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Biomedical research focusing on physiological, morphological, behavioral, and other

aspects of development has long depended upon the chicken (Gallus gallus domesticus)

as a key animal model that is presumed to be typical of birds and generally applicable

to mammals. Yet, the modern chicken in its many forms is the result of artificial

selection more intense than almost any other domesticated animal. A consequence of

great variation in genotype and phenotype is that some breeds have inherent aberrant

physiological and morphological traits that may show up relatively early in development

(e.g., hypertension, hyperglycemia, and limb defects in the broiler chickens). While such

traits can be useful as models of specific diseases, this high degree of specialization

can color general experimental results and affect their translational value. Against this

background, in this review we first consider the characteristics that make an animal

model attractive for developmental research (e.g., accessibility, ease of rearing, size,

fecundity, development rates, genetic variation, etc.). We then explore opportunities

presented by the embryo to adult continuum of alternative bird models, including

quail, ratites, songbirds, birds of prey, and corvids. We conclude by indicating that

expanding developmental studies beyond the chicken model to include additional avian

groups will both validate the chicken model as well as potentially identify even more

suitable avian models for answering questions applicable to both basic biology and the

human condition.
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INTRODUCTION

Animal models have long been extensively employed in biomedical research—for an entry into the
substantial literature, see Bähr and Wolf (2012), Andersson (2016), Bolker (2017), Andersen and
Winter (2019), and Robinson et al. (2019). Birds of all developmental stages play an important
role in biomedical research and have provided major insights into processes in development (Bolin
and Burggren, 2013; Nowak-Sliwinska et al., 2014; Burggren et al., 2016; Towers, 2018; Burggren
and Rojas Antich, 2021), aging (Holmes, 2004; Swanberg et al., 2010; Austad, 2011), physiology
(Vilches-Moure, 2019; Williams et al., 2020), immunology (Davison, 2003; Kohonen et al., 2007),
infectious and other diseases (Hawkridge, 2014; Wang and Wang, 2016), and pharmaceutical
testing (Datar and Bhonde, 2011; Bjornstad et al., 2015; Wu et al., 2018), to name just a few studies
in just a few of the many disciplines that have exploited and benefitted from avian models.
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Central as a bird model in biomedical research, especially
in developmental studies, has been the domestic chicken Gallus
gallus domesticus (Figure 1). The value of this venerable animal
model cannot be overstated. Selective breeding has led to
breeds with characteristics of particular interest to biomedical
investigation. A clear example is the inadvertent development
chicken breeds that are hypertensive and or hyperglycemic
(Julian, 1998; Ji et al., 2012; Khajali and Wideman, 2016; Matos
et al., 2018; Lake and Abasht, 2020). Additionally, the advent
of genetic editing has produced a new wave of chicken and
other models that are further accelerating their use in biomedical
research (Lee et al., 2015; Davey et al., 2018; Sid and Schusser,
2018; Chojnacka-Puchta and Sawicka, 2020; Koslová et al., 2020).
As a consequence, the chicken and especially the chicken embryo
have had a huge influence on developmental physiology, not only
for understanding basic process in physiological development,
but also in the important task of modeling human disorders.

However, in this perspective we suggest that expanding studies
of embryos to adults beyond the chicken model to include
additional avian species may result in even deeper insights into
both fundamental questions in basic biology and the human
condition. This is not an original thought, for nearly a decade
ago Bolker’s article title offered the warning “There’s more to
life than rats and flies” (Bolker, 2012). To paraphrase her title,
we suggest that there’s more to avian research than G. gallus
domesticus, as we explore in this perspective focusing on research
in developmental biology.

Before exploring alternative avian models in developmental
research, however, we first briefly consider how certain animal

FIGURE 1 | Total number of PubMed citations of common animal and plant models derived from the Latin genus and species. Data acquired May, 2021. The two

common rodent models (red) are highly dominant in biomedical research. However, while the zebrafish D. rerio and the nematode C. elegans are receiving much

attention, both have less than a third of the PubMed citations as the domestic chicken (black). Also shown for comparison are three commonly used plant models

(green).

models have been used in developmental and other forms of
research—in fact have come to dominate such research—and
explore what actually comprises a useful animal model.

DOMINANT ANIMAL MODELS—AN
POTENTIAL HANDICAP FOR BIOMEDICAL
RESEARCH?

The emergence of an animal model is often based on a series
of favorable characteristics of that model, with convenience and
convention being two of the most important. Yet, as Bolker
succinctly states “dominant models may bias research directions”
(Bolker, 2017). Indeed, the ultimate success of the model often
involves aspects of a self-fulfilling prophecy. Thus, the more
the model is employed in research, the greater is the body
of knowledge available of the model, and so the more useful
it becomes—which in turn leads to greater use of the model,
more knowledge and more usefulness, etc. Once a model is
established, entire communities may spring up around the
model—e.g., the worm community using Caenorhabditis elegans,
the fly community using Drosophila melanogaster, the zebrafish
community using Danio rerio, etc. Ironically, because of the
success of established models, potentially even more suitable,
more relevant animal models may be largely overlooked or
ignored because of their perceived marginal position in animal
research. A classic example is the zebrafish D. rerio and the
community that formed around it. Recognized as a genetically
tractable system in the early 1980s (Nüsslein-Volhard, 2012), the
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zebrafish embryos, larvae, and adults are to this day advanced
as a model because of its fecundity, rapid growth, transparent
embryos, etc. Zebrafish were discovered as a genetic model
because they happened to be available in Tübingen, Germany
and were quickly recognized as potentially of great use. The rest
is history, as they say, with PubMed now listing nearly 45,000
papers over the last 75 years containing the word “zebrafish”!
Clearly, this is an animal model of critical importance to
both basic and biomedical research because of a somewhat
serendipitous discovery. Yet, considering that there are ∼30,000
species of teleost fishes, it is possible—even likely—that an
even more tractable, effective model than zebrafish potentially
exists, though such a model is unlikely to ever gain traction
in the zebrafish or any other research community. Notably,
the notion of looking for the most suitable animal model to
answer a basic question is neither new nor novel. In 1929 Nobel
prize winner (1920) August Krogh stated “For many problems
there is an animal on which (a physiological problem) can be
most conveniently studied” (Krogh, 1929). Indeed, the so-called
“August Krogh principle” is one of the guiding principles in
animal physiology (Krebs, 1975; Burggren, 1999, 2020; Strange,
2007).

