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Abstract: Water covers about 70% of the Earth’s surface, but the amount of freshwater available for
human use is only 2.5% and, although it is continuously replenished via the water cycle, freshwater
is a finite and limited resource. The Earth’s water is affected by pollution and while water quality
is an issue of global concern, the specific regulations on contaminants of emerging concern (CECs)
are limited. In order to achieve the goals set by EU regulations, the treatment of wastewater is a
scientifically and technologically challenging issue. Metal–organic frameworks (MOFs) are promising
materials used for the removal of priority and emerging contaminants from wastewater, since they
can mitigate those contaminants via both adsorption as well as catalysis processes. MOFs can offer
selective adsorption of CECs by various adsorption mechanisms. The catalytic removal of priority and
emerging organic contaminants from wastewater using MOFs implies Fenton, electro-Fenton, and
photo-Fenton processes. Overall, MOFs can be considered as promising materials for the elimination
of priority and emerging organic contaminants from various wastewater types, but the involved
processes must be studied in detail for a larger number of compounds.

Keywords: adsorption; catalysis; MOF; photocatalysis; wastewater

1. Introduction

The occurrence of micro-pollutants in the environment is considered an environmental
emergency across the globe. Contaminants of emerging concern (CECs) is a term used by
water quality professionals to describe pollutants that have been detected in water bodies,
may cause ecological or human health impacts, and typically are not regulated under
current environmental laws. Sources of these pollutants include agriculture, urban runoff,
and ordinary household products and pharmaceuticals that are disposed to wastewater
treatment plants (WWTPs) and subsequently discharged to surface waters. Consistently,
various studies have shown the presence of pollutants in influents and effluents of WWTPs
and in receiving waters due to their incomplete removal by wastewater treatment pro-
cesses [1]. Because of these, many emerging compounds are also being added to the EU
Water Framework Directive (2000/60/EC) (WFD) priority substance list and an emerging
watch list, increasing the significance of monitoring these chemicals. Examples of typical
priority organic pollutants include organochlorine pesticides such as hexachlorocyclo-
hexanes (HCHs) and legacy brominated flame retardants such as brominated biphenyl
ethers (PBDEs). Among thousands of emerging compounds, examples include a variety of
pharmaceuticals [2] and novel brominated flame retardants, as well as a variety of personal
care products such as triclosan and triclocarban.

In order to achieve targets set by the EU WFD and by EU Decision 2015/495 [3]
(which established a watch list of contaminants of emerging concern), the treatment of
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wastewater is creating scientific and technological challenges. Traditional wastewater
management methods using microorganisms (biodegradation) and/or physico-chemical
processes (flocculation, chlorination, and ozonation), subsequently followed by filtration-
and adsorption-based separations, are able to treat the majority of anthropogenically
polluted water sources. Among these processes, wastewater treatment enhanced with
activated carbon treatment appears to be one of the most promising mitigation methods for
CECs [4].

Nevertheless, no single method described above is efficient enough to produce water
with legally and practically acceptable levels of refractory toxic chemicals (e.g., phenols,
dyes, pesticides, organic solvents, pharmaceuticals, and domestic chemicals). Advanced
oxidation processes (AOPs) [5,6] constitute chemical treatment procedures designed to re-
move organic (and sometimes inorganic) substances in water and wastewater by oxidation
through reactions with hydroxyl radicals (OH). Compared with other treatment techniques,
AOPs could effectively eliminate organic compounds in the aqueous phase, rather than ac-
cumulating or transferring pollutants into another phase. Due to the remarkable reactivity
of the •OH radical, AOPs could therefore be applicable in many, if not all, scenarios where
many organic contaminants are expected to be removed at the same time.

Sorption is another process used to mitigate organic pollutants, and many materials
have been applied towards designing permeable reactive barriers (PRBs), a cost-effective
technology for in situ groundwater remediation [7]. In these permeable reactive barriers,
the sorption [8] and chemical oxidation reactions [9] are the main processes, accompanied
to a less extent by precipitation and biochemical reactions. Therefore, there is a need for
new materials able to perform both adsorption and AOPs of refractory toxic chemicals.

