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Contextualising Maximal Fat
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Using a short-duration step protocol and continuous indirect calorimetry, whole-body

rates of fat and carbohydrate oxidation can be estimated across a range of exercise

workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise

intensity at which MFO occurs (Fatmax). These variables appear to have implications both

in sport and health contexts. After discussion of the key determinants of MFO and Fatmax

that must be considered during laboratory measurement, the present review sought

to synthesize existing data in order to contextualize individually measured fat oxidation

values. Data collected in homogenous cohorts on cycle ergometers after an overnight

fast was synthesized to produce normative values in given subject populations. These

normative values might be used to contextualize individual measurements and define

research cohorts according their capacity for fat oxidation during exercise. Pertinent

directions for future research were identified.
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INTRODUCTION

During prolonged exercise, carbohydrate and fat are the primary substrates oxidized to fuel
energy metabolism (Romijn et al., 1993; van Loon et al., 2001). Humans predominantly store
carbohydrates as glycogen in skeletal muscle (Bergström andHultman, 1967; Bergström et al., 1967)
and the liver (Nilsson, 1973; Nilsson et al., 1973), with modest quantities also found in the brain,
kidneys, and adipose tissue (Biava et al., 1966; Rigden et al., 1990; Meyer et al., 2002; Oz et al.,
2003), and∼4 g circulating in plasma as glucose (Wasserman, 2009). Human carbohydrate storage
is finite, and typically amounts to <3,000 kcal (<740 g) (Gonzalez et al., 2016), ∼80% of which is
in skeletal muscle and ∼10–15% in the liver (Jensen et al., 2011). In contrast, human fat energy
storage is effectively unlimited in the context of exercise (Gonzalez et al., 2016). Indeed, given 1 g of
fat provides∼9.75 kcal of energy (Jeukendrup andWallis, 2005), it can be estimated that even very
lean individuals of 70 kg and 10% body fat possess∼68,250 kcal (7,000 g) of endogenous fat energy.

Carbohydrate is the quantitatively most important metabolic substrate during prolonged
exercise of moderate-to-high intensities (Romijn et al., 1993; van Loon et al., 2001), and skeletal
muscle glycogen can become depleted to near-zero concentrations after exercise of sufficient
length and intensity (Ahlborg et al., 1967; Bergström and Hultman, 1967; Bergström et al., 1967;
Hermansen et al., 1967; Hultman, 1967; Hultman and Bergström, 1967). Depletion of endogenous
carbohydrate is therefore thought to limit prolonged exercise capacity in temperate conditions, with
preferential depletion of glycogen sequestered in the intramyofibrillar compartment specifically
implicated in impaired skeletal muscle function (Marchand et al., 2007; Nielsen et al., 2009, 2011,
2014; Ørtenblad et al., 2011) in the “localisation hypothesis” (Ørtenblad et al., 2013; Ørtenblad and
Nielsen, 2015). Briefly, depletion of intramyofibrillar glycogen has been associated with impaired
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fatigue resistance (Nielsen et al., 2009) and tetanic Ca2+ handling
(Ørtenblad et al., 2011; Nielsen et al., 2014), suggesting a
role for these stores in excitation-contraction coupling, and
therefore a role of their depletion in muscle fatigue. Importantly,
intramyofibrillar glycogen is depleted at a relatively fasted
rate during exercise than intermyofibrillar or sub-sarcolemmal
glycogen, resulting in even lower intramyofibrillar compared
to whole-muscle glycogen concentrations at fatigue (Marchand
et al., 2007; Nielsen et al., 2011), which may serve to explain why
fatigue during prolonged exercise can occur before whole-muscle
glycogen concentrations approach zero.

In contrast, human fat reserves are effectively unlimited in
the context of exercise, and so identifying the determinants
of, and enhancing, fat oxidation during exercise is a pertinent
training and research goal in endurance sport. Indeed, fat
oxidation capacity has been correlated with performance in
Ironman triathlons, which are ultra-endurance events (>8 h)
in which carbohydrate availability is likely limiting (Frandsen
et al., 2017). Maximizing fat oxidation is also likely of interest
in a military context given the possible extreme duration and
accompanying metabolic demand of field activities, which is
of particular relevance when the logistical challenges associated
with the provision of exogenous nutrition during military
tasks are considered (McCaig and Gooderson, 1986). Lastly,
fat metabolism is of great relevance in a health setting, given
the observed positive and negative relationships between 24-h
fat oxidation and markers of metabolic health such as insulin
sensitivity and weight gain (Zurlo et al., 1990; Robinson et al.,
2015), and that the capacity for fat oxidation during exercise has
been associated with insulin sensitivity, metabolic flexibility, and
lower metabolic risk factors (Venables and Jeukendrup, 2008;
Rosenkilde et al., 2010; Robinson et al., 2015).

EXERCISE INTENSITY AND WHOLE-BODY
FAT OXIDATION

Perhaps the most fundamental determinant of whole-body fat
oxidation rate is exercise intensity. The relationship between
exercise intensity and fat oxidation is generally parabolic; with
fat oxidation initially increasing with exercise intensity before
declining at high work rates (Romijn et al., 1993), although it
should be acknowledged that this parabolic relationship is not
always observed, particularly in untrained cohorts (Bergman
and Brooks, 1999). Reductions in whole-body fat oxidation
at high intensities are likely largely mediated by a reduction
in delivery of fatty acids to skeletal muscle. Plasma non-
esterified fatty acid (NEFA) rate of appearance is reduced at high
exercise intensities despite unchanged rates of peripheral lipolysis
(Romijn et al., 1993), and intravenous infusion to enhance plasma
NEFA availability increases whole-body fat oxidation rates at
high exercise intensities (Romijn et al., 1995). The reduction in
plasma NEFA availability and delivery to skeletal muscle is likely
mediated by exercise intensity-induced reductions in adipose
tissue blood flow (Spriet, 2014), which might itself be mediated
by exercise intensity-induced increases in plasma catecholamine
concentrations (Romijn et al., 1993).