Given these general perspectives on animal models, we ask the
question “Is the very widely employed chicken model—essentially
the ‘go to’ model for avian-based research in developmental
physiology and many other areas—the best model for every
biomedical research project exploiting an avian model”? Our
answer to this question is “No. . . . and yes.” Certainly, it is not
our intention to be highly critical of the chicken as an animal
model for development. Essentially, every animal model has
many important attributes that make it a useful model in the first
place, but also possesses characteristics that potentially obfuscate
the experimental results when comparting them to other animals
or to humans. Rather, we are critical of biomedical research that
narrowly uses only the chicken as an avianmodel to the exclusion
of other species that could actually be more tractable in testing
hypotheses and answering questions.

PROS AND CONS OF THE CHICKEN AS AN
AVIAN EXPERIMENTAL MODEL

The huge number of tons of chicken meat and eggs produced
globally every year (FAO, 2020) are only possible as a result
of the many traits and characteristics that make the chicken
one of the world’s most effective production animals (FAO
Production Statistics, 2021). But these traits could also make it
a complicated animal model, whether as embryo of adult. The
main historical reasons for the creation of chicken breeds have
been meat production, egg production, game (cock fighting), and
ornamental use. With around 500 different breeds distinguished
by feather and/or skin color, number of toes, size, comb
shape/color, feathering pattern, and place of origin, the chicken
is often considered the vertebrate with the highest number of
artificially selected breeds (Crossley and Altimiras, 2012; Roth
and Lind, 2013; Bílková et al., 2017). More specifically, different
breeds are variously highly efficient at converting feed into

muscle, having resistant to cold temperatures or resistant to
heat, laying eggs at high frequency, having uncommon feathering
patterns, and so on. Given this diversity of chicken breeds and
their specialization, it is difficult to pick a specific breed that
could encompass the whole of possible biological responses
of the chicken. Therefore, we posit that it is important to
understand what led tomodern chickens and what that means for
developmental and other biomedical research, as we now explore.

What Is the Modern Chicken—and Why
Does It Matter to Developmental
Research?
Origins of the Domestic Chicken
The chicken (G. gallus domesticus) has been the subject of intense
selection, and indeed is one of the most highly selected of all
domesticated species, perhaps only rivaled by canines (Vilà et al.,
1999; Leroy, 2011). It is not our intent to review this subject
in detail, as a comprehensive review on the origin, distribution,
adaptation, and evolution of the domestic chicken has recently
appeared (Liu et al., 2006; Rubin et al., 2010). Briefly, the domestic
chicken has several physiological, morphological and behavioral
differences from the ancestral red jungle fowl (G. gallus), the bird
presumed to be the basis for the modern domestic chicken. The
general consensus emerging from genomic investigations into
the past evolutionary history of the modern chicken is that the
domestic chicken (with all its breeds) originated in Asia (Lawal
and Hanotte, 2021). Red jungle fowl range from southeast to
south Asia, with populations of a range of subspecies still existing
in the wild (Al-Nasser et al., 2007). There is still debate as to
which country first domesticated the red jungle fowl, but the
beginning of the process is agreed to be in the early 1800’s. The
red jungle fowl shares many traits with the modern chicken,
further supporting the claim of origin of chickens in jungle fowl
(Rubin et al., 2010). However, recent molecular evidence suggests
that the modern chicken is most probably a hybrid occurring
between red jungle fowl, green jungle fowl (Gallus varius), gray
jungle fowl (Gallus sonneratii), and the Srilankan jungle fowl
(Gallus lafayetii) (Table 1) (Liu et al., 2006; Al-Nasser et al., 2007;
Eriksson et al., 2008; Rubin et al., 2010; Roth and Lind, 2013).
These observations on the origin and evolutionary history are
aided by extensive genomic analysis of the chicken, in which
more than 14,000 quantitative trait loci (QTL) representing
∼450 different traits garnered from ∼350 publication have been
identified (https://www.animalgenome.org/cgi-bin/QTLdb/GG/
index, accessed July 23, 2021).

Interestingly, recreational activities (e.g., cock fighting) is one
of the proposed first uses for chickens that might have led to their
domestication, with meat and egg production subsequent to their
breeding for entertainment (Liu et al., 2006; Lawal and Hanotte,
2021). The development of modern breeds as food sources was
then carried on with the existing genetic pool of the chicken.
This selection of traits generated three groups of the domestic
chicken: indigenous village chicken, the fancy chicken breeds
and, in a highly dominant position, the commercial lines, with
highly divergent characteristics—consider bantams and broilers,
for example.
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Concealed “Aberrant” Physiology?
Intensive selective breeding has obviously been carried out
for favorable traits such as meat and egg production. Yet,

TABLE 1 | Taxonomy of the chicken.