MOFs comprise inorganic nodes (e.g., chains, clusters, atoms) and various organic
linkers (e.g., phosphonates, azolates, carboxylates, etc.) that can form multidimensional
periodic lattices. They represent a novel class of porous and permeable coordination
polymers [10]. One of the most important characteristics is their large and accessible surface
area up to 7000 m2/g, as well their low pore volumes. For the formation of MOF structures,
organic molecules called bridging ligands attach to the secondary building units (SBU) [11].
For the synthesis of MOFs, the typically used bridging ligands are di- and tricarboxylic
acids, such as 1,4-benzene dicarboxylic acid (also called terephthalic acid), biphenyl-4,4′-
dicarboxylic acid (BPDC), and benzene-1,3,5-tricarboxylic acid (trimesic acid) [10]. In recent
years, a wide range of MOFs [12] has been used in environmental applications including
processes such as adsorption, photocatalysis, and microwave catalysis [13]. These different
MOFs show a synergistic mixture of features, since they have the shape of building units
and their chemical compositions multiply based on targeted structures [14].

MOFs are promising materials for the removal of contaminants from water [15,16],
since they exhibit numerous properties that enable their use in water treatment [17]: (i) they
have a certain stability in water; (ii) they have high sorption capacities, attributable to
large specific surface area and pore volume; (iii) they have openings for adjusting their
structure to allow for shape-selective adsorption and/or catalysis; (iv) they have active
sites, where contaminants can be adsorbed or transformed; (v) they have functionalizable
cavities, where host−guest interactions can occur; (vi) the synthesis of some MOFs can be
scaled-up; and (vii) they can be molded as monoliths, pellets, membranes, or columns, that
can be used in degradation reactors.

The objective of this study is to provide a comprehensive and novel overview of the
MOFs used in adsorption and catalysis processes for the removal of priority and emerging
organic contaminants from wastewater.

2. Types of Environmentally Relevant MOFs
2.1. Nomenclature of MOFs

In order to describe and organize the structures of MOF-type compounds, a nomencla-
ture system has been developed. The subunit of a MOF, called the secondary construction
unit (SBU), can be described by topologies similar to those of other structures. Each topol-
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ogy, also called network/net, is assigned to a symbol consisting of 3–5 letters followed by
a number. IRMOF-1 (more commonly called MOF-5) and IRMOF-16 belong to the same
MOF families, having the same type of molecular symmetry [18]. Many MOFs were named
after the site of discovery and other MOFs have similar names to zeolites (Table 1).

Table 1. Example of typical names for metal–organic structures (MOF) with the description of their
molecular formulas.

No. Name Molecular Formula Reference Abbreviation Legend

1 IRMOF-1 or MOF-5 Zn4O(BDC)3. 7DEF.3H2O [18] IsoReticular metal–organic
frameworks2 IRMOF-16 Zn4O(TPDC)3. 17DEF.2H2O [19]

3 CPL-2 Cu2(PZDC)2(4,4′-BPY) [20] Coordination polymers with a
pillared layer structure

4 F-MOF-1 [Cu(HFBBA)(phen)2](H2HFBBA)2(H2O)(HCO2) [21] Fluorinated metal–organic
framework

5 MOP-1 Cu24(m-BDC)24(DMF)14(H2O)10 [22] Metal–organic polyhedra

6 HKUST-1 (MOF-199) Cu3(BTC)2 [23] Hong Kong University of
Science and Technology

7 LIC-1 Gd2(BDC-NH2)3(DMF)4 [24] Leiden Institute of Chemistry

8 ZIF-8 Zn(MIM)2 [25]
Zeolite imidazolate framework

9 ZIF-90 Zn(FIM)2 [26]

10 MOF-74 Zn2DOT [23]

Metal–organic frameworks

11 MOF-101 Cu2(BDC-Br)2(H2O)2 [27]

12 MOF-177 Zn4O(BTB)2 [23]

13 MOF-235 [Fe3O(BDC)3(DMF)3][FeCl4].(DMF)3 [28]

14 MOF-253 Al(OH)(BPYDC) [29]

15 UiO-66 Zr6O6(BDC)6 [30]

Universitetet i Oslo16 UiO-67 Zr6O6(BPDC)6 [31]

