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Abstract

Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying
processes at the synapses are not fully understood, there is strong evidence that a process of random, independent
formation and pruning of excitatory synapses can be ruled out. Instead, there must be some cooperation between the
synaptic contacts connecting a single pre- and postsynaptic neuron pair. So far, the mechanism of cooperation is not
known. Here we demonstrate that local correlation detection at the postsynaptic dendritic spine suffices to explain the
synaptic cooperation effect, without assuming any hypothetical direct interaction pathway between the synaptic contacts.
Candidate biomolecular mechanisms for dendritic correlation detection have been identified previously, as well as for
structural plasticity based thereon. By analyzing and fitting of a simple model, we show that spike-timing correlation
dependent structural plasticity, without additional mechanisms of cross-synapse interaction, can reproduce the
experimentally observed distributions of numbers of synaptic contacts between pairs of neurons in the neocortex.
Furthermore, the model yields a first explanation for the existence of both transient and persistent dendritic spines and
allows to make predictions for future experiments.
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Introduction

The structure of neocortical networks of neurons changes in

time: new synapses are formed, maturate, and eventually are

pruned again, in the adult as well as in the developing animal

[1,2], for recent reviews see [3,4,5]. The majority (about 90%) of

excitatory synaptic contacts terminate on dendritic spines [6], and

dendritic spines almost always (96%) form a synapse [7]. The

synapses on dendritic spines are highly dynamic [8,9], for example

[10] found an average spine turnover of 5:7%=day in primary

visual cortex and of 15:4%=day in somatosensory cortex. Yet in

the adult animal, the statistics of the numbers of synapses are

preserved over time, indicating that synapse creation and pruning

balance each other [11,12,13]. According to theoretical studies on

associative networks, structural plasticity enhances the memory

capacity of a network substantially [14,15], and has been shown to

be related to motor learning in the brain [16].

The three studies [17,18,19] reported the distributions of

numbers of synaptic contacts for different intra-cortical synapses in

rat somatosensory cortex. Fares et al. [20] subsequently analyzed

whether the reported distributions could result from random and

independent synaptic contact formation, given a set of potential

sites (close appositions) between axons and dendrites of recon-

structed cells. As they showed, independent formation of synaptic

contacts alone cannot explain the distributions. In addition a

cooperative pruning mechanism, by which synaptic contacts that

constitute a single synapse stabilize each other, is required to

explain the observed distributions.

Here we build on grounds of this work and go beyond it in two

aspects: Primarily, we consider synaptic processes that operate

continuously in time. Secondly, we investigate an explicit

candidate mechanism for the cooperation between synaptic

contacts: Local correlation detection at the dendritic spines and

thus dependent pruning and maturation of spines.

Recently Kasai et al. [21] summarized known properties of the

plasticity of dendritic spines. Their model [22] describes the

dynamics of the volume of dendritic spines. Here we restrict this

model to three distinct categories of synapse states and introduce

an explicit spike-timing dependence. Other models of structural

plasticity [23,24,25] are based on the firing rate of the neurons.

Consequently, in these models spike-timing and correlations of the

spiking activity do not play a role, so they cannot show the

mechanism of synaptic cooperation that we hypothesize here. The

relative timing of pre- and postsynaptic activity indeed influences

structural plasticity at the dendritic spine [26]. In contrast to

previous models, the model of Helias et al. [27] is sensitive to the

spike-timing of the pre- and the postsynaptic cell and describes

structural plasticity in biophysical terms of protein kinetics in

response to synaptic input. Here we choose an intermediate scale

by still describing single synaptic contacts, but with a higher level
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of abstraction than previous work [22,27]. The goal of the present

work is to demonstrate the potential of local correlation detection

at the spine, while making minimal assumptions about the

involved biophysical processes. The assumptions entering our

model, as introduced in detail in Methods, required to qualita-

tively explain the experimental results, are: a) presynaptic release

of glutamate causes postsynaptic depolarization at excitatory

synapses, b) depolarization electrically spreads within the dendrite,

c) there is a correlation sensing mechanism sensitive to the relative

time of presynaptic and postsynaptic firing (e.g. NMDA receptors)

that causes downstream effects on the evoked synaptic amplitude

in a spike timing dependent plasticity (STDP, [28]) like manner, d)

synapses with small amplitude are more likely to be pruned than

strong ones. Because of its analytical tractability, we can compute

the steady state of our model and match its parameters to

experimental reference data, analogous to Fares et al. [20]. Our

results show that no direct signaling between synaptic contacts is

necessary to explain cooperative synapse formation. In contrast, it

suffices that distinct synaptic contacts cooperate in exciting the

postsynaptic neuron, and thereby indirectly affect spike-timing

dependent structural plasticity at other synaptic contacts.

