400 MCS corresponds to approxi-

mately 1 day and Dc~1:5voxel2MCS{1.

The remaining parameters come from [1]: c0~

6:7Mm{3, k~0:05MCS{1 (which we denote k0), g~

0:0075MCS{1, df ~0:45MCS{1, Dm~0:00015voxel2MCS{1,

Sm~0:09MCS{1, and Sc~0:045MCS{1. We define the pro-

duction and consumption parameters per Generalized Cell, so

they are the same for both 2D and 3D. We also set cn~0:01 and

gn~0:002. Equation (7) gives, for k~k0, G~G0*50. Since

MDE diffusion is very slow and TM degradation by MDE is

strong, f*0 at all voxels occupied by tumor cells and f*1 at all

voxels occupied by TM.

We vary k from 0.05 to 0.2, corresponding approximately to

varying G from 50 to 200, which covers the complete range of

possible simulated-tumor morphologies. Smaller values of G

produce the same patterns as G~50 and values of Gw200
greatly slow or even halt tumor-cell proliferation. Table 6 lists our

model parameters.
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Table 6. Parameter values in our 3D simulations of tumor
growth.

1 MCS 0:0025 day

1 voxel 60 mm

Diffusion-limitation parameter G 50–200

Tumor-TM surface tension c 0–6

Tumor-TM Contact Energy 8

Tumor-cell motility T 60

Tumor-cell doubling volume Vd 54

Tumor inverse compressibility lV 20

Tumor inverse membrane elasticity lS 0.4

Tumor-cell shape parameter S0
t

27

Substrate diffusion constant Dc 1:5voxel2MCS{1

TM degradation rate df 0:45MCS{1

MDE diffusion constant Dm 0:00015voxel2MCS{1

MDE production rate Sm 0:09MCS{1

Substrate production rate Sc 0:045MCS{1

Tumor-cell growth rate g 0:0075MCS{1

doi:10.1371/journal.pone.0010641.t006
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