17 UiO-68 Zr6O6(TPDC)6 [32]

18 MIL-53 Al(OH)(BDC) [33]

Materials of Institut Lavoisier

19 MIL-53(Al)-NH2 Al(OH)(BDC-NH2) [34]

20 MIL-88A Fe3O(MeOH)3(O2CCH=CHCO2)3.MeCO2.nH2O [35]

21 MIL-88-Fe Fe3O(MeOH)3(O2C(CH2)2CO2)3.
AcO.(MeOH)4.5

[36]

22 MIL-88B-4CH3 2Fe3O(OH)(H2O)2(BDC-Me2)3 [37]

23 MIL-100-Fe FeIII
3 O(H2O)2F.(BTC)2. nH2O [38]

24 MIL-101 Cr3O(H2O)2F.(BDC)3. nH2O [39]

Ligand abbreviations: m-BDC = m-benzenedicarboxylate, TPDC = p-terphenyl-4,4′-dicarboxylate,
PZDC = pyrazine-2,3-dicarboxylate, HFBBA = 4,4- hexafluoroisopropylidene)dibenzoate, MIM = 2-methylimidazolate,
DOT 2,5-dihydroxyterephthalate, BPYDC = 2,2′-bipyridine-5,5′-dicarboxylate, BPDC = biphenyl-4,4′-dicarboxylate,
DEF = N,N-diethylformamide, FIM = 2-formylimidazolate, 4,4′-BPY = 4,4′-bipyridine, phen = 1,10-phenanthroline.

2.2. Stability of MOFs in Aquatic Environment

The feasibility of MOFs as adsorption materials and catalysts in the removal of organic
pollutants depends on their chemical stability under various environmental conditions,
which is determined by the ability of MOFs to maintain their long-range ordered structures
in water, especially in acidic and alkaline conditions [40]. In certain conditions, water and
other polar solvents can damage the MOF structures either by affecting the metal–ligand
bonds or by metal ion solvation. Due to their strong coordination tendency, some strong
nucleophilic reagents that might be present in water, such as amines, hydroxides, and
alkoxides, also tend to replace the ligand and disintegrate MOF structures [41]. MOFs
containing weak metal–ligand bonds tend to undergo hydrolysis or ligand displacement
or in water [13]. MOFs with soft acid metals and soft base ligands generally exhibit high
stability under alkaline conditions and low stability under acidic conditions, while those
with hard acid metals and hard base ligands experience the opposite trend [42] (Figure 1A).
At low pH values, protons compete with metal ions for coordination with organic ligands.
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Since soft base ligands have relatively high pKa values, they tend to remain protonated at a
low pH and have a high affinity for protons. Therefore, protons are more likely to compete
with and substitute metal ions, causing the MOF structure to decompose. On the contrary,
the pKa of hard base ligands is relatively low, as these ligands deprotonate even at a low
pH and have a low affinity for protons [13]. It was found that the UiO-66 maintained its
stability in water for about 12 months during the adsorption of methyl orange [43].
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Figure 1. Metal–ligand substitution reactions between MOFs and protons/hydroxides MHigh/MLow,
high-/low-valence metal nodes. Solid arrows represent a more favored process, and dashed arrows
represent a less favored process. Adapted with permission from Ref. [13] 2021, Elsevier (A). The
crystal structure diagrams for MOF-5 (I), UiO-66 (II), and ZIF-8 (III) [44] (B).

In general, crystal shape of a MOF is related to its internal structure (see Figure 1B for
MOF-5 [45], UiO-66, and ZIF-8) [44].

Nevertheless, a smaller number of MOFs have been applied in the removal of organic
contaminants from wastewater. An overview summarizing the types of MOFs, the targeted
contaminants, and the performance of the relevant adsorption and catalysis processes can
be found in Table 2.

In this respect, there is great attention paid to designing MOFs for the adsorption
process in order to remove pollutants, because it is straightforward, simplistic, practical,
and inexpensive, and it can be used for an extensive range of organic pollutants.

Another direction of research is the use of MOFs in catalysis processes for the degra-
dation of toxic organic pollutants. In this respect, in order to advance the guidelines for
optimum synthesis of MOF catalysts, determining the dynamics of MOFs and their catalytic
sites, as well as the intrinsic kinetics of the catalytic reaction, is needed.
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Table 2. Summary of adsorption and catalysis studies for relevant priority and emerging organic
contaminants.

