
metabolites

H

OH

OH

Review

Metabolomic Biomarkers for Detection, Prognosis
and Identifying Recurrence in Endometrial Cancer

Kelechi Njoku 1,2 , Caroline J.J Sutton 3 , Anthony D. Whetton 2 and Emma J. Crosbie 1,4,*
1 Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health,

University of Manchester, 5th Floor Research, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK;
kelechi.njoku@manchester.ac.uk

2 Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Biology, Medicine and Health,
University of Manchester, Manchester M13 9PL, UK; tony.whetton@manchester.ac.uk

3 School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester,
Oxford Road, Manchester M13 9WL, UK; caroline.sutton@student.manchester.ac.uk

4 Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust,
Manchester Academic Health Science Centre, Manchester M13 9WL, UK

* Correspondence: emma.crosbie@manchester.ac.uk; Tel.: +44-0161-701-6942

Received: 2 July 2020; Accepted: 27 July 2020; Published: 31 July 2020
����������
�������

Abstract: Metabolic reprogramming is increasingly recognised as one of the defining hallmarks
of tumorigenesis. There is compelling evidence to suggest that endometrial cancer develops and
progresses in the context of profound metabolic dysfunction. Whilst the incidence of endometrial
cancer continues to rise in parallel with the global epidemic of obesity, there are, as yet, no validated
biomarkers that can aid risk prediction, early detection, prognostic evaluation or surveillance.
Advances in high-throughput technologies have, in recent times, shown promise for biomarker
discovery based on genomic, transcriptomic, proteomic and metabolomic platforms. Metabolomics,
the large-scale study of metabolites, deals with the downstream products of the other omics
technologies and thus best reflects the human phenotype. This review aims to provide a summary
and critical synthesis of the existing literature with the ultimate goal of identifying the most
promising metabolite biomarkers that can augment current endometrial cancer diagnostic, prognostic
and recurrence surveillance strategies. Identified metabolites and their biochemical pathways are
discussed in the context of what we know about endometrial carcinogenesis and their potential
clinical utility is evaluated. Finally, we underscore the challenges inherent in metabolomic biomarker
discovery and validation and provide fresh perspectives and directions for future endometrial cancer
biomarker research.
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1. Introduction

Endometrial cancer (EC) is the leading gynaecological malignancy in high-income countries
and accounted for over 89,000 deaths worldwide in 2018 [1,2]. Its incidence is rising, year-on-year,
in tandem with the escalating prevalence of obesity [3]. In the United Kingdom (UK), over 9000 cases
are diagnosed annually with incidence rates increasing by almost three-fifths since the early 1990s [4].
While the demographic shift towards an ageing population and declining rates of hysterectomy for
benign gynaecological conditions contribute to these trends, the major cause is the growing prevalence
of obesity (body mass index ≥ 30 kg/m2) [3,5]. Worldwide, obesity has reached epidemic proportions,
having nearly tripled in prevalence between 1975 and 2016 [6,7]. About 40% of the world female
population aged 18 years and over are overweight and nearly 50% of endometrial cancers are directly
attributable to obesity [6,8].
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Post-menopausal bleeding (PMB) is a red-flag symptom of EC and is seen in 90% of women
with EC. However, only 5% to 10% of women with PMB have EC [5,9]. Despite advances in cancer
diagnostics over the past few decades, little, if any, progress has been made in the diagnostic work-up
for EC [5,10]. Symptomatic women in the UK are triaged with a transvaginal ultrasound scan (TVS),
a highly sensitive test that is limited by its poor specificity. Depending on the endometrial thickness,
around 50% undergo further tests, specifically endometrial biopsy with or without hysteroscopy [5,11].
These procedures are expensive and invasive, and can be painful, especially in nulliparous women,
and carry a small risk of life-threatening uterine perforation and other serious complications [5,12].
There is an urgent need for biomarkers based on minimally invasive sampling methodologies that
could aid EC diagnosis [13,14]. The ideal test should be simple, robust and accurate. “What simple,
non-invasive, painless and convenient tests can be used to detect cancer early?” ranked as the most
important research priority for the early detection of cancer in the UK-focused research gap analysis
led by the James Lind Alliance partnership, representing patients, carers and health professionals [15].

Over 80% of ECs are low-grade and develop in a hyperplastic endometrium (Bokhmans Type I
EC) [16]. The Type I tumours are strongly associated with obesity and have a favourable prognosis,
in contrast to the Type II tumours which are high-grade and clinically aggressive [17]. Four novel
EC categories have recently been proposed by The Cancer Genome Atlas Research Network (TCGA):
polymerase epsilon (POLE) ultra-mutated, microsatellite unstable (MSI), copy number low and
copy-number high [18], and have been validated in multiple studies [19,20]. It has been postulated
that these molecular subtypes could be used to better define prognosis and recurrence risk than
traditional risk prediction models based on clinical predictors [20,21]. Treatment of EC is usually
surgical (hysterectomy and bilateral salpingo-oophorectomy), although a significant minority are
offered conservative management in the form of hormonal manipulations, especially women of
childbearing age who wish to preserve their fertility [9]. Decisions about adjuvant chemotherapy
and radiotherapy are currently based on traditional pathological parameters that lack precision and
therefore deny some women with biologically aggressive disease the opportunity to receive life-saving
treatments whilst exposing others to unnecessary harms [5,22]. There is, at present, limited evidence
to support the routine use of imaging or biochemical testing in the follow-up for EC due mainly to
the lack of reliable monitoring tools [5]. The key questions are therefore how best to identify women
at greatest risk of the disease [23] and the development of non-invasive strategies that can aid its
detection, prognosis and monitoring for recurrence [10,24].

High-throughput technologies have emerged as important tools for biomarker discovery and
validation [25]. The “omic” technologies, in particular, deal with the comprehensive sequencing of DNA
(genomics), epigenetic modifications (epigenomics), mRNA (transcriptomics), proteins (proteomics)
and metabolites (metabolomics) in biological samples [26,27]. While all these approaches have the
potential to advance cancer diagnostics, metabolomics in particular provides an unprecedented
opportunity for the identification of clinically relevant biomarkers as it best mirrors the human
phenotype [28,29].

EC is attractive for metabolomic profiling for two main reasons. First, there is compelling evidence
to suggest that EC develops and progresses in the context of a profound metabolic dysfunction [30,31].
Several metabolic risk factors are linked to EC pathogenesis including obesity, type II diabetes mellitus,
polycystic ovary syndrome and metabolic syndrome [23,30]. Of these, obesity is the most consistently
cited risk factor and is strongly related to EC, with every 5 unit increase in BMI leading to a 60% increased
risk of the disease [32]. The effect of adipose tissue-derived estrogen, unopposed by progesterone,
is the most supported underlying pathogenic mechanism for endometrial carcinogenesis, yet insulin
resistance undoubtedly plays a central role, acting synergistically with unopposed estrogen to promote
tumour growth [33,34]. Second, the juxtaposition of epithelial, stromal and endothelial endometrial
cells, endometrial progenitor/stem cells, inflammatory cells including macrophages, natural killer cells
and lymphocytes as well as secreted factors and fluids creates a unique intrauterine microenvironment
that drives cellular processes [35–38]. An imbalance in this microenvironment can not only promote
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EC development and progression, but also influence treatment response and can be captured via
metabolic profiling [38].