However, impairedmitochondrial fatty acid uptake might also
contribute to the reduction in whole-body fat oxidation observed
at high exercise intensities, given the observed reduction in
mitochondrial uptake and oxidation of long-chain fatty acids
with increasing exercise intensity (Sidossis et al., 1997). This
may be explained by exercise intensity-induced reductions in
free carnitine availability (van Loon et al., 2001) and/or acidosis-
induced suppression of muscle carnitine palmitoyltransferase I
(CPT-I) activity (Starritt et al., 2000). Carnitine is a substrate in
the CPT-I-catalyzed reaction resulting inmitochondrial fatty acid
uptake (Fritz and Yue, 1963), and the reduced pH (7.0–6.8) in
the aforementioned study (Starritt et al., 2000) is physiologically
reasonable during prolonged vigorous exercise (Sahlin et al.,
1976). Therefore, the reduction in whole-body fat oxidation seen
at high exercise intensities may be governed by reduced fatty acid
delivery to and uptake in skeletal muscle.

The “Fatmax” Test
In order to comprehensively define the relationship between
whole-body fat oxidation rate and exercise intensity, the “Fatmax”
test was developed (Achten et al., 2002). This graded exercise
test elucidates whole-body fat oxidation rates across a range of
exercise intensities, the maximal rate of fat oxidation (MFO), and
the intensity at which the MFO occurs (Fatmax) using indirect
calorimetry (Figure 1). This test advances on previous protocols
using four incremental submaximal workloads (Pérez-Martin
et al., 2001) that, for optimal use, require an initial assessment
directly measuring maximal aerobic power (Gmada et al., 2012;
Marzouki et al., 2014). The original “Fatmax” protocol consisted
of 5-min, 35-W step increments performed after an overnight fast
on a cycle ergometer until the respiratory exchange ratio reached
1.0, after which 2-min 35-W steps were employed (Achten et al.,
2002). Importantly, this study found no significant difference in
Fatmax in a sub-set of well-trained participants asked to perform
an additional 3-min step test, although it should be acknowledged
that step durations of 6min may be required for sedentary

FIGURE 1 | Representative illustration of fat oxidation (g.min−1 ) against

exercise intensity (W) during a graded, cycling Fatmax test, where MFO,

maximal rate of fat oxidation (g.min−1 ) and Fatmax, the intensity at which MFO

occurs (W).
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individuals to reach steady-state (Bordenave et al., 2007). Finally,
participants were asked to perform continuous bouts of cycling
(>35min) at single exercise intensities corresponding to those
on the Fatmax test, and differences in MFO or Fatmax were
not significant in the first 5min or when averaged over the
course of these prolonged assessments compared to results
in the 5-min step test. Thus, the authors concluded two key
theoretical limitations of step-test determination of substrate
metabolism, namely shifts in substrate utilization over time and
effects of prior steps, were not influential (Achten et al., 2002).
The 3-min step protocol described here is indicative of those
used in the literature subsequently (Achten and Jeukendrup,
2003a,b, 2004), while the starting workload and work increment
magnitude is adjusted in accordance with participant training
status (Rosenkilde et al., 2010; Mora-Rodríguez et al., 2016;
Dandanell et al., 2017a). Importantly, a sufficiently low starting
workload may effectively obviate the requirement for a specific
“warm-up” protocol. Conceptually identical treadmill protocols
have been used (Achten et al., 2003), and some researchers
have conducted assessments in the fed state (Stisen et al., 2006;
Gonzalez-Haro et al., 2007; Schwindling et al., 2014). This
relatively short protocol duration makes Fatmax testing a viable
monitoring tool for endurance athletes concerned with substrate
metabolism during competition. Lastly, the practicality of this
protocol is particularly important given attempts to predict MFO
and Fatmax based on heart rate, power, and estimated maximum
oxygen uptake (VO2max) have not been successful (Brun et al.,
2011).

The reliability of Fatmax assessments has been examined. The
first reliability study of the Fatmax protocol described above
reported a coefficient of variation (CV) of 9.6% for Fatmax in
a cohort of overnight fasted moderately-trained males with 24-
h pre-trial dietary repetition (Achten and Jeukendrup, 2003a).
Interestingly, a similar study reported a CV of just 3% for
Fatmax and 11% for MFO (Dandanell et al., 2017b). These CVs
are similar to those for MFO measured in sedentary cohorts
using 4–5 pre-defined submaximal workloads based on prior
assessment of maximal aerobic power (Gmada et al., 2012;
Marzouki et al., 2014). In contrast, a 6-min step test used to
determine Fatmax in a heterogeneous cohort of healthy males and
females demonstrated wide limits of agreement and therefore
considerable intra-individual variability (Meyer et al., 2009).
However, and critically, pre-trial diet andmenstrual cycle was not
controlled in this study, likely contributing to intra-individual
variability given the reported influence of these variables on
substrate oxidation during exercise (Arkinstall et al., 2001;
Campbell et al., 2001). Indeed, reliability of a similar treadmill
protocol with 24-h dietary control conducted after an overnight
fast reported CVs of 7 and 5% for MFO (g.min−1) and treadmill
velocity at MFO (km.h−1), respectively (De Souza Silveira et al.,
2016). However, high CVs (>15%) have been reported with
24-h dietary control (Croci et al., 2014a). The reason for this
disparity in reliability is unclear, but may be related to the
effectiveness of the pre-exercise dietary and exercise control
measures (Astorino and Schubert, 2017). Failing to adequately
match pre-exercise muscle glycogen content is likely to impact
MFO given muscle glycogen availability is an independent

regulator of substrate metabolism during exercise (Hargreaves
et al., 1995).