No. Name of MOF Target Contaminant Reference Type of Process Performance of
Adsorption/Catalysis Processes

1 Cu-BTC and Fe-BTC HBCD [46] Adsorption Over 80% of HBCD removed by
Cu-BTC

2 Cr-MIL-101 and
Fe-MIL-101-NH2

TPhP [47] Adsorption Removal efficency of 90.2% by
Cr-MIL-101

3 MIL-88(Fe) and
NH2-MIL-88(Fe) Pyrine [48] Adsorption

Removal efficency of 96.0% for
NH2-MIL-88(Fe) and 99.7% for

MIL-88(Fe))

4 MIL-101 and MIL-101-NH2, 2-chlorophenol (2-CP) [49] Adsorption Removal efficiency of 60% on
MIL-101

5 MIL-100(Fe) and
FeII@MIL-100(Fe) Methylene blue [50] Fenton

Removal efficiency of around 96%
-for MIL-100(Fe) and and 90%

FeII@MIL-100(Fe)

6 MIL-53(Fe) Phenol [51] Fenton 90% degradation

7 MIL-88B-Fe Phenol [52] Fenton 99% degradation

8 Mn-doped MIL-53(Fe) TCS [53] Electrocatalysis Removal efficency of 99.9 ± 0.1%

9 Cu(4,4′-bipy)Cl]n (1) and
[Co(4,4′-bipy)·(HCOO)2]n (2)

Methylene blue [54] Photocatalysis
Removal efficiency of 83.18% for

Cu(4,4′-bipy)Cl]n (1) and of 67.83%
[Co(4,4′-bipy)·(HCOO)2]n (2)

10 Mn-doped MIL-88-Fe Phenol [55] Photocatalysis Removal efficency of 96%

11 B12–
Ru@[Zn4Ru2(bpdc)4·4C2NH8·9DMF]n

DDT [56] Photocatalysis Transformation yield of 99%

3. Removal of Priority and Emerging Organic Contaminants from Wastewater by
Adsorption Processes Using MOFs

In order to design new MOFs to study the adsorption of priority and emerging organic
contaminants, a thorough understanding of the adsorption mechanism is needed. Usually,
the adsorption mechanism of organic contaminants by MOFs is determined by hydropho-
bic interactions, π−π interactions, acid−base interactions, electrostatic interactions, and
hydrogen bonding or a combination of these factors (Figure 2). Aside from the nature of
adsorbed contaminants, the surface area and porosity of the MOF also play a crucial role in
the adsorption process [57].

The hydrophobic interactions are dominant in the case of hydrophobic organic con-
taminants with values of octanol participation coefficients higher than six (log Kow > 6).
The π−π interactions/stackings are relevant in the case of organic contaminants with
planar structures (polycyclic aromatic hydrocarbons (PAHs) [58], co-planar polychlorinated
biphenyls (PCBs) [59], polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-
p-furans (PCDDs/Fs) [60], and polybrominated dibenzo-p-dioxins and dibenzofurans
(PBDDs/Fs) [61], etc.), while acid−base interactions with MOF structures are relevant in
the case of organic contaminants with acid−base properties (possibly for chlorophenols
and bromophenols). The removal of hexabromocyclododecane (HBCD) from an aquatic
environment was studied using two Cu- and Fe-based metal–organic frameworks (Cu-BTC
and Fe-BTC) [46]. It was observed that over 80% of HBCD was removed by Cu-BTC within
5 h [47]. The adsorption mechanism involved van der Waals and hydrophobic interactions
(Figure 3).