2. Metabolomics and EC Biomarker Discovery

Metabolomics is the large-scale study of the metabolic response of biological systems [39,40].
The human metabolome is a diverse group of low-molecular weight compounds resulting from both
endogenous and exogenous processes, the identity of which can be established by the analysis of various
biological samples including blood, urine, tissue and saliva [28,41]. The metabolome most closely
reflects the human phenotype in health and disease as it is downstream of the genome, transcriptome and
proteome, and in effect, summarises these other “omic” technologies [42]. Cancer-related metabolites
are by-products of the cellular processes that result from neoplastic transformation and cellular
proliferation, as well as from the body’s immunological (inflammatory) response to malignancy [29,43].
Such metabolites differ quantitatively from those resulting from non-malignant cellular events and
thus have the potential to serve as biomarkers for cancer detection [44]. The human metabolome is
inherently dynamic and it is therefore not surprising that it evolves in tandem with the progressive
nature of the malignancy [29]. As such, metabolites have great potential for monitoring treatment
response, disease progression and aiding surveillance. Metabolites that can be linked to specific
histological or molecular subtypes of EC may be used to direct targeted treatments, while those that
discriminate metabolically healthy from unhealthy obesity phenotypes, for example, have promise for
EC risk prediction.

Metabolites for EC detection may be identified in endometrial tissue, brush and lavage specimens,
blood samples (serum/plasma) and urine (Figure 1) [45]. Direct sampling of the endometrial cavity by
aspiration, brushing and lavage has great potential to yield EC-relevant biomarkers given its close
proximity to the tumour. These are, however, invasive to collect, thus limiting their clinical utility [13].
Some metabolites originating in the tumour may find their way into the bloodstream, undergo chemical
modification and be excreted in urine [46,47]. Blood-based metabolites are easily accessible but their
diagnostic potential is limited by dilution and thus the low yield of cancer-derived metabolites in
blood, especially in small and early stage tumours limited to the endometrium [29]. Uterine-shed
metabolites may contaminate voided urine samples, particularly in symptomatic women, due to the
close proximity of the urethra and vagina, but this may be an unreliable source of biomarkers if uterine
shedding is episodic and inconsistent, as might be expected in early stage disease [13]. The anatomical
continuity between the upper and lower female genital tracts may provide an opportunity for the
collection of uterine tissue-derived EC metabolites using minimally invasive strategies such as vaginal
swabs, tampons and cervicovaginal sampling devices [45]. Further studies exploring this possibility
are urgently needed.

Metabolomic Platforms for EC Biomarker Research

Metabolomics may be targeted or untargeted [48]. Targeted approaches are hypothesis-driven and
deal with the identification and quantification of a select group of metabolites that are pre-defined [49].
Untargeted approaches comprehensively identify and quantify measurable metabolites in a given
sample with no prior hypothesis [40,50]. Targeted approaches have advantages in terms of being more
accurate and precise in comparison to untargeted approaches that are prone to high false positive rates
resulting from multiple testing of a multitude of variables (type 1 error) [42,43]. Untargeted approaches
are therefore often used in the discovery phase of biomarker research, whilst targeted approaches
are used for biomarker validation and verification. Advances in high-throughput technologies have
led to pseudo-targeted approaches that can combine the strengths of both targeted and untargeted
metabolomics [39,40,42].

The platforms commonly used in endometrial cancer metabolomic studies are liquid
chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR)
(Figure 1) [51,52]. LC-MS deals with the ionisation of chromatographically separated analytes and
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their subsequent identification based on their mass-to-charge ratio and chromatographic retention
time [53,54]. Metabolites that ionise efficiently are thus more easily identifiable by MS [55]. In contrast
to NMR, LC-MS is very sensitive and can be performed with small clinical samples containing low
molar quantities of analytes, thus conferring an advantage in large-scale human studies [54]. The use
of capillary electrophoresis coupled to mass spectrometry (CE-MS) is another powerful technique for
untargeted metabolomics and has been employed in tumour biomarker discovery. This analytical
technique is able to profile highly polar and charged metabolites in biological fluids based on the
differential transportation of ions in an electric field and provides complementary metabolic information
to LC-MS [56]. NMR, on the other hand, analyses samples by subjecting them to an electromagnetic
field and subsequently measuring the characteristic radio waves emitted by each metabolite in response
to changes in the magnetic field [54,57]. NMR is highly reproducible and unlike MS, it does not
require prior sample separation. Its sensitivity is limited, however, as a smaller range of metabolites
can be detected by NMR [54]. Other approaches used in metabolomic research include vibrational
spectroscopy which explores vibrations induced to the chemical bonds of metabolites following
exposure to electromagnetic radiation [58]. Infrared and Raman spectroscopy are the two main
vibrational spectroscopy techniques and respond to different types of vibrations, thus complementing
each other [58]. The choice of platform to use in biomarker research is dependent on the focus of the
study, the nature of clinical samples available, cost, accessibility and availability of expertise. Effective
metabolomic studies often utilise multiple platforms, as no single platform can completely identify
and quantify all metabolites in a given sample [51,54,57].
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Figure 1. An overview of a typical workflow for endometrial cancer metabolomic biomarker research.
Potential sources of endometrial cancer (EC) biomarkers include endometrial tissue specimens,
uterine lavage, cervicovaginal specimens, blood and urine. Mass spectrometry (MS) and nuclear
magnetic resonance (NMR) analysis are the two main metabolomic platforms for biomarker
discovery. Specialised statistical and bioinformatics tools are needed for data analysis, interpretation
and integration.



Metabolites 2020, 10, 314 5 of 28

3. Challenges and Important Considerations in Metabolomic Biomarker Research

The discovery of viable and clinically relevant metabolite biomarkers for EC is dependent on three
main factors: selection of the most appropriate patient groups with adequate sample size, consistent
and effective sample preparation and use of appropriate analytical techniques, including statistical
methods (Figure 2) [13,27].

3.1. Patient Selection

Selecting the most appropriate patients for analysis is crucial for any biomarker discovery or
validation study to minimise selection bias [59]. Bias is defined as a systematic deviation from the
truth and is an important threat to the validity of biomarker studies [60]. Selection bias occurs when
study participants are selected in such a way that samples obtained may not be representative of the
population intended to be analysed [61]. Both cases and controls should be as similar as possible
except for the condition of interest (EC). Importantly, cases and controls should come from a similar
at-risk population. As such, controls for EC diagnostic biomarker studies should include women
who are being investigated for PMB but who do not have EC [13]. Where feasible, controls should be
matched to cases by demographics such as age, ethnicity, BMI, co-morbidities and lifestyle factors [61].
Participants included as cases should have EC based on gold-standard investigations (histology) to
minimise misclassification bias. Another important consideration is sample size, which is closely
linked to statistical power and is crucial for the reproducibility of study findings [62]. A power of at
least 80% is commonly used as the benchmark for effective biomarker discovery [49,63].