Class Aves

Order Galliformes

Family Phasianidae

Subfamily Phasianidae

Genus Gallus (Brisson, 1760)

Species Gallus gallus (Linnaeus, 1758)

Subspecies Gallus gallus gallus (Linnaeus, 1758)

Subspecies Gallus gallus spadiceus (Bonnaterre, 1792)

Subspecies Gallus gallus bankiva (Temminck, 1813)

Subspecies Gallus gallus marghi (Robinson and Kloss, 1920)

Subspecies Gallus gallus jabouillei (Delacour and Kinnear, 1928)

Subspecies Gallus gallus domesticus

Subspecies Gallus gallus gallina

Subspecies Gallus gallus micronesiae

Subspecies Gallus gallus philippenisis

Species Gallus varius (Shaw, 1798)

Species Gallus sonneratii (Temminck, 1813)

Species Gallus lafayetii (Lesson, 1831)

Modern chicken (Gallus gallus domesticus) is shown along with the possible genetic

donors and the wild sub species of the red jungle fowl (Al-Nasser et al., 2007).

such intensive selection has led to loss of genetic diversity
and has led to aberrant physiological responses not readily
apparent from casual observation (Lawal and Hanotte, 2021).
Such traits, which could begin with embryos and extend to
adults, might not be broadly representative of chickens or
even birds, generally. The broiler chicken is one of the most
extreme examples of trait selection, with selective breeding
yielding an increase in body mass of ∼300% in the last
60 years (Cueva et al., 1974; Kamran et al., 2008; Anjola,
2016). The broiler not only has large body mass, but also
presents rapid growth, making it an excellent producer and
also potentially of interest to developmental biologists. However,
the breeding programs that led to the modern broiler also
created disadvantageous traits. For example, adult broilers
are typified by cardiac disorders that are both morphological
(ascites, myocardial rupture, cardiac dilation) and physiological
(arrythmias, hypertension) (Figure 2), the forerunners of which
may exist back to the embryos. Additionally, limb deformities
and lameness are prevalent among these birds. Some researchers
attribute this problem in broilers to industry standards in
breeding while also acknowledging a genetic factor for leg
weakness (Zubair and Leeson, 1996; Knowles et al., 2008).
Moreover, while broiler chickens are most often forwarded
as the example of pathophysiological states that can emerge
from intensive breeding, layer chickens as well are prone to
pathophysiologies such as avian osteoporosis associated with the
intense burden of providing large amounts of calcium associated
with egg shell formation (Webster, 2004; Whitehead, 2004). Such

FIGURE 2 | Obesity-associated cardiac disorders in adult broiler chickens. Broiler chickens 49 weeks or older fed ad libitum for 70 days developed significantly more

cardiac lesions than calorie restricted birds. (A) Diet-induced alterations in cardiac gross morphology in the form of ascites (fluid accumulation), pericardial effusion,

myocardial rupture, and cardiac dilation (B) Internal compensatory responses lead to myocardial dilation or hypertrophy as evident in hens experiencing sudden

death. Not shown is the many-fold increase in collagen content in the cardiac tissue in the ad libitum vs. restricted diet population evident in both surviving birds and

those experiencing sudden death. Ad libitum birds additionally showed a significantly higher incidence of arrhythmia as well as chronic elevation of systolic blood

pressure (from Chen et al., 2017).
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pathophysiologies emerge as fractures of the keel and leg bones
(Webster, 2004; Toscano et al., 2020; Wei et al., 2020).

Is There a “Wild Type” Domestic Chicken as a Basis

for Comparison?
The comparison of the chicken with other animal models
generates an interesting observation—there is no longer a wild
type breed in chickens. The closest to a wild type could be the
red jungle fowl, which is considered only one of the parental
species to the hybrid modern chicken. Other animal models such
as mice, rats, the nematode C. elegans, fruit flies, and zebrafish
have an identified wild type in addition to the different genetic
breeds with different characteristics that have been developed for
research purposes. In stark contrast, the vastly different chicken
breeds have existed for so long (at least in terms of biomedical
developmental research) that it is very difficult to trace their
origins. This lack of a clearly identified wild type, paired with
the aberrant biology mentioned above and the always present
possibility of unknown pleiotropic genetic effects, suggest that
biomedical researchers are using a “humanly fabricated” animal.

Comparing Chickens to Other Birds:
Verifying the Model
Animal models, as indicated above, have contributed enormously
to almost all aspects of biomedical research, and certainly avian
models—especially the chicken—have played an important role
in this advancement. However, as any animal model becomes
more popular, the tendency to question its ongoing validity
naturally wanes. Yet, questioning animal model validity should

be an on-going process. Consequently, here we ask the questions:
“Should we periodically be validating (re-validating) the chicken
model as being sufficiently representative of other avian and non-
avian species”? and, if so “What would such validation look like?”