As described above, the validity of the original Fatmax protocol
was examined against prolonged exercise bouts at intensities
equivalent to those in the step test, with results from the step
test demonstrated to be reflective of those over longer duration
(Achten et al., 2002). Interestingly, Schwindling et al. (2014)
had trained cyclists perform step Fatmax tests, and then 1-h
constant-load tests at Fatmax, one workload above Fatmax, and
one workload below Fatmax. No significant differences in absolute
fat oxidation rates were observed between-intensities in the
1-h bouts, suggesting that results from short-duration Fatmax

tests may not be reflective prolonged exercise. Therefore, Fatmax

testing might be used to quickly and non-invasively monitor
metabolic adaptations to training, rather than to elucidate the
metabolic consequences of given exercise bouts, which might
require prolonged, steady-state assessments. Indeed, MFO has
recently been correlated with performance in Ironman triathlon
(r = 0.35, P < 0.01) (Frandsen et al., 2017), which supports
its utility in training monitoring for endurance events likely
limited by carbohydrate availability. Regarding the use of
Fatmax assessments for deriving training prescriptions, statistical
similarity has been observed between Fatmax and the intensity at
which the first increase of plasma lactate concentration (LIAB)
occurs (Achten and Jeukendrup, 2004; Tolfrey et al., 2010), whilst
it appears Fatmax occurs at a greater relative intensity than the
ventilatory threshold (Venables et al., 2005). Agreement between
Fatmax and the lactate threshold has not always been observed,
although it should be acknowledged that the dietary controls
employed in this study were unclear (González-Haro, 2011).

In a health context, MFO has been significantly positively
correlated with insulin sensitivity in a large cohort (N = 57) of
young, healthy males (Robinson et al., 2015), and absolute Fatmax

(Watts) has been positively correlated with insulin sensitivity in
non-insulin-resistant obese males (Lambert et al., 2017). This
link might be explained by mitochondrial function, given β-
oxidation of fatty acids to acetyl CoA, oxidation of fatty acid
or non-fatty acid-derived acetyl CoA in the citric acid cycle,
and oxidative phosphorylation along the electron transport chain
all occur in the mitochondria (McBride et al., 2006; Holloszy,
2011; Wu et al., 2014), and that increases in mitochondrial
volume density (Hoppeler et al., 1985; Montero et al., 2015),
mitochondrial oxidative capacity (Granata et al., 2016a,b), and
mitochondrial enzyme content and activity (Spina et al., 1996;
Scalzo et al., 2014; Granata et al., 2016a) occur in response
to exercise training. Mechanistically, low mitochondrial activity
may be linked to insulin resistance and development of type 2
diabetes via exacerbated production of reactive oxygen species
and/or impaired lipolytic enzyme activity and accumulation
of intracellular lipids, resulting in impaired regulation of
insulin signaling and glucose transport (Wang et al., 2010).
Indeed, mitochondrial fat oxidation capacity has been negatively
correlated with whole-body respiratory exchange ratio during
exercise (Sahlin et al., 2007), whilst training-induced increases in
exercise-induced whole-body fat oxidation have been correlated
with improvements in mitochondrial respiration and citrate
synthase activity (Bordenave et al., 2008). Given the already
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well-established relationship between cardiorespiratory fitness
and a range of metabolic and cardiovascular disease outcomes
(Harber et al., 2017), and the American Heart Association’s
recent advocacy of cardiorespiratory fitness or maximum oxygen
uptake (VO2max) testing in cardiovascular disease risk assessment
(Ross et al., 2016), it is possible that quantifying MFO within
these assessments will emerge as a tool to improve their
predictive power. However, this would require longitudinal
studies investigating associations between changes in MFO and
metabolic risk factors such as insulin sensitivity.

Therefore, Fatmax tests appear a practical monitoring tool
in performance settings where the capacity to utilize fat as a
metabolic substrate is of concern, and might also be useful
in clinical exercise physiology as an indicator of metabolic
health. The purpose of the present review is to extend previous
summaries (Jeukendrup andWallis, 2005; Purdom et al., 2018) by
systematically exploring key determinants ofMFO and Fatmax for
consideration during laboratory assessment, and to for the first
time contextualize individually measured values in given subject
populations with normative values. Normative values could be
used to define the fat oxidation capacity of given research cohorts
in exercise-metabolic studies in a manner analogous to VO2max-
based definitions of aerobic capacity. Key directions for future
research will be discussed.

MAXIMAL FAT OXIDATION: WHAT WE
KNOW

In order to explore the determinants of MFO and Fatmax, a
systematic literature search was performed to identify all studies
using Fatmax protocols in adult populations. As such, “maximal
fat oxidation,” “peak fat oxidation,” and “Fatmax” were searched
in the PubMed andWeb of Science databases (27/03/2018). Hand
searches of reference lists and key journals were also conducted.
Studies published in English and reporting directly measured
MFO and/or Fatmax values in adult populations were included.
This search approach yielded 53 studies for inclusion in the
review.

Training Status
Five studies were identified that directly compared MFO and/or
Fatmax between subjects groups of different training status
(Nordby et al., 2006; Stisen et al., 2006; Lima-Silva et al.,
2010; Schwindling et al., 2014; Ipavec-Levasseur et al., 2015). In
comparisons of trained endurance athletes with different levels
of VO2max, the better-trained group has greater MFO, with no
difference in Fatmax (Lima-Silva et al., 2010; Schwindling et al.,
2014). Those studies comparing active with untrained individuals
have observed significantly greater MFO (Nordby et al., 2006;
Ipavec-Levasseur et al., 2015), or a tendency toward greater MFO
(Stisen et al., 2006), in the active or trained group, with only
one of these studies reporting a difference in Fatmax, which was
greater in the trained group (Nordby et al., 2006). Alternatively,
five large cohort studies with heterogeneous subject populations
have all reported a significant small-to-moderate influence of

VO2max on MFO (Venables et al., 2005; Robinson et al., 2015;
Fletcher et al., 2017; González et al., 2017; Randell et al., 2017).