Methods

In this section we introduce a model of structural plasticity and

describe the optimization procedure to fit the model to the

experimental reference data.

Correlation trace at the synaptic contact
Let us first introduce a simple model for the correlation

detection at the postsynaptic dendritic spine. An action potential of

the postsynaptic neuron causes a depolarization at the site of each

dendritic spine. The spine has the biophysical substrate to

maintain a signal that depends on the time of the action potential

in relation to the time when a presynaptic impulse arrived [27].

Here, we call this signal the correlation trace q(t) and assume a

phenomenological model: if the presynaptic neuron spiked shortly

before the postsynaptic one, the correlation trace is increased by 1.

We call this a causal event. For the opposite relative timing, called

an anti-causal event, the trace is decreased by 1. The trace

therefore counts causal and anti-causal combinations of pre- and

postsynaptic spikes. Further we assume that the correlation trace is

forgetful: it has a leak with the time constant tw0, and we also

assume that there is some additive noise in the process. The

dynamics of the correlation trace at the synapse is given by the

stochastic differential equation [29]

d

dt
q(t)~{

1

t
q(t)zg(t)s(t)zg(t), ð1Þ

where s(t)~
P

k d(t{tk) is the spike train of the postsynaptic

neuron, with the spike times ftkg, the factor g(t)[f{1,1g specifies

if the particular spike is counted as a causal or anti-causal event,

and g(t) is an additional white noise with mean zero SgT~0 and

infinitesimal variance j2. Mathematically, the trace q(t) is identical

to a shot noise [30] with the exponential kernel h(t)~h(t)e{t=t

driven by the stochastic input process g(t)s(t)zg(t).

Let us now introduce a minimal model of correlated spiking of

the neurons. For each postsynaptic spike, we speak of a causal

event at a given synaptic contact if the closest spike of the

presynaptic neuron occurred prior to the postsynaptic one

(because it could have caused the postsynaptic spike). If the closest

presynaptic spike occurred after the postsynaptic one, the event is

called anti-causal. Suppose that the probability for a causal event is

given by p. If both of the neurons fire independently, then p~0:5.

We define g(t)~1 with probability p and g(t)~{1 with

probability 1{p for each postsynaptic spike in s(t).

Strictly speaking, the process defined by (1) is unphysical, since

through g(t) it depends on events in the near future (because the

time of the next presynaptic spike has to be known). We hence

consider (1) as an effective, adiabatic description of the correlation

trace, since we are only interested in the statistics of the trace on

long timescales. A process like (1) could result from several

biophysical implementations that do in fact respect causality. For

example the synaptic weights in phenomenological models of spike

timing dependent plasticity, for which causal implementation are

known [31] follow dynamics similar to (1). An example of a cellular

mechanism to implement (1) is the number of activated CaMKII

macro-molecules [27] or long-term potentiation [32,33,34].

Now let us further assume that postsynaptic spikes s(t) occur

according to a Poisson point process with rate n. The firing rate n
comes about through integration of thousands of synaptic inputs,

and the particular synaptic connection modeled here only provides

a small contribution to n. Since structural plasticity is known to be

a slow process compared to the activity of neurons, and since the

time constant of possible candidate mechanisms for the correlation

trace can be considerable [35], a large integration time constant t
is reasonable, such that nt&1. Then the equilibrium probability

distribution of q is a normal distribution with mean m and variance

s2,

m~tn p{(1{p)ð Þ~tn 2p{1ð Þ ð2Þ

s2~
1

2
t n pz(1{p)ð Þzj2
� �

~
1

2
t nzj2
� �

: ð3Þ

Eqs. (2, 3) can be obtained by considering two independent

stochastic processes qs(t) and qg(t) with _qqs~{t{1qszs and

_qqg~{t{1qgzg. Then q~qszqg and mean and variance of q

follow from summing the respective statistics of qs and qg, which

can be obtained using standard techniques [30]. Note that s2 is

independent of p.