Much has been written on the rationale and process of animal
model validation (e.g., Krebs, 1975; Strange, 2007; Heston and
White, 2017; Robinson et al., 2019) and it is not our intention
to revisit this topic in any detail. However, with the heavy
reliance on the chicken in developmental physiological research,
we do suggest that parallel experiments in other avian species
be performed from time to time to verify the translational
value of the acquired data. As an example of the relevance
of multiple model comparisons, consider the extensive use of
the chicken embryo as a model for the ontogeny of vertebrate
cardiovascular control (Vleck et al., 1979; Ricklefs, 1985; Gillespie
and Schupp, 1998; McNabb, 2006; Andrewartha et al., 2011;
Dzialowski et al., 2011; Shell et al., 2016; Scheiber et al., 2017;
Tobalske et al., 2017; Price and Dzialowski, 2018; Ruaux et al.,
2020). Basic aspects of the development of neural and endocrine
regulatory elements of birds are presumed to map onto the
mammalian and even the human condition, at least in general
terms. However, this unquestioning use of the chicken embryo,
juvenile and adults begs the question “Do findings from chicken
ontogeny even map onto the overall avian condition, let alone that
of other vertebrate classes”? To emphasize this point, Figure 3
compares the development of cardiovascular control in the
chicken and emu embryos, normalized to the length of the
incubation period. In this case of evolutionary heterochrony,
several key developmental landmarks in the ontogeny of their

FIGURE 3 | A comparison of the onset of elements of cardiovascular control in the developing embryo of the domestic chicken and the emu. Development has been

normalized to 100% of development, followed by a hatching period. Note that major developmental landmarks in the emu occur later (e.g., hypoxic bradycardia) or

earlier (e.g., onset of tonic vagal tone) than in the domestic chicken. This raises the question “Which species is ‘representative’?" (modified from Crossley et al., 2003;

Dzialowski and Greyner, 2008).
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cardiovascular regulation differ substantially between the chicken
and the emu. This leads us to ask “Is it the chicken or the emu that
is the ‘representative’ avian species when it comes to cardiovascular
development?” or even “Is there a representative avian species?”

In another sphere of cardiovascular-based biomedical
research, the vessels of the chicken embryo’s choriallanotic
membrane (CAM) have been used as a model vascular bed for
angiogenesis (Ricklefs, 1985; Schew et al., 1996; McNabb, 2007;
Wada, 2008; Bateson and Feenders, 2010; Margoliash, 2010;
Ottinger et al., 2013; Nowak-Sliwinska et al., 2014; Olson et al.,
2014; Bolhuis andMoorman, 2015; Aldhafiri et al., 2019; Bertram
et al., 2020). The CAM is a highly specialized vascular bed for gas
exchange generally viewed as homologous to the fetoplacental
vessels of mammals. Yet, a strict assessment of the evolution
of the placenta suggests that these vessels are analogous rather
than homologous to those of the placenta (Lovell et al., 2011;
Clayton and Emery, 2015; Fishbein et al., 2020), and perhaps not
even equivalent to any “regular” pulmonary or systemic vascular
bed of the chicken embryo or mammalian fetus. Moreover, we
know little about CAM differences between birds with different
taxonomies, habitats, size, and other traits. Validation of the
CAM of the chicken embryo by comparison with other avian
species is warranted, including a characterization of this vascular
bed’s pharmacological, physiological, and morphological traits
by comparing them to chicken systemic vessels and to those
vessels of mammals for which the CAM vessels are being used as
a model.

We propose that, ultimately, experiments specifically designed
to validate the chicken as a model will either strengthen its role
(likely) or perhaps less likely but equally importantly, lead to
additional, more appropriate models.

ALTERNATIVE AVIAN MODELS FOR
RESEARCH IN DEVELOPMENT

Before suggesting non-chicken avian models potentially useful
in biomedical research, it is important to first consider what
characteristics embody a useful animal model candidate. Bolker
(Koslová et al., 2020) has distilled this down to two factors:
“convenience” and “convention.” However, from these two broad
categories can be extracted several specific attributes, each of
which can be important in weighing the merits of an alternative
animal model, as we now consider.

What Makes an Effective Bird Model for
Developmental Research?
Accessibility
An animal model is typically readily available rather than difficult
to acquire. This allows widely distributed research communities
to participate in experimental verification and data replication.
For example, the fruit fly D. melanogaster and the nematode
worm C. elegans are maintained in biological laboratories
throughout the world, which has continued to add to their
popularity as an animal model. Notwithstanding the value of
more exotic animal models as prescribed by the August Krogh
principle, this characteristic of accessibility is a primary factor

that leads to the building of research communities around single
species. So, exotic birds have led to important findings, such as
showing that birds can sleep while flying by studying the brain
wave patterns during flying of the large, long-term flier the great
frigate bird (Fregata minor) in the Galapagos Islands. Yet, the
greater frigate bird is hardly likely to become a true animal model
due to the difficulty of access to these birds (Rattenborg, 2017).

Rearing
A key property of an animal model is its ease of rearing.
An animal may have useful characteristics for animal
experimentation but is unlikely to be exploited as a model in
developmental research unless it can be easily reared at minimal
cost and effort. Thus, small birds like zebra finches (Taeniopygia
guttata) are increasingly being used as models for understanding
the inheritance and development of communication (Mello and
Clayton, 2015; London, 2020), mainly because they are relatively
easy to maintain in captivity, are relatively fecund, and the eggs
can be hatched and reared.

Size
Just as small size was evoked above as an advantage for rearing,
large size can be an important attribute for some experiments,
especially in developmental studies where large eggs and their
large embryos can be a tremendous advantage. Thus, the ratites
(ostrich, rhea, emu, cassowary, and kiwi) lay relatively large eggs
that have been used widely in developmental studies specifically
because of their large embryos (Lewis et al., 2013; Caudill et al.,
2015; Kelly et al., 2018; Whitney and Cristol, 2018) [see section
Ratites (Emu, Ostrich, Rhea) below].