A moderating effect of training status on MFO is not
surprising given the previously observed significantly higher
whole-body fat oxidation rates in trained compared to untrained
males exercising at the same absolute workload (van Loon
et al., 1999). Indeed, as a result of exercise training, skeletal
muscle adaptations occur that augment fat oxidation during
exercise (Egan and Zierath, 2013). These include mitochondrial
biogenesis (Howald et al., 1985), increased tricarboxylic acid
cycle enzyme and electron transport chain protein content (Egan
et al., 2011), and increased fatty acid transporter and enzyme
content (Talanian et al., 2010). An interesting direction for
future research might be to compare MFO and Fatmax between
trained endurance athletes competing in events with different
requirements for fat oxidation, e.g. traditional endurance events
such as half-marathon and marathon running and ultra-
endurance events such as Ironman triathlons, and also to derive
data from elite-level endurance populations.

Sex
Seven studies were identified that compared males (N = 439)
and females (N = 390) in terms of absolute MFO (g.min−1)
and/or Fatmax (%VO2max) (Bircher et al., 2005; Venables et al.,
2005; Bogdanis et al., 2008; Carey, 2009; Chenevière et al., 2011;
Bagley et al., 2016; Fletcher et al., 2017). In order to quantitatively
elucidate sex-mediated effects on these variables, sample size-
weighted means and standard deviations (SD) for males and
females were calculated. Standard error was converted to SD
through multiplication by the square root of the sample size
(Altman and Bland, 2005). SD for each study was collapsed by
first squaring and then multiplying by the degrees of freedom.
A sample size-weighted overall SD was calculated as the square
root of the sum of collapsed SDs divided by total degrees of
freedom. Cohen’s d effect sizes (ES± 90% confidence limits) were
subsequently computed and interpreted according to Cohen’s
criteria (Cohen, 1977). Results from this analysis suggest absolute
MFO is greater in males (N = 270, 0.56 ± 0.17 g.min−1) than
females (N = 236, 0.44 ± 0.15 g.min−1), an effect of large
magnitude (ES = 0.76 ± 0.10). However, Fatmax appears greater
in females (N = 344, 56± 14%VO2max) than males (N = 371, 51
± 14%VO2max), an effect of smallmagnitude (ES= 0.41± 0.09).
These effects are aligned to those in a recent large-scale (N = 305;
MFO, 0.62± 0.19 vs. 0.48± 0.15 g.min−1, P < 0.0001, ES= 0.76
± 0.13; Fatmax, 59± 16 vs. 62± 16%VO2max, P= 0.09, ES= 0.19
± 0.13; in males and females, respectively) cohort study (Fletcher
et al., 2017).

However, some studies making comparisons between-sexes
have reported MFO relative to fat-free mass (FFM). When
expressed in these terms (mg.kg FFM−1.min−1), two large cohort
studies have reported greater MFO in females compared to males
(Venables et al., 2005; Fletcher et al., 2017). This effect has been
observed in moderately trained individuals (Chenevière et al.,
2011), and a tendency toward this effect has been observed in a
poorly-defined active cohort (Bagley et al., 2016). Interestingly, it
appears this effect is abolished in overweight/obese individuals
(Bogdanis et al., 2008; Haufe et al., 2010). In accordance
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with these findings, it has been observed that females have
greater relative whole-body fat oxidation (i.e., as a percentage
of overall energy expenditure) at given steady-state exercise
intensities compared to males (Knechtle et al., 2004), indicative
of greater reliance on fat metabolism during exercise in females.
The ovarian hormone estrogen may explain this sex difference
(Oosthuyse and Bosch, 2010; Devries, 2016), as estrogen appears
to stimulate lipolysis and NEFA availability (D’Eon et al., 2002),
plausibly via activation of 5′ adenosinemonophosphate-activated
protein kinase (AMPK) (D’Eon et al., 2005).

The existing literature therefore suggests that whilst absolute
MFO is generally greater in males compared to females, MFO
relative to FFM is likely greater in non-obese females compared
to non-obese males. There also appears a minor tendency toward
greater Fatmax in females compared to males. Given sex-related
differences in body mass and composition, MFO relative to
FFM might be more descriptive when comparing between sexes.
Whether these effects are observed in endurance-trained cohorts
is unknown. Similarly, effects of the menstrual cycle onMFO and
Fatmax have not been studied, but warrant consideration in the
context of serial inter-individual measurement.

Nutritional Status
Only one study has directly examined the effect of acute
feeding status on MFO and Fatmax (Achten and Jeukendrup,
2003b). Trained males performed Fatmax assessments on a cycle
ergometer after an overnight fast, with 75 g of glucose or placebo
ingested 45min pre-exercise. MFO (0.33 ± 0.06 vs. 0.46 ±

0.06 g.min−1) and Fatmax (52 ± 3 vs. 60 ± 2%VO2max) were
significantly decreased with pre-exercise carbohydrate feeding
(Achten and Jeukendrup, 2003b). This is likely explained by
carbohydrate-induced insulinaemia, suppression of lipolysis, and
suppression of fatty acid availability, which in turn might be
expected to suppress whole-body fat oxidation in a manner
similar to that seen at high exercise intensities (Romijn et al.,
1995). Indeed, triglyceride and heparin infusion has been
shown to increase plasma NEFA concentration, whole-body
lipolysis, and fat oxidation rate during exercise with pre-
exercise glucose feeding toward values observed during exercise
after an overnight fast, suggesting that part of the suppressive
effect of pre-exercise carbohydrate feeding on whole-body
fat oxidation is explained by reduced fatty acid availability
(Horowitz et al., 1997). Acute nutritional status is therefore a
clear determinant of MFO and Fatmax, and should be considered
when comparing results between-studies as well as in serial
intra-individual assessment. However, further examination of
this effect in untrained populations is warranted, as is the
time-course and macronutrient content of pre-exercise feeding
on measures of MFO and Fatmax. Such data might provide
exercise physiologists with guidelines when using Fatmax tests
for athlete monitoring and in health assessments, as conducting
assessments at the exact same time of day is not always
possible.