Author Summary

Structural plasticity has been observed even in the adult
mammalian neocortex – in seemingly static neuronal
circuits structural remodeling is continuously at work. Still,
it has been shown that the connection patterns between
pairs of neurons are not random. In contrast, there is
evidence that the synaptic contacts between a pair of
neurons cooperate: several experimental studies report
either zero or about 3–6 synapses between neuron pairs.
The mechanism by which the synapses cooperate,
however, has not yet been identified. Here we propose a
model for structural plasticity that relies on local processes
at the dendritic spine. We combine and extend the
previous models and determine the equilibrium probabil-
ity distribution of synaptic contact numbers of the model.
By optimizing the parameters numerically for each of three
reference datasets, we obtain equilibrium contact number
distributions that fit the references very well. We conclude
that the local dendritic mechanisms that we assume suffice
to explain the cooperative synapse formation in the
neocortex.

Spike-Timing Dependent Structural Plasticity
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The probability of causal spike pairings p depends on the number

of active synapses x connecting the presynaptic neuron to the

postsynaptic one, because each excitatory synapse increases the

chance of the presynaptic neuron to make the postsynaptic neuron

fire. As demonstrated for integrate-and-fire neurons in [36], the

probability of a spiking response to a presynaptic spike is proportional

to the synaptic weight of the input spike for a wide range of

magnitudes of the synaptic strength. If the membrane potential of the

postsynaptic neuron integrates the inputs linearly, the synaptic weight

of the input from the presynaptic neuron is proportional to the

number of active synaptic contacts between the neurons. So the

probability of a spike response, and so of a causal event, rises

proportionally to the number of active synaptic contacts. Effectively

we thus assume p(x)~p0zxD, where x is the number of active

synaptic contacts between the presynaptic to the postsynaptic neuron,

D is the response probability per synapse, and p0~0:5. The two

components of the probability p(x) can be interpreted as the

probability p0 for a causal event by chance due to the Poisson firing of

the postsynaptic neuron with rate n and the probability xD exceeding

chance level triggered by the arrival of the presynaptic spike.

In order to obtain an estimate of D consider a single synaptic

contact between two neurons that, upon activation, causes an

excitatory postsynaptic potential (EPSP) with amplitude w. For a

leaky integrate-and-fire model neuron in the asynchronous state

[37] resembling cortical activity, we can read off the response

probability Pr of a neuron to such a voltage jump from Fig. 4D in

[36]. So we have D~Pr(w)&wm with m~0:05(mV){1. The

respective values of the EPSP size w per contact have been

reported along with the reference datasets in [17,18,19], and we

list them among the model parameters in Tab. 1. We thus arrive at

the estimate for the probability of a correlated pairing

p(x)~p0zmwx, ð4Þ

and thus with (2) the mean of the stationary distribution of q(t) is

m(x)~tn 2p0{1z2mwxð Þ: ð5Þ

Note that the linear model (4) for the probability of causal spike

pairings may for large x and w yield values of p(x)w1, which are

nonsensical. A consistent definition of p(x) should saturate when

reaching the value 1. Taking into account this saturation at large

x, however, would not make a difference for the models

considered here, because all solutions for synapse distributions

found below exhibit vanishing probably throughout at such large

values of x.

So far, we hypothesized a generic correlation detection

mechanism at each synaptic contact and computed its equilibrium

statistics (5) and (3) for multiple excitatory contacts between two

neurons. In our model the values of the correlation trace of each

synaptic contact follow a normal distribution, specified by the its

mean m(x) and variance s2, which depend on the parameters

t,n,j. Note that only the mean m(x) depends on the number x of

active contacts, whereas s2 is a constant. To reduce the amount of

free parameters of the model, we further set n~5Hz which is a

reasonable choice for neocortical neurons.

Structural plasticity based on the synaptic correlation
trace

The synaptic correlation trace can guide structural plasticity.

Because of a lack of detailed knowledge about the biomolecular

mechanisms involved [38] we again employ a simple effective

model. As structural plasticity is a slow process compared to the

spiking activity of neurons, we assume that the distribution of the

correlation trace at each synaptic contact is effectively in stochastic

equilibrium throughout. This is also known as an adiabatic

approximation. Let us now assume that a structural change of the

synaptic contact is initiated when the correlation trace crosses a

boundary value h. A biochemical mechanism underlying this

assumption could be the activation of a signaling pathway when a

specific number of activated CaMKII molecules is reached [39].