Fecundity
Related to the characteristics of accessibility and rearing is
fecundity—the reproductive output of the species. A bird species
can have numerous advantageous characteristics, but if it is
a seasonal layer with small clutches, then the availability to
carry out replications, etc., could be minimal. Doves and
hummingbirds, for example, only produce a clutch of one or two
eggs a few times in their breeding season, a characteristic thatmay
overshadow any interesting properties as a model that they might
have. It is this feature of high and steady fecundity that has driven
avian-based developmental research so strongly to domesticated
birds like the chicken.

Development and Growth Rates
Incubation lengths vary widely in bird species, ranging from
under 2 weeks in small songbirds up to nearly 11 weeks in
birds like the emperor penguin (Aptenodytes forsteri) (Figure 4).
Relatively short incubation times and rapid growth rates to sexual
maturity can be advantageous in avianmodels. Generally, shorter
incubation times coupled with rapid maturation are favored
because of the reduction in animal husbandry and especially
the saving of time in performing experimental protocols. Species
that rapidly reach sexual maturity, such as the king quail
(Coturnix chinensis) which matures in as little as 4 weeks
after hatching, are favored for transgenerational studies (e.g.,
epigenetic inheritance). On the other hand, large birds lay large
eggs, but they tend to take longer to hatch (Figure 4). The
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FIGURE 4 | Relationship between body mass and egg incubation length in altricial and precocial birds. Body masses are the average for the species. Second order

linear regressions are shown separately for precocial birds (black lines) and altricial birds (red lines).

appropriate avian model for developmental work thus emerges
from the balance between incubation length and embryo size.

Genetic Manipulation
Increasingly, on metric of the value of an animal model will
be the extent to which specific tools are available for affecting
specific manipulations of its genome. Particularly exciting
is the actual editing of the avian genome using lentiviral,
adenoviral, electroporation, and CRISPR/Cas9 gene editing,
which will further enhance the growing list of genetically
modified birds (McGrew et al., 2004; Kobayashi et al., 2015;
Véron et al., 2015; Sid and Schusser, 2018; Chojnacka-Puchta
and Sawicka, 2020; Lee et al., 2020; Park J. S. et al., 2020;
Park J. W. et al., 2020; Khwatenge and Nahashon, 2021). These
technologies are allowing phenotype modification meeting both
enhanced production goals in domesticated birds and creating
modified birds for basic exploration of biological systems during
development and in adulthood (Chojnacka-Puchta and Sawicka,
2020). Doubtlessly, the chicken genome has to date been the
major focus of these technologies, but primordial germ cell
cultures are available for the duck, goose, turkey quail, and
pheasant, and experimentally altered phenotypes in these species
are emerging from the use of gene editing (Bo et al., 2016; Chen
et al., 2019; Lee et al., 2019; Park J. W. et al., 2020).

The great increasing availability of numerous molecular tools
that can be exploited in avian research (Burgess, 2004; Burt,
2004a,b; Lawal and Hanotte, 2021).

Alternative Species
Having indicated some useful general attributes of ideal non-
chicken models, we now suggest some species that practically

could be used in developmental research alongside of, or even
in lieu of, the chicken animal model.

Quail
The term “quail” groups birds from two families: Phasianidea
(old world quail) and Odontophoridae (new world quail). Both
families present several characteristics listed in section What
Makes an Effective Bird Model for Developmental Research?
that makes them suitable for biomedical research. The rapid
generational time is a major factor when considering quail
for laboratory use, and accounts in part for the increase in
the use of quail in biomedical research. The advantage of a
small birds with precocial chicks that easily adapt to artificial
environments should encourage researchers to consider this
species. The widespread availability and constant egg production
place the quail in a very close competition to the chicken.
Another advantage is that under anesthesia and during surgery,
the cardiovascular system of the quail is less fragile than the
chicken’s, and can be stressed in ways that can reveal new
insights beyond what chicken could allow (Flores Santin, 2016).
The bobwhite quail (Colinus virginianus) has been used to
describe hematological differences throughout development and
between sexes, and show an almost negligible hematological
response to hypoxic incubation (Flores-Santin et al., 2018). The
bobwhite quail has also been used to evaluate cardiovascular
changes associated with fetal programming through hypoxic
incubation. The evaluation through histology and pressure
volume loops indicates impaired arterial relaxation in arterial
ring preparations (femoral and carotid) in response to sodium
nitroprusside (SNP) and acetylcholine(Ach) (Flores Santin,
2016). The bobwhite quail has also featured prominently
in toxicological studies—e.g., effects of endocrine-disrupting
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compounds and popular medications (Touart, 2004; Bussière-
Côté et al., 2016).

Rapid development to sexual maturity combined with
high egg production has facilitated transgenerational studies
examining the persistence of epigenetic changes in the Japanese
quail (Coturnix japonica). Exposure of the parental generation
in ovo to genistein (a naturally occurring isoflavin) resulted
in reproductive changes that were still observable in the
third generation (Leroux et al., 2017). The quail has also
been successfully used to apply CRISPR-CAS9 to modify
feather coloration without assimilation of adenovirus vector
or mutations (Lee et al., 2019). In considering the quail for
biomedical developmental research, it is important to also point
out important disadvantages that could be found. For instance,
the quail egg is considerably smaller than that of the chicken
and therefore harder to apply instrumentation to (e.g., leads
for electrocardiogram) and to experimentally manipulate. Also,
some eggs like Japanese quail are mottled and brown, making
it nearly impossible to candle the eggs to determine embryo
viability or the location of chorioallantoic blood vessels. Some
species of quail (e.g., king quail) are prone to high levels
of stress from manipulation and instrumentation, potentially
altering hormonal or hematological measurements influencing
both adults and their offspring.