From a chronic dietary perspective, a recent large study of
150 male and 155 female subjects used hierarchical regression
to elucidate the influence of a 4-day dietary record on MFO,
and reported absolute carbohydrate and fat intakes accounted

for 3.2% of the variation, with carbohydrate and fat intakes
contributing negatively and positively to MFO, respectively
(Fletcher et al., 2017). Whilst the degree of variance explained by
diet was small in thismixed-cohort study, this contributionmight
be greater in homogenous cohorts. Nevertheless, an independent
effect of chronic macronutrient intake was observed, making it
therefore a critical variable to control in repeat testing.

In a cross-sectional study involving a homogenous cohort
of male ultra-endurance runners, MFO (1.54 ± 0.18 vs. 0.67
± 0.14 g.min−1) and Fatmax (70 ± 6 vs. 55 ± 8%VO2max)
were significantly higher in those habitually consuming a
ketogenic vs. high carbohydrate diet (Volek et al., 2016).
Habitual consumption of a ketogenic diet was defined as a
diet deriving <20% of energy from carbohydrate and >60%
from fat, whereas a high-carbohydrate diet was one that derived
>55% of energy from carbohydrate, as confirmed by a 3-day
weighed food record. A greater whole-body fat oxidation rate
was observed during prolonged steady-state exercise in the low-
carbohydrate group (∼60%), an adaptation consistently seen
in diet intervention studies (Phinney et al., 1983; Burke et al.,
2000). Interestingly, however, muscle glycogen utilization during
prolonged steady-state exercise was not significantly different
between-groups, suggesting habitual consumption of a ketogenic
diet did not spare glycogen in working skeletal muscle (Volek
et al., 2016), which indicates the carbohydrate sparing effect
was explained by reduced hepatic glycogenolysis and glucose
output (Webster et al., 2016). An interesting direction for future
research would be to determine the “threshold” of carbohydrate
restriction required to elicit changes in MFO and Fatmax, as this
might provide endurance athletes with pertinent information
when preparing events where maximizing fat utilization, and
minimizing endogenous carbohydrate utilization, is sought. This
might be particularly useful in a military context when long-
duration tasks are performed (McCaig and Gooderson, 1986).

It is also possible that protein intake exerts an effect on
MFO. During 3-month consumption of a weight-maintenance
diet, increasing protein intake by ∼10 g.d−1 has been shown
to significantly increase MFO by ∼19% in a mixed-sex sample
of previously weight-stable volunteers (Soenen et al., 2010).
Importantly, the increase in protein intake explained ∼39% of
the increase in MFO. These results implicate modifying protein
consumption as a potential strategy to alter MFO, although
the contribution of the inevitably reduced daily carbohydrate
consumption on MFO in this study was not quantified.

Exercise Modality
A further consideration is exercise modality. In general, studies
comparing running and cycling at given exercise intensities have
reported greater fat and reduced carbohydrate oxidation rates
during running (Snyder et al., 1993; Achten et al., 2003; Knechtle
et al., 2004; Chenevière et al., 2010). However, comparisons
of MFO and Fatmax between-modalities have not been as
conclusive. The original study reported significantly greaterMFO
(0.65 ± 0.05 vs. 0.47 ± 0.05 g.min−1), with no difference in
Fatmax (62 ± 3 vs. 59 ± 3%VO2max), during treadmill running
compared to cycling in moderately-trained males (Achten et al.,
2003). A further study in a similar subject population failed
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to observe a significant difference in MFO, but did observe a
greater Fatmax during running (Chenevière et al., 2010). The
reason for this disparate result in terms of MFO is not easily
discernible, but could be related to between-study differences
indirect calorimetry (analysis of 1 vs. 2min of expired gases per 3-
min stage), given the greater VO2 slow component during cycling
(Billat et al., 1999). It is therefore recommended that the exercise
modality in which Fatmax tests are performed be considered when
between-study and intra-individual comparisons are made, and
by those preparing formulti-modal endurance competitions such
as triathlons.

What We Know: Conclusions
It has been demonstrated that the training status, sex, and
acute and chronic nutritional status of the subject population
or individual under study are clear determinants of MFO
and Fatmax, with a possible effect of exercise modality. These
determining factors must be considered when interpreting results
between-studies and in serial intra-individual measurement.

MAXIMAL FAT OXIDATION: NORMATIVE
VALUES

Given the interest in measurement of MFO and Fatmax in
research and non-research settings, it would be prudent to
generate normative values from existing data in order to
contextualize individually measured values and define the fat
oxidation capacity of given research cohorts. However, in order
to do this, the aforementioned determinants of MFO and
Fatmax need to be considered. Accordingly, published MFO and
Fatmax values were synthesized from studies with homogeneous
cohorts performing assessments after an overnight fast on a
cycle ergometer. These criteria were applied in order to generate
sufficient data to produce meaningful normative values.