Given the random trajectory of the correlation trace q, we need to

know how long it takes until q crosses the boundary upon which

the synaptic contact makes the transition. This is known as a first

passage time problem with an absorbing boundary. The inverse of

the mean first passage time is called the escape rate. For simplicity,

let us approximate q as a Brownian motion with the same

infinitesimal mean and variance as the actual process (1). Then,

according to the Arrhenius approximation [40], the escape rate is

!e{(h{m(x))2=s2 ð6Þ

in the case that the values of q are far from the boundary h, such

that Dh{mD&s. Here the proportionality constant is called the

Arrhenius constant. Now what happens to the rate of structural

changes when m approaches h? If we take the model of a boundary

crossing process seriously, then the escape rate should diverge as

m?h. However, in a biological system it is more plausible that the

rate of structural changes converges to a certain maximum rate

which the cellular machinery can achieve. Based on this argument

we construct our model for the rate of structural changes by

extrapolating from the Arrhenius approximation (6), forcing it to

eventually converge to a plateau,

k(a,h,m,s)~
aj je{(h{m(x))2=s2

if a h{m xð Þð Þw0

aj j else

(
, ð7Þ

with a[R. Depending on the sign of a, k(x) either approaches or

departs from the plateau for increasing m(x).

As our assumptions about the biophysical implementation are

quite general, they can model maturation, shrinkage and pruning

of a synaptic contact alike. However, these are distinct processes

that take place during different stages in the life cycle of a synaptic

contact. For example, we cannot assume that the correlation

detector noise j has the same magnitude for small and large

dendritic spines since the number of channels mediating the signal

might be different for the two. Therefore we use the model (7) for

maturation, shrinkage and pruning, but choose a different set of

transition parameters fa,hg and correlation trace noise j for each

case. We decorate quantities associated to maturation with m,

those associated to shrinkage with s and pruning with p. So the

rate of maturation transitions is defined as

lm(x)~k(am,hm,m(x),sm), ð8Þ

the rate of shrinkage transitions as

ls(x)~k(as,hs,m(x),ss), ð9Þ

and the rate of pruning as

lp(x)~k(as,hs,m(x),sm): ð10Þ

The correlation trace parameters ft,n,D,p0g are assumed to be

identical for both thin spines (inactive synaptic contacts) and large

Spike-Timing Dependent Structural Plasticity
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spines (active synaptic contacts), which will be defined below. The

pruning rate uses the same parameters as shrinkage, except for the

noise magnitude j of maturation, because pruning is assumed to

take place in thin spines.

Apart from the activity dependent transitions, the model also

includes intrinsic fluctuations as in [22], see Fig. 1B. We assume

that random maturation (enlargement), shrinkage and pruning of a

spine occurs constantly with the rate li, and the creation of new

thin spines with rate lc.

Let us summarize the structural plasticity model we have

introduced. At each of the synaptic contacts between a pair of

neurons, a correlation trace is formed by counting causal and

anti-causal pre-post spike pairings. The distribution of the values

of the correlation trace depends on the number of active synaptic

contacts since they all contribute to firing the postsynaptic

neuron. We have further assumed that the activity-dependent

structural changes of synaptic contacts depend on the correlation

traces. Finally we also included intrinsic fluctuations of the

synapse configuration.

Steady state of the synapse
Above we defined a model for structural plasticity for the

synapse between a pre- and a postsynaptic neuron. Although in

this model the individual synaptic contacts may continuously

change, the state of the synapse develops towards a stable steady

state. A synapse typically consists of many individual synaptic

contacts, as depicted in Fig. 1A. The neocortex is densely packed

with only very limited unoccupied extracellular space. According-

ly, pairs of neurons cannot form arbitrary numbers of synaptic

contacts [41]. Fares et al. [20] investigated reconstructed cortical

tissue and counted the numbers of close appositions between pairs

of neurons. At such a close apposition a synaptic contact may

form, but is not necessarily present. Describing these results

statistically, a probability distribution for the number of close

appositions N between two neurons can be obtained [20].

At each of the close appositions, the neurons may form a

synaptic contact; in our model, we treat the different volumes of

spines and EPSP amplitudes in a coarse-grained fashion,

distinguishing just three different states for each contact to occupy

Table 1. Reference data, optimized parameter sets and properties of the structural plasticity models.