Ratites (Emu, Ostrich, Rhea)
The extant ratites (ostrich, emu, cassowary, rhea, kiwi) have
proven to be useful animal models for developmental research
primarily because of the large size of their embryos, thus
embodying the concept of “gigantism” that enables experimental
procedures not possible with smaller animals (Burggren,
1999, 2020). For example, a newly hatched emu (Dromaius
novaehollandiae) or ostrich (Struthio camelus) is nearly the size
of a juvenile or adult chicken, respectively. This single property—
extraordinary size—has allowed “keyhole surgery” through an
opening in the egg for investigating embryonic physiology and
the transitions associated with the onset of pulmonary respiration
(Steyaert et al., 2016). Thus, experiments have been conducted
on late incubation emu eggs, whereby major embryonic vessels
are chronically cannulated for blood pressure measurement
and microsphere injection to determine intra- and extracardiac
shunts (Steyaert et al., 2016). The size of the emu egg overall
also allows the air cell to be cannulated and through-flow
ventilated with experimental gases, thus controlling the internal
egg environment when the embryo internally pips and takes
its first breath. The large size of ratite embryos also makes for
more tractable in vitro perfusion of the central vasculature in,
for example, studies of their physiological and pharmacological
properties as embryos. This especially the case for relatively small
structures that nonetheless are of great physiological significance,
such as the ductus arteriosus (Lewis et al., 2013; Steyaert et al.,
2016; Jimeno et al., 2019).

To balance enthusiasm for ratites, on several fronts they are
not necessarily “convenient,” to echo Bolker’s words (Bolker,
2012). For example, obtaining adults and their eggs is currently
not particularly easy (at least in North America), compared to
the 1990s when emu production was emerging as a potentially

profitable agricultural enterprise (Jacobs et al., 2014) (turning
out to be erroneous given poor marketplace acceptance). Even
if ratites can be acquired, their care and maintenance is not
trivial. Moreover, the developmental researcher has to judge
whether the potential advantages of working with large ratite
embryos outweigh the risk that even the most robustly conducted
experiments will be marginalized by other researchers unfamiliar
with ratites as animal models.

Birds on the Precocial-Altricial Gradient
All birds fall at some point on a gradient comprising
the characteristics Precocial, Semi-precocial, Semi-altricial and
Altricial (Rutz et al., 2018). Precocial birds, which include
chickens, are those birds that upon hatching are immediately
mobile and have their eyes open, capable of foraging for food,
and can thermoregulate within a few days of hatching. In
contrast, altricial birds are born immobile with eyes closed,
and require extensive parental care for days or weeks until
sufficiently mature to survive on their own. Birds showing
various degrees of precocial biology have been used in many
studies including the ontogeny and evolution of endothermy
(van der Vaart et al., 2012; Rutz et al., 2018; Cabrera-Álvarez
and Clayton, 2020), adaptive plasticity (Grodzinski and Clayton,
2010), flight (Clayton et al., 2007; Clayton, 2015), and muscle
growth (Salomons et al., 2009). Perhaps the precocial-altricial
gradient is most relevant to biomedical research with respect
to endocrine regulation (Kelleher et al., 1962; Dinsmoor, 1985;
Grodzinski and Clayton, 2010; Grasman et al., 2011; Boonekamp
et al., 2014). Figure 5 shows assessment and manipulation of
the hormone triiodothyronine (T3) in the Pekin duck (Anas
platyrhynchos domestica). Experiments that manipulate hormone
concentrations (especially T3) in various species along the
precocial-altricial gradient allow greater understanding of the
role of the endocrine system in the development of endothermy,
oxidative stress, reproductive organization, etc. (Skinner, 1948;
Holmes and Ottinger, 2003; Grasman et al., 2011; Boonekamp
et al., 2014; Burwitz et al., 2020).

Certainly, continued research with the highly precocial
chicken will contribute to endocrinology and other studies but
is only put in context when additional studies are carried
out in other species at different points along the precocial-
altricial spectrum.

Songbirds
Passerine birds (songbirds) comprise ∼4,000 species, which is
nearly half of all bird species. Estimates are that up to 300,000
such individual birds are used annually in biomedical and other
forms of research (Bateson and Feenders, 2010). A key focus
of research using songbirds involves various aspects of learning
during development that capitalizes on the development of their
complex and readily quantified vocalizations. A key model in
this regard in the zebra finch, which has been used to further
understand the neurobiology of learning (Figure 6) (Heston and
White, 2017; Gobes et al., 2019; London, 2020). The zebra finch
has also been used to determine how substances commonly
abused by humans alter learned song (Lovell et al., 2011; Olson
et al., 2014; Aldhafiri et al., 2019), and cognition (Clayton and
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Emery, 2015; Fishbein et al., 2020). Such experiments have not
only focused on their whole animal behavior, but also moved into
assessment of the genomics, transcriptomics, and proteomics of
learning (Lovell et al., 2011; Clayton, 2013; Mello and Clayton,
2015; London, 2020). Additionally, zebra finches and other