3.2. Consistent and Effective Sample Preparation

Ensuring sample integrity is critical for the discovery of viable metabolomic biomarkers [64].
Pre-analytical factors relating to sample collection, storage, transportation and processing can introduce
spurious signals into clinical samples thus leading to false positive results [51,64]. As such, samples need
to be handled with care and consistency to provide meaningful results. Standard operating procedures
with quality control checks should be in place for every step of the analytical process. Exposure of
clinical samples to unfavourable conditions that can lead to significant degradation of metabolites
should be avoided [28]. As an example, sample preparation techniques will require temperature
and pH regulation to ensure that sample metabolites are not altered [64]. Studies based on uterine
lavage specimens or tissues may be problematic due to the potential for contamination with blood,
especially as PMB is a common symptom of EC. The presence of excessive blood in clinical samples
has the potential to distort metabolomic spectral resolution due to the presence of paramagnetic
species [65]. It is therefore advisable to wash tissue specimens with saline, although this comes at the
risk of potentially removing the tissue metabolic contents [65]. Collection of clinical (fasting status,
menopausal status etc.) and other relevant meta-data during sample collection and storage is important
to guide the interpretation of metabolomic study results [66]. Time of sample collection needs to be
carefully chosen as multiple metabolic processes are under circadian control. Effective sample storage
practices, such as the storage of samples in multiple aliquots, should be encouraged as this minimises
multiple freeze–thaw cycles which can introduce artefacts into study results [64].

3.3. Appropriate Analytical and Statistical Methods

Demographic variability (such as age, BMI, blood pressure, diabetes mellitus) as well as variability
from exogenous sources of metabolites (such as food, water, drugs) are important confounders in
biomarker research and must be taken into consideration when interpreting results [49]. Use of
demographically balanced study groups, exclusion of metabolite markers associated with specific
demographics and use of multivariable statistical analyses, including sub-group analyses, are potential
methods of dealing with such demographic variabilities [63] Collection of samples after an overnight
fast may help to control for exogenous sources of metabolites, such as diet, medications and fluid
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consumption, and is encouraged [67]. Datasets produced from metabolomic biomarker studies
are often highly collinear and noisy, requiring complex analytical methods. Pattern recognition or
clustering techniques are needed to reduce dimensionality including (1) unsupervised methods such as
principal component analysis (PCA), an adaptive data analysis technique that creates new uncorrelated
variables known as principal components that successively maximise variance [68], and (2) supervised
methodologies such as orthogonal partial least squares discriminant analysis, which are used to
separate these components into predictive and uncorrelated information [63,69]. These techniques
provide a visual interpretation of complex datasets and illustrate the degree of separation between
study groups.
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Figure 2. Important considerations for the design of metabolomic biomarker discovery studies.
An adequate sample size with demographically balanced study groups, consistency in sample collection,
transport, storage and processing as well as use of appropriate analytical techniques are crucial for the
identification of viable biomarkers for cancer detection, prognosis and monitoring.

4. Endometrial Cancer Metabolomic Biomarkers in Biofluids

4.1. Blood-Based Metabolite Biomarkers

Blood is an ideal source of biomarkers as it is readily available and its use is likely to be acceptable
to both clinicians and patients [70]. “Can a blood test be used to detect some or all cancers?” ranked
second in our recently completed James Lind Alliance Priority Setting Partnership for Detecting
Cancer Early, confirming the appeal of a “cancer blood test” to both clinicians and patients [15].
Several blood-based metabolites have been suggested as potential EC biomarkers and can be broadly
classified into amino acids and their derivatives including biogenic amines, acylcarnitines, free fatty
acids, phospholipids, sphingolipids, hexoses and hormone metabolites, among others (Table 1) [71,72].
There is, however, insufficient evidence to support the use of any of these metabolites, either singly or
in combination, for detection, prognosis or disease monitoring in EC. Evidence for clinical translation
is limited by the lack of robust validation of most biomarker candidates and lack of clarity on the
mechanistic links underpinning their potential utility as EC biomarkers. Further studies are needed to
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validate the diagnostic, predictive and prognostic properties of these markers as well as to elucidate
the mechanisms underpinning their functions.

4.1.1. Blood-Based Diagnostic Metabolomic EC Biomarkers

A diagnostic biomarker is a biological characteristic that can detect the presence of a disease
or condition of interest [73]. The ideal EC diagnostic biomarker should be able to detect ECs of all
grades and stages, producing few false positives or negatives [13,74]. An EC metabolic biomarker with
adequate diagnostic performance has the potential to not only be used to diagnose symptomatic women
but also to screen high-risk asymptomatic women such as those with Lynch syndrome or obesity [75].
Several blood-based EC diagnostic metabolomic biomarkers have been reported in the literature (Table 1)
and are mostly by-products of lipids and amino acids. They include acylcholines, monoglycerols,
acylcarnitines, phenylalanine, phosphocholine, modified phosphatidylcholine derivatives, lactic acid,
progesterone, indole acetic acid, homocysteine, stearic acid, valine, tetradecadienoylcarnitine,
3-hydroxybutyric acid, proline/tyrosine and lyso-platelet-activating factor-16, among others (Table 1).
The most commonly reported dysregulated metabolic pathways in the serum of EC cases are lipid-
and glycolysis-related pathways [71,76,77]. One of the most promising as a potential biomarker
is phosphocholine which has been identified as important in multiple EC studies [77,78] and
recently shown to be differentially expressed in the cervicovaginal fluids [79] and tissues [80] of
cases versus controls. Audet-Delage and colleagues, using mass spectrometry-based untargeted
metabolomics on pre-operative serum samples of 36 EC cases and 18 controls, reported an upregulation
of conjugated lipids including acylcholines, monoacylglycerols and acylcarnitines in EC cases and
downregulation of free fatty acids, suggesting the potential remodelling of lipid metabolic pathways in
EC [71]. Further, they found C5 acylcarnitine 2-methyl butyryl carnitine was elevated in EC cases [71].
These findings align with those of Bahado-Singh, who also reported an upregulation of acylcholines in
EC [77]. The mechanism underpinning the role or actions of acylcholines is unclear and further studies
are needed. It has been suggested that they may enhance the penetration of oestradiol in tissues,
potentiating endometrial carcinogenesis [81]. Acyl-carnitines, on the other hand, are 14-carbon fatty
acids attached to a carboxylate through an ester-bond and play crucial roles in mitochondrial fatty acid
oxidation [76]. They are reportedly enriched in hypoxic tissues and have previously been linked to breast
cancer biochemistry [71,72,82]. Other upregulated lipid metabolites in EC include monoacylglycerols,
which are products of the enzymatic hydrolysis of triacylglycerols, and diacylglycerols [71,72,76].
These glycerides are ultimately metabolised (by the action of monoacylglycerol lipase) to free fatty
acids, the group of lipid metabolites that are known to be downregulated in EC. The downregulation
of the lipase enzyme in EC may, in theory, account for the observed findings [71,83]. Using plasma
samples from women with EC (n = 342), atypical hyperplasia (n = 68) and healthy controls (n = 242)
in a cross-sectional diagnostic accuracy study, our group was able to show that spectroscopy has the
potential to detect EC with 87% sensitivity and 78% specificity [84]. In comparison to the controls,
EC cases had an increased lipid-related peak (peak at 1446 cm−1) and decreased carbohydrate- and
fatty acid-related regions (peaks at 1377 and 900 cm−1) [84]. Its diagnostic accuracy was highest for
Type I EC and atypical hyperplasia, with sensitivities of 91% and 100%, and specificities of 81% and
88%, respectively [84]. This study was limited by the inability to unpick the exact molecular pathways
of identified spectral peaks however, as these peaks can only be tentatively assigned to metabolites
because spectral regions may be informed by multiple biological entities [84].