Studies were subsequently partitioned into five populations:
endurance-trained, lean males (Achten et al., 2002, 2003; Achten
and Jeukendrup, 2003a,b, 2004; Nordby et al., 2006; Frandsen
et al., 2017), recreationally-active, lean males (Bircher et al.,
2005; Croci et al., 2014a,b; Guadalupe-Grau et al., 2014; Lanzi
et al., 2014; Bagley et al., 2016), recreationally-active, lean females
(Bircher et al., 2005; Isacco et al., 2015; Bagley et al., 2016),
overweight/obese males (Mogensen et al., 2009; Rosenkilde et al.,
2010; Ara et al., 2011; Tsujimoto et al., 2012; Alkahtani et al., 2013;
Alkahtani, 2014; Lanzi et al., 2014, 2015; Ipavec-Levasseur et al.,
2015; Mohebbi et al., 2015; Nordby et al., 2015; Mora-Rodríguez
et al., 2016; Dandanell et al., 2017b), and overweight/obese
females (Besnier et al., 2015; Borel et al., 2015; Dandanell et al.,
2017b). “Endurance-trained” was defined by a sample mean
VO2max >55ml.kg−1.min−1 and active engagement in training
for endurance events. “Recreationally-active” was defined as
physically active according to the individual study, not training
for endurance events, and, where measured, by a sample mean
VO2max <55ml.kg−1.min−1. The division between “lean” and
“overweight/obese” was defined in males as a body fat percentage
of 25% and/or body mass index of 25 kg.m−2, and in females as a
body fat percentage of 30% and/or bodymass index of 25 kg.m−2.

Owing to often-absent definitions of physical activity status
in overweight populations, those considered overweight/obese
were not further defined by physical activity status. Baseline
values were used for intervention studies. For synthesis, a sample
size-weighted mean and SD for MFO was calculated for each
population as described above for sex-mediated comparisons
(see section Sex). Subsequently, normative percentile values were
generated for each population assuming a within-population
normal distribution (Tables 1, 2).

A trend toward greater MFO with increasing training status
was observed (Table 1), and in males compared to females,
which supports the evidence from individual studies presented
above. Similarly, a less-pronounced trend toward greater Fatmax

with increasing training status was observed (Table 2), with
the exception of overweight/obese females, although this may
be an artifact of the small sample size (N = 27). These
normative percentile values might therefore be used by exercise
physiologists to contextualize individual measurements and
define the fat oxidation capacity of given research cohorts,
whilst acknowledging the aforementioned determinants of MFO
when making inferences. It is worth noting that no data was
available for endurance-trained female populations, which is a
pertinent area for future research. However, it might be possible
to use the values reported for endurance-trained males and
scale them down according to the synthesis described above
for sex-mediated comparisons, which demonstrated MFO was
on average 28% greater in males (0.56 ± 0.17 vs. 0.44 ±

0.15 g.min−1). It should also be noted that none of this data
was derived from studies in which participants ingested a high-
fat or ketogenic diet, which is known to increase fat oxidation
during exercise (Phinney et al., 1983; Burke et al., 2000). Indeed,
in many of the studies in endurance-trained males participants
were specifically instructed to ingest a high-carbohydrate meal
the evening before testing (Achten et al., 2002, 2003; Achten and
Jeukendrup, 2003a,b, 2004). Therefore, these values are likely
only of relevance to those ingesting a traditional mixed diet.

MAXIMAL FAT OXIDATION: WHAT WE
DON’T KNOW

Many determinants of MFO and Fatmax have been identified
in the ∼16 years since the original protocol was developed
(Achten et al., 2002). However, given the practical utility of this
protocol as a training monitoring tool in elite sport and as an
indication of health status, further research is warranted to better
understand what factors must be considered when measuring
MFO and Fatmax, as is research concerned with training effects
on these variables and their relevance to endurance performance
(Figure 2).

Environmental Temperature
An unexplored parameter likely to alter MFO and Fatmax is
environmental temperature. Environmental heat stress increases
muscle glycogenolysis, hepatic glucose output, and whole-body
carbohydrate oxidation rates, whilst reducing fat oxidation
rates at given intensities (Febbraio et al., 1994a,b; Hargreaves
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TABLE 1 | Normative percentile values for MFO (g.min−1) in different subject populations during assessments performed on a cycle ergometer after an overnight fast.

Population N Mean MFO (g.min−1) 20th percentile 40th percentile 60th percentile 80th percentile

Endurance-trained, lean males 201 0.53 ± 0.16 0.40 0.49 0.58 0.67

Recreationally-active, lean males 105 0.46 ± 0.14 0.34 0.42 0.49 0.58

Recreationally-active, lean females 68 0.35 ± 0.12 0.25 0.32 0.38 0.45

Overweight/obese males 193 0.28 ± 0.14 0.16 0.24 0.31 0.39

Overweight/obese females 144 0.16 ± 0.05 0.12 0.15 0.17 0.20

For example, measurement of MFO at 0.67 g.min−1 in an endurance-trained, lean male would place them in the 80th percentile.

TABLE 2 | Normative percentile values for Fatmax (%VO2max) in different subject populations during assessments performed on a cycle ergometer after an overnight fast.

Population N Mean Fatmax (%VO2max) 20th percentile 40th percentile 60th percentile 80th percentile

Endurance-trained, lean males 201 56 ± 8 49 54 58 63

Recreationally-active, lean males 67 51 ± 8 44 48 53 58

Recreationally-active, lean females 38 50 ± 10 41 47 52 58

Overweight/obese males 190 43 ± 18 28 38 47 57

Overweight/obese females 27 61 ± 10 52 58 64 70

For example, measurement of Fatmax at 63%VO2max in an endurance-trained, lean male would place them in the 80th percentile.