FIGURE 5 | Manipulation of plasma thyroid hormone (T3) levels in the Pekin

duck (Anas platyrhynchos domestica). T3 levels were changed by either

injection of T3 or by suppression of its synthesis by injection of the

thyroid-peroxidase inhibitor MMI. Total plasma [T3] rises from almost

undetectable at embryonic day 25 (d25) to ∼2 ng.µl−1 at external pipping (EP)

and 1 day posthatch (1 dph). Injection of T3, however, elevates total plasma

[T3] at D25 and EP. MMI strongly suppresses [T3] at all examined stages (from

Holmes and Ottinger, 2003). *Statistically significant difference.

passerines have been featured in ecotoxicological studies (Lewis
et al., 2013; Caudill et al., 2015; Whitney and Cristol, 2018). One
of the newer fronts that has opened up in songbird animal models
is that of the transgenerational epigenetic inheritance of learned
behaviors, especially vocalizations, and the underlying molecular
mechanisms (Steyaert et al., 2016; Kelly et al., 2018; Jimeno
et al., 2019). The advantage of zebra finches and other similar
passerines used as animal models in such epigenetic studies
is not so much that they reach sexually maturity rapidly (not
compared to the king quail, for example—see above), but rather
because the animal husbandry of small passerines across multiple
generations is less complex, costly, and space-consuming than for
other avian models.

Birds of Prey
The birds of prey comprise three orders: Accipitriformes,
Falconiformes, and Strigiformes. Although all are predatory
birds, the presumably differ markedly in their evolution and
likely in aspects of their physiology, including developmental
physiology. Yet, because of their position in common at the
top of many food chains, birds of prey have been studied in
many contexts, perhaps most employed as models for processes
of bioaccumulation of toxicants. As an example, short chain
chlorinated paraffins (SCCP’s), chemicals used in the metal
and plastic industry, have made their way into raptors by
means of ingestion. The effects of these chemicals has been
evaluated in American kestrel hatchlings, where they result in
impaired thyroid function and endocrine disruption (Figure 7)
(Fernie et al., 2020). As another example, the tolerance to
cryopreservation of sperm from golden eagle and peregrine

FIGURE 6 | Sonograms reflecting song learning and the influence of critical windows (sensitive periods) in the zebra finch, Taeniopygia guttata. By exposing

developing birds (the tutee, or “student”) to adult song tutors during different periods of the tutee development, the critical window for song acquisition can be

identified. In (A), there was an 86% resemblance to Tutor #1, but only a 57% resemblance to Tutor #2. In (B), using a different pair of tutors and different tutee, there

was a 64% resemblance to Tutor #1, but an 84% resemblance to Tutor #2. Collectively these and other data from such studies suggest that auditory memory forms

primarily from 25 to 35 days, but that the critical window duration varies upon the interplay of songs from different tutors, particularly in the latter part of the critical

window. For most immature zebrafish, the critical window “closes” after 65 days post-hatch (DPH) (modified from Gobes et al., 2019).
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FIGURE 7 | Thyroid gland concentrations of T4 from hatchling American

kestrels exposed to a range of concentrations of short chain chlorinated

paraffins. These compounds, an example of which is shown at the top of the

graph, act as endocrine disruptors affecting thyroid function. The widely used

short chain chlorinated paraffins and their high environmental prevalence

constitute a threat for fauna and humans alike that could be monitored through

raptors (modified from Fernie et al., 2020). *Statistically significant different

group 1. **Statistically significant different group 2.

falcon reveals different tolerances for each species providing an
insight on sperm biology and how its physiology is not general
even among the same group (Aves) (Blanco et al., 2000). The eyes
of raptors have been analyzed, revealing visual mechanisms that
have been applied to the field of optics (Snyder and Miller, 1978).
As for other non-chicken bird models, research in birds of prey is
being facilitated by advances in understanding of their genomics
and transcriptomics (Bartholomew and Tucker, 1963; Zhan et al.,
2013; Pan et al., 2017; Kang et al., 2018; Cho et al., 2019; Doyle
et al., 2019; Adawaren et al., 2020). Interestingly, modern day
falconry (training and hunting with raptors) offers an excellent
opportunity for research on topics that require conditioning
or problem-solving skills in non-mammalians, including the
development of such skills. On the other hand, birds of prey
are always non-domesticated birds that might not respond well
to experimental handling and manipulation. Additionally, many
raptor species are threatened or endangered, making their use in
physiology somewhat problematic.

Corvids
The covidae—crows, ravens, jays, and magpies—comprise a
family of birds that have been studied for their intelligence,
memory, and problem solving.While not particularly convenient
to house and maintain, their behavior has nonetheless been
studied not only because they are an inherently interesting avian
family, but also because they can serve as animal models for
understanding human cognition and its evolution (Jacobs et al.,

2014; Mello and Clayton, 2015). One of the key behavioral
aspects upon which research has focused has been the use of
tools by corvids (Rutz et al., 2016, 2018). Indeed, the convergent
evolution of tool use in birds and mammals has led investigators
to explore neural networks in common with both groups of
animals (Cabrera-Álvarez and Clayton, 2020). Another unusual
behavior of corvids is their use of object caching (Grodzinski and
Clayton, 2010; van der Vaart et al., 2012; Jacobs et al., 2014). Study
of the developmental and evolutionary aspects of this behavior
have contributed to our understanding of human social cognition
(Clayton et al., 2007) and cognitive development in children
(Clayton, 2015). As a final example of the use of corvids as
animal models, behavioral and cellular correlates of aging have
been examined in the context of telomere length (Salomons et al.,
2009; Grasman et al., 2011; Boonekamp et al., 2014). All of these
categories of study are further enabled by the advances in the
genomics and transcriptomics of corvids (Poelstra et al., 2015;
Morinha et al., 2017; Dussex et al., 2021).