The reported maximum adsorption capacities of Cu-BTC and Fe-BTC were 39 and
21.5 mg/g pH = 7 [47], respectively. Two MIL-101-based metal–organic frameworks (Cr-
MIL-101 and Fe-MIL-101-NH2) were used in the adsorption of the emerging contaminant
triphenyl phosphate (TPhP), suggesting that hydrophobic interactions may play a dom-
inant role in the selective adsorption process of TPhP, while π–π interactions may also
be significantly weak [48]. The maximum adsorption capacities of Cr-MIL-101 and Fe-
MIL-101-NH2 were also compared with those of activated carbon and they were found to
decrease in the order of Cr-MIL-101 > Fe-MIL-101-NH2 > activated carbon, while the
initial sorption velocities(v0) increased in the order of 105.04 µmol/g·h for activated
carbon < 170.36 µmol/g·h for Fe-MIL-101-NH2 < 568.18 µmol/g·h for Cr-MIL-101. It was
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found that the TPhP adsorption equilibrium on Cr-MIL-101 was reached within 12 h, while
the equilibrium time on Fe-MIL-101-NH2 was reached in about 48 h. The initial adsorption
velocity of TPhP on Cr-MIL-101 was 568.18 µmol/gL, significantly faster than those of
Fe-MIL-101-NH2 and activated carbon [47]. Remarkably, investigations into the effect of
ion strength found that when the Ca2+ concentration was raised from 0 to 5 mmol/L, the
TPhP removal efficiency on Cr-MIL-101 increased from 59.1% to 90.2% [48].
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Two iron-based MOFs [MIL-88(Fe) and NH2-MIL-88(Fe)] were used to remove pyrene
from water [48]. It was found that the pyrine adsorption isotherm was best explained by
the Langmuir model, while the kinetics of the adsorption were found to follow the pseudo-
second-order model [48]. The removal efficiency of pyrine after 40 min was calculated,
achieving 96.0% in NH2-MIL-88(Fe) and 99.7% in MIL-88(Fe), respectively, suggesting that
these two MOFs can serve as possible adsorbents for the removal of PAHs from wastew-
ater [48]. The adsorption of 2-chlorophenol (2-CP) by MIL-101 and its amino-derivative
(MIL-101-NH2) was investigated in a batch adsorption study [49]. The equilibrium uptake
of 2-CP after 24 h was 121 mg/g for MIL-101 and 84 mg/g for MIL-101-NH2, respectively,
lower than the value of 345 mg/g recorded in the same study for activated carbon [49],
while the removal efficiency of 2-CP by MIL-101 was about 60%.

4. Removal of Priority and Emerging Organic Contaminants from Wastewater by
Catalysis Processes Using MOFs

Due to their simplicity and reproducibility, advanced catalysis processes involving
MOFs (photocatalysis, AOPs, etc.) have emerged as new methods to remove organic
pollutants from wastewater [62]. In order to enhance the oxidation of organic pollutants
into less toxic products or to their complete mineralization, the radicals (OH• or SO4•−)
are produced using highly reactive compounds (such as hydrogen peroxide (H2O2) and
persulfate salts (i.e., K2S2O8), in combination with MOFs [63]. The role of MOFs in degra-
dation of CECs is based on two main properties: (i) MOFs can become catalytically active
upon modification; and (ii) MOFs can exhibit intrinsic catalytic activity.

As an environmentally friendly oxidant, H2O2 has long been widely used in various
water purification processes, and various AOPs have been developed. Because of the
unique structure and excellent performance of MOFs, it has been confirmed through many
experiments that the introduction of MOFs into the Fenton system can overcome the
drawbacks of traditional Fenton-like methods. Many typical organic contaminants such as
organic dyes [64], phenols [65], and acid orange 7 (AO7) [66] are known to be degraded in
a Fenton-like system catalysed by MOFs.

4.1. Fenton Processes Involving MOFs

The H2O2-based Fenton removal of high concentrations of methylene blue in wastew-
ater (500 pm) was studied using MIL-100(Fe) and FeII@MIL-100(Fe) with high surface
areas (1646 m2/g and 1228 m2/g, respectively) [50]. An increased Fenton catalytic ability
was found in FeII@MIL-100(Fe), compared with MIL-100(Fe) and Fe2O3 catalyst activities.
Nevertheless, the total removal efficiency was found to be around 97% in MIL-100(Fe), 90%
in FeII@MIL-100(Fe), and around 60% in Fe2O3 after a total time of 285 min [50]. This was
attributed both to Fenton oxidation as well as to adsorption via electrostatic interactions
between negative (or positive) adsorbent and positively charged methylene blue [50].