FIGURE 2 | Schematic illustration of the identified determinants of maximal fat oxidation during graded protocols (black) and key identified unknown factors (gray).

et al., 1996a). This is attributed to independent effects of rising
core temperature, enhanced muscle temperature, greater plasma
catecholamine concentrations, and progressive dehydration
(Febbraio et al., 1996, 1998; Hargreaves et al., 1996b; Starkie
et al., 1999). Given these effects, it might be hypothesized that
MFO decreases in the heat compared to temperate conditions,
although it is also possible that MFO is shifted to a lower Fatmax.
Elucidating this effect is a relevant consideration for endurance

sport and military contexts given the likely negative effects of
environmental heat on self-selected work intensity.

The effect of cold environments on substrate metabolism
during prolonged exercise is less certain. Some investigations
have reported augmented carbohydrate utilization in cold vs.
temperate conditions (Galloway and Maughan, 1997; Layden
et al., 2002), whereas others suggest fat utilization is augmented
and carbohydrate utilization is suppressed in the cold (Galloway
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and Maughan, 1997; Parkin et al., 1999; Gagnon et al., 2013).
Interestingly, Galloway and Maughan (Galloway and Maughan,
1997) reported greater fat oxidation rates during moderate
intensity cycling at 11 vs. 21◦C, but this was suppressed at 4◦C.
These disparities are not easily reconciled, and may be a result of
interactions between the specific environmental conditions and
exercise modality (cycling vs. running) (Gagnon et al., 2013).

Direct investigation of the impact of environmental
temperature on laboratory measures of MFO and Fatmax,
and the environmental thresholds at which they occur, is
therefore warranted. This data would have strong applied
relevance given the diverse environmental conditions in which
endurance competitions take place (Racinais et al., 2015; Casadio
et al., 2017), as well as the extreme environments encountered in
military settings (Orr et al., 2015).

Training Effects
Fourteen longitudinal studies havemeasured the effect of exercise
training interventions on MFO and/or Fatmax (Venables and
Jeukendrup, 2008; Mogensen et al., 2009; Alkahtani et al.,
2013; Astorino et al., 2013, 2017; Besnier et al., 2015; Ipavec-
Levasseur et al., 2015; Lanzi et al., 2015; Nordby et al., 2015;
Rosenkilde et al., 2015; Bagley et al., 2016; Mora-Rodríguez
et al., 2016; Tan et al., 2016; Schubert et al., 2017). MFO is
generally upregulated in response to exercise training (Mogensen
et al., 2009; Alkahtani et al., 2013; Astorino et al., 2013; Besnier
et al., 2015; Ipavec-Levasseur et al., 2015; Lanzi et al., 2015;
Nordby et al., 2015; Rosenkilde et al., 2015; Bagley et al., 2016;
Mora-Rodríguez et al., 2016; Tan et al., 2016) whilst Fatmax

typically remains unchanged (Venables and Jeukendrup, 2008;
Mogensen et al., 2009; Alkahtani et al., 2013; Ipavec-Levasseur
et al., 2015; Rosenkilde et al., 2015; Bagley et al., 2016; Astorino
et al., 2017; Schubert et al., 2017), although increased Fatmax

has been observed on occasion (Mogensen et al., 2009; Lanzi
et al., 2015; Nordby et al., 2015). Training-induced increases in
MFO have been consistently observed in sedentary populations
(Mogensen et al., 2009; Alkahtani et al., 2013; Astorino et al.,
2013; Besnier et al., 2015; Ipavec-Levasseur et al., 2015; Lanzi
et al., 2015; Nordby et al., 2015; Rosenkilde et al., 2015;
Mora-Rodríguez et al., 2016; Tan et al., 2016), but this effect
has not always been observed in previously-active populations
(Astorino and Schubert, 2017; Schubert et al., 2017), and remains
uninvestigated in endurance-trained athletes.

Training-induced increases in MFO have been observed with
interval (∼10–80%) (Alkahtani et al., 2013; Astorino et al.,
2013; Lanzi et al., 2015; Bagley et al., 2016) and moderate-
intensity (∼7–58%) (Venables and Jeukendrup, 2008; Mogensen
et al., 2009; Alkahtani et al., 2013; Besnier et al., 2015; Ipavec-
Levasseur et al., 2015; Lanzi et al., 2015; Nordby et al., 2015;
Rosenkilde et al., 2015; Mora-Rodríguez et al., 2016; Tan et al.,
2016) training regimens, and these responses are independent
of changes in body mass (Nordby et al., 2015). Therefore, the
existing literature suggestsMFO is amalleable parameter that can
be increased by both aerobic or interval training, particularly in
sedentary populations. It is likely that training-induced increases
in MFO are mediated by adaptations to adipose tissue lipolysis,
NEFA transport to skeletal muscle, skeletal muscle NEFA uptake,

muscle triglyceride lipolysis, and/or mitochondrial uptake of
fatty acids, given fat oxidation may be limited by fatty acid
delivery to skeletal muscle or mitochondrial fatty acid uptake
(Romijn et al., 1993, 1995; Sidossis et al., 1997; Starritt et al.,
2000; van Loon et al., 2001; Spriet, 2014). Indeed, alongside
long-standing observations of adaptations to fat metabolism in
response to moderate-intensity training (Howald et al., 1985;
Talanian et al., 2010; Egan et al., 2011), various high-intensity
or sprint interval training regimens can also stimulate beneficial
adaptations across many steps involved in fat oxidation (Astorino
and Schubert, 2017), including increased mitochondrial enzyme
activity and protein content (Burgomaster et al., 2005, 2006,
2007, 2008; Gibala et al., 2006), muscle membrane fatty acid
transport protein content (Talanian et al., 2007, 2010; Perry et al.,
2008), and lipolytic enzyme protein content (Talanian et al.,
2010).