Several amino acids and their derivatives have also been suggested as potential EC diagnostic
biomarkers. Amino acids are required for protein synthesis and play crucial roles in maintaining
the viability of cancer cells [85,86]. Amino acids also potentiate the redox balance and have been
implicated in epigenetic and immune regulatory functions of cancer cells [86]. Ihata and colleagues,
in one of the earliest EC metabolic profiling studies evaluated the diagnostic performance of amino
acids in the plasma of 80 women with EC, 122 with benign gynaecological diseases and 240 healthy
women. They proposed a multiplex model able to distinguish EC cases from control subjects with
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an AUC of 0.94 [87]. In this study, phenylalanine, valine, histidine, tryptophan, asparagine, serine,
leucine and methionine levels were significantly downregulated in EC while isoleucine, ornithine and
proline levels were significantly upregulated [87]. All EC cases were matched to healthy controls based
on their BMI, suggesting that these changes are unlikely to be related to the effect of overnutrition [87].
The AminoIndex cancer screening test (AICS) is a screening technology that is currently used in
Japan for the early detection of multiple malignancies including endometrial/ovarian cancers [88–90].
This test uses plasma-free amino acid concentrations to estimate the risks for several malignancies
simultaneously with subjects ranked as A, B or C in order of increasing risk of each cancer [89].
In a clinical validation study of AICS, Mikami and colleagues reported a 50% rank C sensitivity for the
development of uterine/ovarian cancer within a year and a 33.3% sensitivity within the maximum
follow-up period of 6.2 years [89]. It has been reported that AICS test values significantly decrease
following resection of malignancies, suggesting that they may not only be viable tools for cancer early
detection but also for monitoring treatment response [91]. Shi and colleagues, in a serum metabolomic
study of 46 early-stage EC cases and 46 healthy controls, reported phenylalanine, indole acrylic acid,
phosphocholine and lyso-platelet-activating factor-16 (lyso-PAF) as discriminatory biomarkers in
EC [92]. Further mechanistic studies demonstrated Indoleacrylic acid, lyso-PAF and phenylalanine
to exhibit dose-dependent inhibition of tumour cell invasion and migration and suppression of cell
proliferation [92]. Of the top ten diagnostic biomarkers identified by Audet-Delage and colleagues,
five were peptides and amino acids. Of these, spermine and isovalerate were the most relevant [71].
There was a positive 7-fold change in spermine levels (p = 0.0004) in EC cases and a negative 2-fold
change in the levels of isovalerate (p = 0.015) [71]. The combination of spermine and isovalerate
resulted in an overall AUC of 0.875 (95%CI 0.78–0.96) and an age-adjusted AUC of 0.914 (85% CI
0.83–0.99) [71]. A more comprehensive model including spermine, isovalerate, glycylvaline and
gamma-glutamyl-s-aminobutyrate resulted in an age-adjusted AUC of 0.92 (95% CI 0.83–1.00) [71].
Spermine is a polyamine closely associated with nucleic acids and thought to stabilise their polymeric
helical structure while isovalerate is a product of leucine, isoleucine and valine metabolism [76].
Further studies are needed to elucidate their roles in EC tumorigenesis. Troisi and colleagues, using gas
chromatography-mass spectrometry on serum samples of 88 women with EC and 80 healthy controls
(discovery phase) and 30 EC and 90 controls (verification phase) investigated the diagnostic performance
of serum metabolomic signatures and suggested two models with accuracy that ranged from 62% to
99% for Model I and from 67% to 100% for Model II [93]. An ensemble model based on both models
showed an accuracy of 100%. In this study, the most relevant metabolites in class discrimination were
lactic acid, progesterone, homocysteine, 3-hydroxybutyrate, linoleic acid, stearic acid, myristic acid,
threonine and valine [93]. The accumulation of lactic acid from dysregulated glycolysis (Warburg
effect) due to cancer metabolism has been recognised as far back as 1920 [94,95]. Lactic acid has also
been shown to promote angiogenesis and to modulate the tumour microenvironment [96]. The finding
of lower concentrations of progesterone in EC cases is in keeping with its anti-estrogenic effect [76].
Homocysteine, a homologue of the amino acid cysteine, is involved in maintaining the stability of the
DNA and elevated levels have been linked to epithelial malignancies [97], while hydroxybutyrate,
a product of acetyl-CoA and an important source of energy during the starvation phase when blood
glucose levels are low, has also been linked to EC diagnosis and stage [76]. Further studies are needed
to validate these markers before translation into clinical use.

Knific and colleagues, using electrospray ionisation–tandem mass spectrometry on plasma samples
obtained from 61 women with EC and 65 controls quantified 163 metabolites [98]. They reported
phosphatidylcholines to be significantly downregulated in EC. A diagnostic model incorporating the
ratio between acylcarnitine C16 and phosphatidylcholine C40:1, the ratio between proline and tyrosine
and the ratio between the two phosphatidylcholines C42:0 and C44:5 demonstrated a sensitivity of
85.3%, specificity of 69.2% and AUC of 0.84 [98]. The accuracy of the model was further improved
following the addition of smoking status, an EC protective risk factor (AUC = 0.855) [98]. Further studies
are needed to validate these study findings.
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Multiple studies have explored the potential of estrogens, their precursors and metabolites to serve
as EC diagnostic biomarkers [99–103]. Brinton and colleagues, in a case–control study nested within
the Women’s Health Initiative Observational Study, compared baseline serum samples from 313 EC
cases and 354 matched controls, all of whom were non-current hormone users and reported estrone and
estradiol to be strongly related to EC risk [99]. The association was strongest for unconjugated estradiol
(odds ratio fifth vs. first quintile = 6.19 (2.95–13.03), Ptrend = 0.0001) [99]. These findings align with
those of Audet-Walsh, who reported an up to 3-fold elevation in estrogen levels in women with Type
1 EC [100]. When used alongside other metabolites in a multimarker panel, circulating endogenous
estrogens and their metabolites have enormous potential as EC diagnostic markers and further studies
are needed. Blood-based metabolites have been compared to EC risk factors for the prediction of EC.
Bahado-Singh and colleagues reported changes in the serum metabolome of EC patients to be superior
to BMI for EC prediction and that the addition of BMI to the diagnostic metabolomic panels did not
significantly improve the accuracy for EC detection [77].

4.1.2. Blood-Based Predictive and Prognostic Metabolomic EC Biomarkers

Predictive biomarkers are biomarkers that indicate likely response to a particular treatment and
can aid decision-making in clinical practice. Prognostic markers, on the other hand, are used to
indicate a patient’s overall outcome, independent of therapy [60]. Prognostic factors currently used in
clinical practice include histological subtype, tumour grade and stage, depth of myometrial invasion
and presence or absence of lymphovascular space invasion (LVSI) [10,104]. Women with high-grade,
advanced-stage, non-endometrioid EC generally have poor outcomes [21]. Currently, characterisation
of tumour grade and histological type is performed by histopathologists, a subjective process with only
moderate inter-observer reproducibility. Markers to improve the prognostic characterisation of EC are
thus needed. Recent molecular classification of EC by the TCGA and its validation by other groups
has refined the prognostic categorisation of EC [20]. However, it is expensive to complete, requiring
multiple workstreams and technologies. Metabolomic markers linked to the four TCGA prognostic
categories may be a cheaper alternative for prognostic stratification in EC [76].