Connection L4-L2/3 L5-L5 L4-L4

Reference [17] [18] [19]

w ½mV� 0:0813 0:63 0:44

SNT ½1� 4:040+5:010 5:998+7:312 4:368+5:358

displayed in Fig. 1a Fig. 1b Fig. 2a Fig. 1c Fig. 2b

t ½s� 1:28Ez09 3:95Ez08 2:74Ez05 4:32Ez11 2:74Ez05

jm ½1=
ffiffi
s
p
� 511:109 3:80Ez03 31:955 1:75Ez05 31:955

js ½1=
ffiffi
s
p
� 449:392 1:844 30:974 0:330 30:974

am ½lc� {4:33Ez06 {3:68Ez04 {3:90Ez04 {1:85Ez06 {3:90Ez04

as ½lc� {6:80Ez10 {2:63Ez08 {7:82Ez09 {4:99Ez04 {7:82Ez09

hm ½1� 1:82Ez08 3:90Ez08 6:53Ez04 5:55Ez10 6:53Ez04

hs ½1� 64:259 2:07Ez06 {1:61Ez04 1:04Ez11 {1:61Ez04

li ½lc� 346:847 18:029 3:129 4:345 3:129

R ½1� 0:0008 0:0460 0:4926 0:0447 0:1808

SxT ½1� 0:091+0:633 0:182+0:931 0:151+0:729 0:545+1:265 0:489+1:076

SyT ½1� 4:66E{04+0:022 0:020+0:174 0:114+0:619 0:045+0:297 0:252+0:755

SxzyT ½1� 0:091+0:637 0:202+1:041 0:265+1:269 0:590+1:421 0:740+1:680

Corr½x,y� ½1� 0:148 0:581 0:772 0:440 0:674

dSxT=dp0 ½1� 398:016 12:782 {22:455 {34:488 153:283

dSyT=dp0 ½1� 1:789 1:495 {16:185 {2:474 62:665

dSxzyT=dp0 ½1� 399:804 14:277 {38:641 {36:962 215:948

STsT ½1=lc� 2:60E{04 0:009 0:032 0:013 0:130

STaT ½1=lc� 0:407 0:896 3:165 0:384 471:925

lc ½1=day� 3:56E{04 5:38E{04 7:11E{04 2:41E{03 3:14E{03

STsT ½days� 0:731 16:151 45:242 5:204 41:450

STaT ½days� 1144:198 1667:021 4453:517 159:640 150234:202

Description of listed values top to bottom: Section 1) Connection properties: Unitary EPSP amplitude w per contact as published in the reference, expected number of
close appositions N from [20] and standard deviation of N , figure in which properties of the model with this parameter set are displayed; Section 2) Model parameters:
Correlation trace time constant t (1), amplitude j of correlation trace noise, scale a of transition rates (see eq. 7 and Fig. 1c), saturation threshold h, intrinsic maturation/
shrinkage/pruning rate li ; Section 3) Model properties: Sum of squared residuals R of the model (see eq. 19), expected numbers of active (x), inactive (y) and total
(xzy) synaptic contacts and standard deviation of x,y,xzy, Pearson correlation coefficient of x and y, derivatives of expectation of x, y and xzy with respect to the
probability of causal spike pairings (p0) (estimated numerically), expected lifetimes of inactive and active contacts (see eq. 23 and eq. 24), estimate of model time scale
lc to match physiological spine turnover ratio (25), lifetimes in units of days using lc estimate. Additional, fixed parameters that are common to all models are

m~0:05(mV){1 , p0~0:5 and n~5Hz.
doi:10.1371/journal.pcbi.1002689.t001
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– active, inactive, or unrealized. An active synaptic contact here

describes a larger dendritic spine that contains both AMPA and

NMDA receptors. An inactive contact models a thin, either newly

formed or recently shrunk dendritic spine that has much less

AMPA receptors [42,43] and contributes little to firing the

postsynaptic neuron. An unrealized contact, finally, is a close

apposition where no contact has formed, but might be formed in

the future. It is a close apposition without an established synaptic

contact and corresponds to the potential synapse in [20]. A similar

model has previously been proposed in the context of associative

networks [44,45].