Other Avian Models
It’s beyond the scope of this perspective (or perhaps any article)
to review all bird species used in biomedical research, but there
are some “honorable mentions.” Pigeons (Columba livia), of
course, have a venerable place in behavioral research, dating
back to the mid-twentieth century (Skinner, 1948; Kelleher et al.,
1962; Dinsmoor, 1985). Budgerigars (Melopsittacus undulatus),
canaries (Serinus canaria domestica), European starlings and
house sparrows have shown promise in studies of development,
aging, and energetics (Holmes and Ottinger, 2003; Austad, 2011).
The duck (Anas platyrhynchos) has frequently been used in been
featured in biomedical research, especially in studies of infectious
agents including influenza (Meade et al., 2017; Burwitz et al.,
2020) and in toxicology. Indeed, numerous waterfowl species
beyond the duck have been investigated in the context of their
toxicological responses (Mateo et al., 2003; Finch et al., 2012;
Valverde-Garcia et al., 2018). Penguins (Family: Spheniscidae)
have shown a number of different physiological mechanisms
during diving when compared to mammals (Degernes, 2008;
Mattern et al., 2018).

Choosing Bird Models According to Their

Environment
An alternative, useful approach to choosing an appropriate avian
model for investigating a particular research question by its
species involves selections based on a particular environment.
Thus, investigations of thermoregulation, either could employ
desert birds or those inhabiting polar regions (Blix, 2016;
McKechnie et al., 2021). These avian models could allow a better
understanding of both temperature stress in domestic species,
as well as basic questions like the development and evolution of
endothermy (Dzialowski et al., 2007; Price and Dzialowski, 2018;
Perini et al., 2020; Goel, 2021; Kpomasse et al., 2021). Similarly,
understanding of chronic oxygen deprivation associated with
high altitude and its effect on development and other processes
can be facilitated by physiological and genetic investigations
either species or breeds that normally inhabit high altitude, or by
laboratory exposures to hypoxia (Dzialowski et al., 2002; Chan
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and Burggren, 2005; Zhang and Burggren, 2012; Burggren and
Elmonoufy, 2017; Zhang et al., 2019, 2020; Tang et al., 2021).
Water relations during development can also be exposed by
comparing desert birds with congeners inhabiting less extreme
environments. Thus, the Gray gull (Larus modestus) inhabiting
the Atacama Desert, one of the driest places in the world,
has an eggshell gas permeability only about 1/3 that of other
species of Larus. This lower permeability reduces water vapor
loss, but also inhibits inward oxygen diffusion, resulting in lower
oxygen consumption and much longer incubation time in the
Gray gull compared to other gulls. These experiments reveal the
relationship between gas diffusion, egg shell conductance, and
development in a model chosen for its location, rather than its
taxonomy (Monge et al., 2000).

DISCUSSION: CONCLUSIONS AND
FUTURE DIRECTIONS

As indicated at the outset of this article, our intent has
not been to discredit the chicken as an animal model, but
rather to urge exploration of additional models that can
enhance our understanding of developmental physiology and
other disciplines. To this end, we offer several suggestions for
future research.

Verifying the Chicken Model
We advise that, when carrying out developmental research using
the chicken as an animal model, data be collected from additional
avian species where practical to validate the core translational
value of the chicken data (Figure 8). In situations where specific
protocols and techniques have been developed around G. gallus

domesticus, it may be possible to turn into an asset the complex
genetics of the chicken that has resulted in several highly
selected breeds. Thus, identifying the genetic underpinnings of
some of the divergent (and in some cases aberrant) biological
characteristics of various breeds may yield greater overall insight
than studying one chicken breed, alone.

Expanding Beyond the Chicken as a
Biomedical Models
While the chicken remains an undisputed powerful, useful,
and practical model in developmental biomedical research,
there are many additional, and possibly alternative, bird
models that could further elucidate key biological mechanisms
and responses. When exploring alternative avian models,
proposed studies should of course carefully evaluate the
suitability of the proposed model. An excellent guideline
to this process, derived from the field of toxicology, has
been offered by Jaspers (2015). Important is to recognize
the possible shortcomings of the chicken, even as being
aware of its advantages. Once the strengths and weaknesses
of the chicken as a model are appreciated, then research in
developmental physiology and other areas will be strengthened
through a creation of a “search image” for additional
avian models.

Identifying Novel Avian Models
Doubtlessly, there are additional bird species with novel
characteristics that will help advance not just avian research,
but in vertebrates including man, generally. It is for those of
us in developmental and forms of research to identify them—
the rewards are potentially great. After all, who had heard

FIGURE 8 | Traditional and proposed use of developmental data acquired using the chicken model. (A) In many studies, data acquired from chickens are used to

inform both basic biological research as well as biomedical research. These data are assumed to be representative of all birds and are often accepted without

question. (B) An alternative approach that incorporates data from both chickens and additional avian species will enable comparative analyses to determine the

appropriateness of the animal model employed. Such analyses can either verify the chicken as an animal model or identify limitations of data derived from the chicken

that could be overcome by expanding research to include alternative avian models.
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of the zebrafish before the work of George Streisinger or the
Tubingen/Boston mutant screens, or of C. elegans before Sidney
Brenner’s seminal 1974 paper (Brenner, 1974; Hörstgen-Schwark,
1993). The opportunity to expand the base of avian biomedical
research has never been greater.
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