Several metabolites have potential for establishing EC histological subtype. They include bradykinin,
heme, lactic acid, homocysteine, linoleic acid, myristic acid, progesterone, valine, threonine, stearic acid,
3-hydroxybutyrate, choline, sarcosine, glycine and sulphated androgenic steroids. In the study by
Audet-Delage and colleagues, 98 metabolites were differentially expressed between Type I and Type II
EC, with 30 metabolites having a higher expression in Type I and 68 having a lower expression [71].
The most promising biomarkers were bradykinin, which showed a 2-fold increase in Type I EC
(fold-change = 2.70, p = 0.003), and heme, which showed a 4.5-fold increase in Type II EC [71]. Bradykinin
is a 9-amino acid residue peptide that acts as a vasodilator and promotes inflammation. It activates
phospholipase D in EC [76,105]. Its upregulation is therefore consistent with a pro-inflammatory state,
one of the putative biological mechanisms underpinning EC carcinogenesis. Heme, on the other hand,
an iron-containing porphyrin, is involved in oxygen transport and energy production and is known to
modulate the tumour microenvironment [106]. Other promising prognostic metabolomic biomarkers
include saturated long-chain acylcarnitines, which have been reported to be higher in Type II EC,
with C20, C24 and C26 acylcarnitines exhibiting a 1.32-, 1.33- and 1.38-fold change, respectively [71].
Acetycarnitine plays important roles in the transport of fatty acids through the mitochondrial membrane
during beta-oxidation. Elevated levels are related to dysregulated beta-oxidation with associated
increased energy consumption and lipolysis [76]. Further studies are needed to validate these findings.
In an infra-red spectroscopy study by Pareskavaidi and colleagues, amide spectral peaks at 1693 cm−1

and 1547 cm−1 were statistically significantly upregulated in Type II EC compared to Type I, highlighting
the potential of blood-based spectroscopy to aid EC stratification [84].

Some metabolites have been associated with the depth of myometrial invasion, specifically
hydroxysphingomyelins, phosphatidylcholines and endogenous estrogen metabolites [98]. In the
study by Knific and colleagues, a prognostic model for deep myometrial invasion was developed
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based on the ratio between two hydroxysphingomyelins, SMOH C14:1 and SMOH C24:1, and the
ratio between two phosphatidylcholines, PC C40:2 and PC C42:6 [98]. This model demonstrated a
sensitivity of 81.3%, specificity of 86.4% and AUC of 0.86 [98]. Sphingolipids are bio-effector molecules
implicated in cell growth, proliferation and anti-cancer therapeutics [107], whilst phospholipids form
the bilayer components of cellular membranes and are involved in malignant transformation and
tumour progression [108]. Metabolomic biomarkers associated with LVSI include hexadecadienyl
carnitine, phosphatidylcholine with diacyl residue sum C38:1, phosphatidylcholine with diacyl
residue sum C34:4 and phosphatidylcholine with acyl-alkyl residue sum C38:3 [76]. A prognostic
model incorporating the ratio between two phosphatidylcholines, PC C34:4 and PC C38:3, and the
ratio between acylcarnitine C16:2 and phosphatidylcholine PC C38:1 demonstrated a sensitivity of
88.9%, specificity of 84.3% and AUC of 0.94 for LVSI [98]. Audet-Walsh and colleagues explored
the potential of endogenous estrogens and their metabolites to serve as EC prognostic biomarkers
and reported 2-Methoxyestradiol-glucoronide (2-MeOE2-3G) to be upregulated in EC cases with
deep myometrial invasion, while Estrone sulphate was downregulated in cases with LVSI [100].
The 2-Methoxy metabolite of estradiol has been shown to exhibit anti-angiogenic and pro-apoptotic
properties [109,110]. It is postulated that the glucuronidation process that inactivates 2-methoxy
estradiol is potentiated in invasive tumours, thus allowing for tumour progression [109].

Several metabolomic biomarkers are associated with EC recurrence, including spermine,
acylcholines, sphingolipids, linoleic acid, myristic acid, intermediates from the branched-chain
amino acid pathway, polyamines, acylcarnitines, monoacylglycerols, bradykinin, sulfated androgens,
heme, bile acids and ceramides [71,76]. Bile acids, for example, are pro-inflammatory and potentiate
myometrial sensitivity to hormones as well as modulating cholesterol homeostasis, a process known to
drive EC progression [71]. Other metabolites linked to recurrence include estrone sulphate [100] and
the panel of 2-oleoyl-glycerol and triacylglycerol-fatty acids (TAG42:2-FA12:0), which demonstrated an
AUC = 0.877 (95% CI = 0.730–0.990) for the discrimination of recurrent EC from non-recurrent EC and
an age-adjusted AUCadj = 0.901 (95% CI = 0.796–1.000) [71].

Strand and colleagues reported methionine sulfoxide to be strongly associated with poor survival
in a study of 40 cases of EC [111]. They proposed a prognostic signature of metabolites found to
have an AUC of 0.82–0.98 for EC survival (p < 0.001). Methionine sulfoxide is an oxidised form
of methionine, an essential amino acid and known precursor of succinyl-CoA, homocysteine and
carnitine, among others. Elevated methionine sulfoxide is linked to biological ageing. A dysfunction
in its reductase enzyme is linked to cell proliferation, degradation of extracellular matrix and cancer
progression [112]. This marker is yet to be externally validated and further studies are needed.
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Table 1. Most promising blood-based EC metabolomic biomarker candidates and their functions.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

2-oleoylglycerol
[71] Conjugated lipids Prognosis

Monitor disease recurrence
Produced by lipolysis. Have signalling functions. Activate
G-protein-coupled GPR119.

3-hydroxybutyrate
[77,93] Fatty acid metabolite Diagnosis/early detection

Marker of mitochondrial fatty acid beta-oxidation. Synthesised in the
liver from acetyl-CoA.
Source of energy during low glucose levels.

Acylcarnitines
[71,72]

Conjugated lipids
(Fatty acyls)

Diagnosis
Prognosis

Fatty acid transport through the mitochondrial membrane via the
carnitine shuttle. Long-chain fatty acids important for tissues and
enriched in hypoxic tissues. Role in beta-oxidation.

Asparagine
[87] Non-essential amino acid Diagnosis

Amino donor in urea, pyrimidine and purine synthesis. Supports
protein synthesis during glutamine starvation. Also found in CVF
fluids.

Bile acids
[71] Steroid acids

Diagnosis
Prognosis

(Recurrence after surgery)

Increase myometrial sensitivity to hormones, have pro-inflammatory
properties and modulate cholesterol homeostasis. Act with steroids to
promote EC growth, involved in signalling.

Bradykinin
[71] Polypeptide Diagnosis

Prognosis (Elevated in Type 1 EC)

Promotes inflammation, a vasodilator. Causes the release of
prostacyclin and nitric oxide. Activates phospholipase D. Triggers
kinin-activated pathways.

Ceramides
[71,113] Lipids

Diagnosis
Prognosis (Linked to Type 2 EC

recurrence)

Composed of sphingosine and a fatty acid. Involved in cell signalling,
differentiation, proliferation and programmed cell death.

Cholines/acylcholines
[71] Conjugated lipids Diagnosis

Prognosis (Elevated in Type 2 EC)

Choline is necessary for the production of acetylcholine,
a neurotransmitter and S-adenosyl methionine, a methyl donor in
homocysteine synthesis. Acylcholines enhance penetration of estradiol
in tissues. Also found in tissues and CVF fluids [79].

Cystathionine
[71] Modified amino acid Diagnosis Intermediate in the synthesis of cysteine. Product of homocysteine.