With respect to the aromatic compounds, the H2O2-based Fenton oxidation of phenol
was investigated in a batch glass reactor using MIL-53(Fe) as the catalyst in two successive
studies [51]. Both studies found that MIL-53(Fe) leads to an over 90% degradation of
phenol at neutral pH values after 3 h (Table 2). Nevertheless, a better degradation rate
(99%) after 30 min of reaction was obtained using the same H2O2-based Fenton system but
with MIL-88B-Fe as a catalyst [52]. Based on this reaction, a new degradation pathway of
organic pollutants in the H2O2-based Fenton system was proposed, using activation with
MIL-88B-Fe. This mechanism suggests that the Fe(III) was converted to Fe(II) due to charge
transfer after H2O2 reached the active sites, while the Fe(II) reacted with H2O2 to generate
•OH and degraded organic pollutants, like in the classical Fenton systems (Figure 4) [52].
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4.2. Electrocatalysis Processes Involving MOFs

Mn-doped MIL-53(Fe) was used as the cathode material for the electro-Fenton catalysis
of the emerging contaminant triclosan (TCS), and the highest TCS removal efficiency
(about 99.9 ± 0.1%) was obtained with the Mn/Fe@PC-CP cathode at a rate constant (k) of
0.06 min−1 [53]. A degradation pathway was proposed: TCS was adsorbed and enriched
on the surface of the hydrophobic cathode, after which the phenolic ring of TCS was
attacked by reactive oxygen species, such as •OH on the C(1)- or C(2)- position of TCS, and
converted to 2,4-dichlorophenol (2,4-DCP) and 4-chlorocatechol (4-CC) (Figure 5) [53].

Afterwards, the chloro-p-benzoquinone was produced by hydroxylation and dehalo-
genation of 2,4-dichlorophenol by •OH on the C(4)-position. Finally, the intermediates
were oxidized into small molecular substances such as carboxylic acids, which mineralized
into CO2 and H2O.

ZIF-67 was involved in the synthesis of several iron and cobalt dual metal- and
nitrogen-doped carbons (FeCoNCs) as the electrocatalyst for cathode materials in the
oxygen reduction reaction from microbial fuel cells (MFCs), devices that can be used in the
biochemical degradation of organic pollutants [67]. FeCoNC materials showed excellent
durability and stability as the cathode oxygen reduction catalyst; the maximum power
density of the FeCoNC-modified air–cathode microbial fuel cell (MFC) was recorded as
1769.95 mW/m2, higher than that of Pt/C-modified MFC (1410.31 mW/m2) [67].

Recently, metal–organic framework-derived iron-oxide-modified carbon cloth (MIL-
88(Fe)) was applied as a high-power-density microbial fuel cell anode [68]. The MFC
containing the MIL-Fe3O4/CC anode recorded a power density of 4305 mW/m2 [69].
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4.3. Photocatalysis Processes Involving MOFs

Based on the principle of traditional semiconductor photocatalysis, a MOF photocata-
lyst can be directly excited by incident light with energy (Elight) larger than the band gap
(Eg). In this way, electron–hole (e−–h+) pairs can be generated (Figure 6), creating hydroxyl
radicals (HO•) [57]. Due to the occurrence of reactive species (O2•−, HO• and h+), various
legacy and emerging organic contaminants can be oxidized [69].
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As mentioned earlier, the photocatalysis processes induced by MOFs were efficient in
the removal of organic dyes and phenols [69,70]. For example, Cu(4,4′-bipy)Cl]n (1) and
[Co(4,4′-bipy)·(HCOO)2]n (2) were applied for the photocatalytic degradation of methylene
blue in the H2O2/UV system [54]. After four cycles, the complex (1) retained 83.18% of
methylene blue, while the other MOF complex (2) retained 67.83% of methylene blue [54]
(Table 2). Fe-BTC was used in a batch reactor for the photocatalytic oxidation of phenol to
dihydroxybenzenes (DHBZ) in the H2O2/UV system [70]. The photocatalytic oxidation
of phenol in the presence of Fe-BTC resulted in a high DHBZ selectivity (65%) and yield
(35%), higher than those obtained for other Fe-based MOFs. A novel Mn-doped Fe-based
metal–organic framework (MOF) was synthesized recently [55] based on MIL-88B-Fe
for the removal of phenol using Fenton-like and photo-Fenton reactions. A maximum
degradation efficiency of 96% was obtained during photocatalysis at 8 wt.% in Mn-doped
MIL-88-Fe [55].