The most favorable training regimen for increasing MFO
cannot presently be discerned. Training studies have generally
utilized either prolonged moderate-intensity aerobic exercise
(Mogensen et al., 2009; Besnier et al., 2015; Ipavec-Levasseur
et al., 2015; Nordby et al., 2015; Rosenkilde et al., 2015; Mora-
Rodríguez et al., 2016; Tan et al., 2016) or high-intensity interval
exercise (Bagley et al., 2016; Astorino et al., 2017; Schubert et al.,
2017), with only three studies comparing the two (Venables
and Jeukendrup, 2008; Alkahtani et al., 2013; Lanzi et al.,
2015). Interestingly, differences in the magnitude of training-
induced increases in MFO were not observed for moderate and
high-intensity interval training in these studies (Venables and
Jeukendrup, 2008; Alkahtani et al., 2013; Lanzi et al., 2015).
Furthermore, whilst promising effects of training with low-
glycogen availability on whole-body fat oxidation rates during
prolonged exercise have been observed (Yeo et al., 2008; Hulston
et al., 2010), the influence of this training regimen on MFO and
Fatmax remains experimentally unexplored.

There is also a notable absence of data concerning the
responsiveness of MFO and Fatmax to training in endurance-
trained cohorts. Existing studies have generally been in
overweight/obese populations (Venables and Jeukendrup, 2008;
Mogensen et al., 2009; Alkahtani et al., 2013; Besnier et al., 2015;
Ipavec-Levasseur et al., 2015; Lanzi et al., 2015; Nordby et al.,
2015; Rosenkilde et al., 2015; Mora-Rodríguez et al., 2016; Tan
et al., 2016), with three studies in apparently active but untrained
individuals (Bagley et al., 2016; Astorino et al., 2017; Schubert
et al., 2017). As endurance-trained individuals already have
elevatedMFO compared to lesser-trained populations, it remains
to be determined if these individuals can accrue further advances
in MFO through optimized training practices. It would also be
useful to discern if training-induced changes in MFO reflect
alterations in substrate metabolism during prolonged exercise,
as the relatively short-duration of this protocol makes it a viable
monitoring tool in elite sport.

Therefore, whilst it has been demonstrated that exercise
training per se improves MFO in untrained populations, this
effect remains to be elucidated in trained populations, and
the most appropriate training regimen for increasing MFO is
unknown. These are worthy directions for future research given
the likely importance of fat oxidation capacity in endurance sport
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and military settings, and the apparent relationship between
MFO and insulin sensitivity (Robinson et al., 2015).

Relevance to Exercise Performance
A hypothesis linking MFO, Fatmax, and performance in
prolonged exercise where carbohydrate availability is limiting
(>2 h) has clear intuitive appeal. If an individual makes extensive
use of fat oxidation to support metabolism during prolonged
exercise at their competitive or operational intensity, this should
reduce the requirement for endogenous carbohydrate oxidation,
and therefore muscle glycogen depletion, which is linked to
fatigue (Bergström et al., 1967; Ørtenblad et al., 2013). Indeed,
at a given absolute workload, significantly higher whole-body fat
oxidation and lower muscle glycogenolysis have been observed
in trained compared to untrained males (van Loon et al.,
1999). A link between MFO, Fatmax, and endurance exercise
performance is further supported by cross-sectional evidence
demonstrating enhanced MFO in trained compared to untrained
cohorts (Nordby et al., 2006; Stisen et al., 2006; Ipavec-Levasseur
et al., 2015).

However, the importance of MFO and Fatmax for exercise
performance has not yet been comprehensively studied, and such
research is warranted. A recent study of 64 Ironman triathletes
reported a significant, albeit modest, correlation between MFO
and performance time in the 2016 Copenhagen Ironman (r =

0.35, P < 0.01) (Frandsen et al., 2017). Metabolically, a cross-
sectional study of elite ultra-distance runners demonstrated
greater MFO and Fatmax in those adapted to ketogenic diets,
but the rate of glycogenolysis in working skeletal muscle during
prolonged exercise was not significantly different compared to
those ingesting a high-carbohydrate diet, despite higher whole-
body fat oxidation rates (Volek et al., 2016). Therefore, MFO,
Fatmax, and whole-body fat oxidation rates were dissociated
from skeletal muscle glycogenolysis during prolonged endurance
exercise between these groups, which might question the
hypothesis linking MFO and Fatmax to endurance exercise
performance via muscle glycogen sparing. However, it is possible
this dissociation was an artifact of the measurement site, and that
a carbohydrate sparing effect in the ketogenic groupwas observed
in the liver, as observed previously (Webster et al., 2016).

An interesting avenue for future research might therefore be
to determine if MFO and Fatmax are indicators of the degree
of endogenous carbohydrate utilization and skeletal muscle
glycogenolysis during prolonged exercise within a homogenous
group of endurance-trained athletes, and consequently if such
an effect has implications for endurance exercise performance.
Such data would provide indication of the functional relevance
of monitoring MFO and Fatmax in endurance-trained athletes,
and could serve to build on existing models of endurance exercise
performance (McLaughlin et al., 2010).

CONCLUSIONS

This review has systematically identified several key determinants
of MFO and Fatmax. These include training status, sex, acute
nutritional status, and chronic nutritional status, with the
possibility of an effect of exercise modality. Accordingly,
normative percentile values for MFO and Fatmax in different
subject populations are provided to contextualize individually
measured values and define the fat oxidation capacity of
given research cohorts. However, the effect of environmental
conditions on MFO and Fatmax remain to be established, as
does the most appropriate means of training MFO and Fatmax,
particularly in endurance-trained cohorts. Furthermore, direct
links between MFO, Fatmax, and rates of muscle glycogenolysis
during prolonged exercise remain to be established, as do
relationships between MFO, Fatmax, and exercise performance.
This information might add to existing models of endurance
exercise performance, and indicate how useful MFO and Fatmax

monitoring might be in endurance sport.
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