Estrogen metabolites
[99–101] Hormone Diagnosis

Prognosis Modulates growth of the endometrium by inducing proliferation.

Glycine
[71] Amino acid Prognosis (Elevated in Type 2 EC) Proteinogenic amino acid. Integral to the formation of alpha-helices in

secondary protein structure. Inhibitory neurotransmitter.
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Table 1. Cont.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Heme
[71] Iron-containing porphyrin Diagnosis

Prognosis (Elevated in Type 2 EC)

A viable source of electrons during electron transfer. Modifications in
Heme synthesis related pathways such as tetra-hydrofolate serine
glycine pathway implicated in EC.

Hexadecadienyl carnitine/
phosphatidylcholine with

diacyl residue C38:1
[98]

Carnitine/choline Prognosis (LVSI) Carnitine-phosphatidylcholine ratio shown to be associated with
presence/absence of LVSI.

Hexadecanoylcarnitine/
phosphatidylcholine with
acyl-alkyl residue C40:1

[98]

Carnitine/choline Diagnosis/early detection Carnitine-phosphatidylcholine ratio with potential for EC detection.

Homocysteine
[93] Amino acid Diagnosis/detection

Prognosis

Homologue of cysteine, a product of methionine. Sensitivity of DNA.
High levels correlate with increased risk of malignant epithelial
tumours.

Hydroxypropionyl
carnitine

[98]
Carnitine Prognosis (Survival) Fatty acid transport through the mitochondrial membrane via the

carnitine shuttle. Long-chain fatty acids important fuels for tissues.

Hydroxysphingomyelins C14:1/
hydroxysphingomyelins C24:1

[98]
Sphingomyelins Prognosis (Myometrial invasion)

Sphingomyelin is involved in signal transduction. Degradation leads
to the production of ceramide/ is involved in the apoptotic signalling
pathway.

Indoleacetic acid
[92] Indoles Diagnosis/early detection Involved in cell proliferation/division, migration, invasion and

autophagy.

Isoleucine
[87] Essential amino acid Diagnosis

Alpha-amino acid useful in the biosynthesis of proteins. Associated
with insulin resistance. Both glucogenic and ketogenic. Also found in
CVF fluids [79].

Isovalerate
[71] Fatty acid Diagnosis /early detection Salt of isovaleric acid. Also known as 3-methyl butanoate.

Lactic acid
[93]

Organic acid
(Alpha-hydroxy acid)

Diagnosis
Prognosis

Synthetic intermediate in metabolic pathways. Produced by pyruvate
when the rate of demand for energy is high. Warburg effect. Low pH
suppresses T function, promotes angiogenesis. Increases interleukin-8.
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Table 1. Cont.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Linoleic acid
[71,72,93] Essential fatty acid Diagnosis (Lower levels in EC)

Prognosis
Unclear role in tumorigenesis. Promotes growth of mammary tumours
in rodent models.

Lyso-platelet-activating factor
[92] Phospholipid Diagnosis/early detection

Induced lipid mediator. Potent phospholipid activator and mediator of
inflammation, platelet aggregation and leukocyte functions. Linked to
skin cancer.

Methionine sulfoxide
[111] Essential amino acid Prognosis

(survival)
Methionine is a precursor for succinyl-CoA, homocysteine, cysteine,
creatine and carnitine. Met-SO is an oxidised form of methionine.

Monoacylglycerols
[71] Glyceride Diagnosis

Prognosis
Glycerols linked to fatty acid. Act primarily as surfactants. Favour
estrogenic environment.

Myristic acid
[71,93] Free fatty acid Diagnosis (Lower levels in EC)

Prognosis
Saturated fatty acids are strongly related to cholesterol concentrations.

Correlate with rising triglycerides in plasma.

Phenylalanine
[71,87] Essential amino acid Diagnosis/early detection

Precursor for tyrosine, dopamine and norepinephrine. Inhibits
proliferation without affecting apoptosis or autophagy. Also found in

CVF fluids [79]

Phosphatidylcholine with
diacyl

C42:0/phosphatidylcholine
with acyl-alkyl C44:5

[98]

Lipid-like (Choline
derivatives) Diagnosis/early detection Specific choline derivative ratios shown to predict EC.

Phosphatidylcholine with
diacyl residue sum

C34:4/phosphatidylcholine
with acyl-alkyl C38:3

[98]

Lipid-like (Choline
derivatives) Prognosis (LVSI) Specific choline derivative ratios are associated with presence/

absence of LVSI.

Phosphatidylcholine with
diacyl residueC40:2/

Phosphatidylcholine with
diacyl residue C42:6

[98]

Choline derivatives Prognosis Specific choline derivative ratios are associated with myometrial
invasion.

Phosphocholine
[92] Phospholipid Diagnosis/early detection

Prognosis

Plays a role in biosynthesis of cell membranes. Surrogate marker for
cell proliferation, inhibition of invasion and migration. Protects against

TNF-induced apoptosis. Also found in CVF fluids [79].
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Table 1. Cont.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Progesterone
[93] Hormone Diagnosis Anti-estrogenic effect and associated with estrogen sensitivity of ECs.

Proline/tyrosine
[98] Amino acids Diagnosis/early detection Involved in the biosynthesis of proteins.

Sarcosine
[71] Biogenic amine Prognosis (Elevated in Type 2 EC) Intermediate in the metabolism of choline to glycine.

Spermine
[71] Biogenic amine Diagnosis/early detection

Prognosis Likely originating from EC cells. Involved in cellular metabolism.

Sphingolipids
[71] Sphingolipids Diagnosis

Prognosis

Fatty acid derivatives of sphingosine which occur in cell membranes,
especially of the brain and nervous tissues. Also found in EC tissues

[113].

Stearic acid
[72,93] Fatty acid Diagnosis/early detection Saturated fatty acid with surfactant properties. In vitro inhibition of

cancer cell growth. Downregulated in EC.

Sulfated androgens
[71] Sulfated androgens Diagnosis

Prognosis
Sulfated androgens implicated in Type 1 EC. Role in sexual

development of males.

Tetradecadienoylcarnitine
[77] Carnitine Diagnosis/early detection Energy metabolism and fatty acid transport.

Threonine
[93] Amino acid Diagnosis/early detection Amino acid involved in protein biosynthesis.

Valine
[93] Amino acid Diagnosis An amino acid used in the biosynthesis of proteins.
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4.2. Tissue-Based Metabolomic Biomarkers

Biomarkers measured in blood, urine or other minimally invasive samples are ideal for diagnostic
and recurrence monitoring purposes. Cancer-specific biomarkers are likely to be more successful
than those linked to risk factors, such as obesity or the ageing process, however these may be
difficult to distinguish, particularly if cancer-relevant biomarkers are in relatively low abundance
in biofluids distant to the tumour. To circumnavigate this issue, some researchers have discovered
metabolomic biomarkers in tumour tissue with a view to their subsequent identification, albeit at
much lower concentrations, in distant biofluids and blood circulation (Table 2). Altadil and colleagues
found glycerophospholipids to be upregulated in EC tissues, specifically glycerophosphocholines
(PCs), phosphatidylserine (PSs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs) and
phosphatidylglycerol (PGs) [80]. These findings are consistent with those by Trousil and colleagues
who also reported an increase of up to 70% in phosphocholine levels of EC tissues in a study
comparing endometrial tissues from 10 high-grade endometrioid EC cases and 10 benign controls [78].
Phosphocholines play crucial roles in cell membrane synthesis and are thus surrogates for cell
proliferation, a cardinal feature of tumorigenesis. They have also been reported in blood [93]
and cervicovaginal fluid samples [79], suggesting that they may be viable candidates for EC
detection. Other metabolic alterations in EC tissues included the downregulation of palmitamide,
stearamide, oleamide, glutamine/tryptophan and inosine and upregulation of 3-Deoxyvitamin
D3, linoleic acid, UDP-N-acetyl-d-galactosamine, sphingaline, sphingosine and dihydroceramide,
among others [80,113,114].