Nevertheless, regarding the photocatalysis of the compounds included in the Stock-
holm Convention of Persistent Organic Pollutants (POPs), a small number of MOFs were
recorded as efficient photocatalysts [57]. For example, the dechlorination of 1,1-bis(4-
chlorophenyl)-2,2,2-trichloroethane (DDT) under visible light irradiation was catalyzed
by B12–Ru@MOF (where the basic MOF is [Zn4Ru2(bpdc)4·4C2NH8·9DMF]n) and under
reductive condition (without H2O2), resulting in yields of 99% (see Table 2) and 63% for
the transformation of DDT to 1,1-bis(4-chlorophenyl)-2,2-dichloroethane after 4 h in the
first and third cycles, respectively [56].

5. Challenges in Using MOFs for the Removal of Priority and Emerging Organic
Contaminants from Wastewater

By far, the main challenge in the removal of priority and emerging organic con-
taminants from wastewater by adsorption is transferring the pollutant in another phase.
Therefore, the treatment of large amounts of wastewater by adsorption on MOFs seems
to be problematic. Nevertheless, in the case of permeable reactive barriers (PRBs), MOFs
appear to be a good solution to immobilize organic pollutants, while adsorption can also
be combined with other processes such as chemical oxidation and biological degradation,
leading to the degradation of organic contaminants.

Various studies have shown that it is relatively complicated to establish general trends
on how the properties of CECs influence their removal when MOFs are used, due to
the variation of physicochemical properties amongst CECs. Nevertheless, among the
potential mechanisms for CEC removal, these main mechanisms are influential in the
following sequence: electrostatic interactions > binding interactions > stacking interactions
> hydrophobic interactions ≈ acid–base interactions ≈metallic effect [1]. Moreover, these
interactions can change depending on the water chemistry at that moment. One of the
main concerns regarding adsorption, in terms of environmental sustainability, consists in
water reproducibility, which can be ameliorated by mixing in various cleaning agents.

Further development of MOF synthesis methods is required, because their physico-
chemical characteristics are crucially influenced by reaction time, particle size, and mor-
phology. As a consequence, quantitative structure–activity relationship investigation may
be needed to explain the adsorption mechanisms for CECs on various MOFs, in order to
understand the interactions between the functional groups of the CECs whose molecules
having the highest activity. Most MOFs are produced as powder, so an ultrafiltration
process must be used to recover them from water after adsorption and catalysis treatments.
Moreover, to become competitive with commercial adsorbents available for water and
wastewater treatment, MOFs must be cost-effective and cheap to produce. In addition,
more studies are necessary to assess the ecotoxicological impacts of MOFs, especially when
they are to be disposed.

The use of MOFs in Fenton processes is considered a challenge when applied to highly
halogenated organic compounds (HCHs, HBCDs, etc.), and as a result those technologies
might not be useful in waters with high bicarbonate content [71–73], which is the same
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problem as the case of classical Fenton processes. The photocatalytic processes involving
MOFs are the most promising for the removal of priority and emerging organic contami-
nants from wastewater, but they should be further tested on a larger number of compounds
and on higher concentrations of pollutants.

6. Conclusions

MOFs can be considered as promising materials both in adsorption processes and
catalysis, mainly in AOPs. Nevertheless, their costs are still high compared to other
adsorbents (i.e., activated carbon) or catalysts (Fe2O3, TiO2, etc.). In this respect, in order
to decrease production costs, further studies to develop more efficient synthesis methods
must be completed.

However, MOFs exhibit promising incorporation in wastewater treatment at the
industrial scale. The tunability of their structural and electronic characteristics results in
the efficient preparation of materials that are good adsorbents as well as efficient Fenton
and photo-Fenton catalysts. In addition, the use of eco-friendly ligands (like fumaric,
maleic and succinic acids) opens up the possibility of using MOF materials to design
permeable reactive barriers (PRBs) as a cost-effective technology for in situ groundwater
remediation. Furthermore, the prospect of extensive use of MOFs in wastewater treatment
is encouraging but still needs further exploration, in terms of scaling up their application
in real conditions. Further challenges and perspectives include the occurrence of new
emerging contaminants in the next years, as well as their possible incomplete degradation
in MOF-catalyzed processes leading to the formation of toxic degradation products. This
review summarizes the fundamentals of adsorption and photodegradation as common
applications in MOFs for the removal of legacy and emerging organic contaminants from
wastewater. In short, MOFs can be regarded as one of the hottest topics of research today
in material and environmental science. Due to their promising properties, MOFs are very
tempting materials for researchers to further explore and investigate the removal of legacy
and emerging contaminants from wastewater.
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