Eritja and colleagues, studied the tumour microenvironmental blood flow of EC using dynamic
contrast-enhanced magnetic resonance imaging alongside liquid chromatography coupled to mass
spectrometry and reported lysophospholipids and resolvin D as EC metabolic biomarkers [115].
Lysophospholipids are important constituents of cell membranes and have been postulated to exhibit
pro-angiogenic and anti-apoptotic properties [116]. Resolvin D, on the other hand, has been implicated
in the resolution of inflammatory processes [117]. These markers are yet to be externally validated and
further studies are needed.

Prognostic metabolomic biomarkers identified in tumour tissue include picolinic acid, vaccenic
acid, phosphatidic acid, arachidonic acid, 13Z-docosenamide, UDP-N-acetyl-d-galactosamine,
1-palmitoyl-2-linoleoyl, inosine, palmitic amide, gleamide, linoleic acid, phosphatidylserine,
phosphatidylinositol and glycerophosphocholines, among others [76,80] (Table 1). Picolinic acid
is an end-product of the kynurenine pathway which is downregulated in EC, in keeping with its
reported anti-tumoral properties, while UDP-N-acetyl-D-galactosamine and arachidonic acid are
upregulated in advanced stages of EC [80].
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Table 2. Most promising tissue-based EC metabolomic biomarker candidates and their functions.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

13Z- Docosenamide
[80] Primary fatty amide Diagnosis

Prognosis
An amide of docosenoic acid. Unclear mechanism relating to EC
development and progression.

1-palmitoyl-2-linoleoyl-
glycero-3phosphocholine

[80]

Diacylglycerol and
phospholipid

Diagnosis
Prognosis

Component of biological membranes. Involved in
membrane-mediated cell signalling.

5,8,11-eicosatrienoic acid
[80] Straight chain fatty acid Diagnosis

Prognosis

Belong to eicosanoids, synthesised from oxidised polyunsaturated
fatty acids, mediate cell–cell communication and inflammatory
immune response.

Arachidonic acid
[80] Polyunsaturated fatty acid Diagnosis

Prognosis
Present in phospholipids of membranes, plays roles in the synthesis of
prostaglandins and leukotrienes.

Capric acid
[118] Saturated fatty acid Diagnosis Downregulated in EC. Role in cell signaling, energy storage,

membrane stability. In vitro inhibition of cancer proliferation.

Cholines/acylcholines
[78,80] Conjugated lipids Diagnosis

Prognosis (Elevated in Type 2 EC)
Acylcholines enhance penetration of estradiol in tissues. Seen in blood
[71] and CVF [79].

Glutamate/arginine/Tryptophan
[80] Amino acids Diagnosis

Prognosis Bio-active amino acids. Metabolic fuels. Also reported in plasma [87].

Glycerophosphocholines
[78,80] Natural choline Diagnosis

Prognosis
Biosynthetic precursors of acetylcholine. Up to 70% increase in EC
tissues.

Hypoxanthine
[80] Purine metabolite Prognosis (myometrial invasion) Purine derivative, a constituent of nucleic acids present in the

anticodon of tRNA.

Inosine
[78,80] Purine metabolite Diagnosis

Prognosis
Nucleoside found in tRNAs and essential for translation of the genetic
code in wobble base pairs. Imbalance in isoleucine–alanine ratio.

Monoacylglycerol
[118] Acylglycerol Diagnosis Monoacylglycerol 24:0 significantly downregulated in EC tissues.

Modulates cellular processes including proliferation and apoptosis.

Oleamide
[80] Fatty acid amide

Diagnosis
Prognosis (Increased in grade 3

EC)

Mechanism of action is unclear. Modulator of neurotransmitter and
voltage-gated ion channel activity.

Palmitic amide
[80] Amide Diagnosis

Prognosis Primary fatty acid amide.
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Table 2. Cont.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Phosphatidic acid
[80,115] Phospholipids Diagnosis

Prognosis
Anionic phospholipids important in cell signalling and activation of
lipid-gated ion channels.

Phosphatidylethanolamines
[80] Phospholipids Diagnosis

Prognosis
Phospholipids found in biological membranes. Involved in membrane
fusion and cytokinesis/cell division. Regulate membrane curvature.

Phosphatidylglycerol
[80] Phospholipids Diagnosis

Prognosis
Glycerophospholipid and pulmonary surfactant. Activates lipid-gated
ion channels.

Phosphatidylinositols
[80] Phospholipids Diagnosis

Prognosis
Acidic phospholipids involved in lipid signalling, cell signalling and
membrane trafficking.

Phosphatidylserine
[80] Phospholipids Diagnosis

Prognosis Role in cell signalling, especially in brain cells.

Picolinic acid
[80] Pyridine derivative Diagnosis

Prognosis

Catabolite of tryptophan through the kynurenine pathway. Unclear
function.
Possible immunological and anti-proliferative/ anti-tumoral effects.

Sphingolipids
[113] Sphingolipid Diagnosis

Prognosis Fatty acid derivatives of sphingosine. Also reported in blood [71].

Stearamide
[80] Endocannabinoid Diagnosis

Prognosis
Endocannabinoids regulate cell proliferation, differentiation and cell
survival.

Taurine
[80] Amino sulfonic acid Prognosis (Type 1 EC) Amino sulfonic acids, naturally occurring, found in muscles, brain,

eyes and heart. Decreased in high-grade EC.

UDP-N-acetyl-d–galactosamine
[80] Hexosamine Diagnosis

Prognosis Linked to the metabolism of glucose, fatty acids, and amino acids.

Vaccenic acid
[80] Fatty acid Diagnosis

Prognosis
Trans fatty acid which in mammals is converted into rumenic acid,
where it shows anti-carcinogenic properties.

Xanthine
[80] Purine metabolite Prognosis (Myometrial invasion) Product of purine degradation, created from guanine by the actions of

guanine deaminase.



Metabolites 2020, 10, 314 18 of 28

4.3. Urine Based Metabolomics Biomarkers

Urine has several advantages as a source of diagnostic markers as it is non-invasive and
easy to collect with no associated harms [67]. Urinary metabolites may originate from systemic
metabolites that are chemically modified and excreted in urine, or from contamination of urine by
tumour-derived metabolites shed into the lower genital tract [119]. Only a few urinary metabolomic
studies have been conducted in the context of EC (Table 3). Shao and colleagues subjected urinary
samples from 25 EC cases, 25 healthy controls and 10 endometrial hyperplasia (EH) controls to
liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) and reported
lower levels of acetylcysteine and porphobilinogen in EC cases and higher levels of N-acetylserine,
urocanic acid and isobutyrylglycine [120]. A five-panel diagnostic algorithm was reported as being
able to distinguish EC cases from the merged group of EH and healthy controls [120]. These markers
are yet to be externally validated and further studies are needed to determine their role in EC
development and progression. In another study, attenuated total reflection Fourier-transform infrared
(ATR-FTIR) spectroscopy was used to develop a biomarker algorithm with 95% sensitivity and 100%
specificity for EC detection based on an analysis of urinary specimens from 10 EC cases, 10 ovarian
cancer cases and 10 healthy controls. This study was limited by the small sample size and the
algorithm is yet to be externally validated [47]. A number of metabolites have shown potential for
the discrimination of EC from benign ovarian tumours and include: S-reticuline, n-acetylneuraminic
acid, 3-sialyl-n-acetyllactosamine, 3-dehydroquinic acid, 3-indoleacetic acid, selenocystathionine,
1-(1Z-hexadecenyl)-sn-glycero-3-3-phosphate and 3-sialylactose [46,67].

Urinary endogenous estrogen metabolites have also been explored as potential EC biomarkers.
Using samples from 23 EC cases and 23 healthy controls, Zhao and colleagues reported
4-hydroxyestradiol (4-OHE2) and 17β-estradiol (E2) to be upregulated in EC, while 2-methoxyestrone
(2-MeOE1) and 2-methoxyestradiol (2-MeOE2) were downregulated [121]. 17β-estradiol E2 has been
implicated in the activation of P13K/AKT and MAPK signalling pathways, both of which are known to
be dysregulated in EC. 4-hydroxyestradiol upregulates CYP1B1, a member of the cytochrome family of
enzymes which is known to enhance cell proliferation and metastasis, while 2-methoxyestrone has
anti-proliferative and pro-apoptotic properties, consistent with its downregulation in EC [121].

Whilst metabolomic analysis of urine has the potential to deliver clinically relevant biomarkers,
this is only possible when environmental conditions are controlled to avoid introducing spurious
signals that lead to false positive findings (Figure 2). As an example, contamination of self-collected
urine samples by commensal bacteria of the lower genital tract can affect the concentrations of
metabolites in urine [122]. Bacterial overgrowth may occur under room temperature storage conditions,
leading to modification of urine composition following the consumption and production of new
metabolites [46,122].



Metabolites 2020, 10, 314 19 of 28

Table 3. Most promising urine-based EC metabolomic biomarker candidates and their functions.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Acetylcysteine
[120] Amino acid metabolite Diagnosis Precursor of the anti-oxidant glutathione. Able to reduce free radicals. Found to be

downregulated in EC.

Estrogens
[121] Hormones Diagnosis Female sex hormones, endometrial proliferation. 4-hydroxyestrone found to be elevated in EC.

2-methoxyestrone and 2-methoxyestradiol were downregulated in EC.

Isobutyrylglycine
[120] Acyl glycine Diagnosis Minor metabolite of fatty acids and known urinary metabolite. A conjugate acid of

N-isobutyrylglycinate. Found to be upregulated in EC.

N-acetylserine
[120] Amino acid Diagnosis Acetylation of the serine amino acid N-terminal. Found to be upregulated in EC.

Porphobilinogen
[120] Amine Diagnosis Pyrrole intermediate in the synthesis of porphyrin. Found to be downregulated in EC.

Urocanic acid
[120] Deamination product Diagnosis Breakdown product of histidine. Found to be upregulated in EC.
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4.4. EC Detection in Minimally Invasive Genital Samples

Given the anatomical continuity of the uterus and lower genital tract, there is growing interest in
the potential of developing EC biomarkers based on minimally invasive sampling methodologies [45].
Cervicovaginal fluids (CVF), for example, contain cervical and endometrial gland secretions and
are viable sources of EC-derived metabolites [79]. There are multiple reports on the utility of CVF
for the detection of inflammatory and malignant conditions of the lower genital tract, including
cervical cancer and bacterial vaginosis [45,123,124]. Cheng and colleagues used nuclear magnetic
resonance spectroscopy to compare the CVF metabolomic profile of 21 EC cases and 33 non-EC
controls and reported choline, formate, fumarate, phosphocholine and malate to be overexpressed in
EC [79]. In contrast, phenylalanine, aspartate, asparagine, isoleucine and pyruvate were significantly
downregulated. Of these biomarker candidates, phosphocholine had the best diagnostic performance,
with an AUC of 0.82 (95% CI 0.69–0.93), while the model based on phosphocholine, malate and
asparagine had potential to not only predict EC but also other gynaecological malignancies [79].
Phosphocholine, a surrogate for cell proliferation, has been linked to high-grade EC [125]. Table 4
summarises the biochemical functions of CVF metabolites, however, these markers are yet to be
externally validated and larger studies using more sensitive metabolomic platforms are needed to
explore the feasibility of CVF-derived metabolites as biomarkers of EC.
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Table 4. Most promising cervicovaginal fluid-based EC metabolomic biomarker candidates and their functions.

Metabolite Group/Sub-Class Potential Clinical Utility Biochemical Function and Summary of Evidence

Fumarate
[79]

Organic acid
(Dicarboxylate) Diagnosis/early detection Intermediate in the citric acid cycle. Converted to malate. Citric cycle releases

stored energy through the oxidation of acetyl-CoA.

Malate
[79] Dicarboxylic acid Diagnosis/early detection Intermediate in the citric acid cycle

Isoleucine
[79] Essential amino acid Diagnosis Alpha-amino acid useful in the biosynthesis of proteins. Associated with insulin

resistance. Both glucogenic and ketogenic. Reported in serum [87].

Asparagine
[79] Non-essential amino acid Diagnosis/early detection Amino donor in urea, pyrimidine and purine synthesis. Supports protein

synthesis during glutamine starvation. Reported in serum [87].

Aspartate
[79] Non-essential amino acid Diagnosis Involved in protein synthesis and neurotransmission.

Cholines/acylcholines
[79] Conjugated lipids Diagnosis

Prognosis (elevated in Type 2 EC)
Necessary for homocysteine synthesis. Acylcholines enhance penetration of
estradiol in tissues. Reported in tissue/serum [78,80].

Phenylalanine
[79] Essential amino acid Diagnosis

Early detection
Precursor for tyrosine, dopamine and norepinephrine. Inhibits proliferation
without affecting apoptosis or autophagy. Also reported in plasma [71,92].

Phosphocholine
[79,92] Phospholipid Diagnosis

Prognosis (high-grade EC)

Plays a role in biosynthesis of cell membranes. Surrogate marker for cell
proliferation, inhibition of invasion and migration. Protects against TNF-induced
apoptosis. Elevated in CVF of EC patients. Also seen in plasma [92].
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5. Conclusions

In this review, we have described the current status of EC metabolomic biomarker research and
underscored the challenges inherent in biomarker discovery and validation. Lipid, amino acid and
hormonal metabolites have all been reported as potential EC biomarkers for detection, prognosis and
monitoring for disease recurrence. Whilst the evidence to enable translation into clinical practice is
lacking, the results are encouraging and further studies are needed to validate the identified markers
and to elucidate their role in EC tumorigenesis. When used alongside minimally invasive sampling
methodologies, metabolomics has enormous potential to deliver clinically relevant biomarkers that
can be translated into routine clinical practice. Future metabolomic studies should aim to identify
metabolites linked to the TCGA EC molecular subtypes, which offer better prognostic discrimination
than traditional EC histological subtypes. Advances in the use of artificial intelligence and machine
learning techniques to combine metabolic signals from multiple studies have potential to enable the
generation of a robust metabolomic biomarker panel for EC detection.
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