We denote the numbers of synaptic contacts in these three states

by x, y and z respectively. Since at any time xzyzz~N, the

state of a synapse is unambiguously defined by the combination of

the number of active and inactive contacts (x,y). Now consider an

ensemble of independent synapses, each with the maximum

contact number N. The probability px,y of a synapse to be in the

state (x,y) evolves in time according to the Master equation [46]

d

dt
p(x,y)~{p(x,y) (xz2y)liz(N{x{y)lc½

zxls(x)zylp(x)zylm(x)
�

z(xz1)p(xz1,y{1) ls(xz1)zli½ �

z(yz1)p(x,yz1) lp(x)zli

� �
z(yz1)p(x{1,yz1) lm(x{1)zli½ �

z(N{x{yz1)p(x,y{1)lc:

ð11Þ

The first term sums up the rate of leaving the state (x,y) by all

possible transitions. The second and third terms sum up all

possibilities to go into state (x,y) from other states by shrinkage

and pruning, and the fourth term by maturation. The last term

considers the transitions due to the creation of inactive synapses,

the rate of which is given by lc (see also Fig. 1B). The steady state

distribution does not depend on the time scale of the transition

rates, so we can consider the constants am,as,li in units of lc. The

time scale of the structural plasticity is then set by 1=lc. In (25)

below we will see how the value of lc can be determined by

experimental data.

To determine the steady state configuration of the synapse, let

us introduce a numbering of all the possible synaptic states

f(x,y)DxzyƒNg, such that the probability of each state p(x,y) is

represented by the value pi, with a one to one correspondence

between indices i and states (x,y). Then (11) can be written as

d

dt
~pp~M~pp ð12Þ

where the entries of the matrix M can be read off the Master

equation. Since M describes a Markov process it is column-

stochastic (which means all columns sum up to zero). Since the

process is irreducible, according to the Perron-Frobenius theorem

there is only one stationary solution. We can determine the

stationary probability distribution~pp0(N) by solving M~pp0~0 under

the constraint that
P

i p0
i ~1. We implemented the construction of

the matrix M efficiently using Cython [47] and solved for the

stationary solution using Scientific Python [48].

The stationary distribution depends on the number of close

appositions N. [20] have estimated the distribution P(N) for the

three types of intra-cortical connections that we consider. We

incorporate this by determining~pp0(N) for each N separately, and

subsequently compute the averaged distribution

p
avg
i ~

XNmax

N~0

P(N)p0
i (N): ð13Þ

Fares et al. [20] provide the distribution P(N) for N up to

Nmax~20.

For comparison with the reference datasets (see below), we are

merely interested in the marginal probability of a certain total

number n of synaptic contacts, disregarding whether they are

active or inactive. The marginalization can be obtained from~ppavg

by summing over all states (x
0
,y
0
) with x

0
zy

0
~n, or more

conveniently phrased as

P(n)~
X

i

p
avg
i 1x(i)zy(i)~n, ð14Þ

Figure 1. Illustrations. a: Schematic of a synapse connecting a pair of cortical neurons (pre- and postsynaptic). Individual synaptic contacts can be
active (blue, larger; corresponding to a large dendritic spine), inactive (orange, smaller; corresponding to a thin dendritic spine) or unrealized. b: State
diagram of the structural plasticity model adapted from [22]. A synaptic contact can occupy one of three states: active, inactive or unrealized.
Transitions from one state to the other are possible through either intrinsic fluctuations or activity-dependent plasticity, indicated by the arrows. The
transitions from unrealized to inactive are called ‘‘creation’’ (rate lc), from inactive to active ‘‘maturation’’ (rates lm and li). The transitions from active
to inactive are called ‘‘shrinkage’’ (rates ls and li) and from inactive to unrealized ‘‘pruning’’ (rates lp and li). A synapse consists of N close
appositions which may or may not host inactive or active synaptic contacts. The occupation number of the three states, active, inactive, unrealized
are called x, y and z, respectively. c: Assumed functional form of the dependence of the rate of activity dependent transitions (lm , ls, lp) on the mean
value m of the correlation trace, which is formed at the dendritic spine. The absolute value of a sets the scale of the transition rate, while its sign flips
the function from right-saturating (solid) to left-saturating (dashed). The parameter h determines at what correlation level saturation of the transition
rate is reached.
doi:10.1371/journal.pcbi.1002689.g001
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where the function x(i) returns the value of x of the state (x,y)
with index i, and 1Q equals 1 if Q is true and 0 otherwise.

Analogously, the marginal average distributions of the number of

active and inactive synapses are

P(x)~
X

i

p
avg
i 1x(i)~x, ð15Þ

P(y)~
X

i

p
avg
i 1y(i)~y: ð16Þ

Comparison to reference data and model optimization
In the experimental studies [17,18,19] a set of occurrence

frequencies fn of numbers of synaptic contacts n§1 for several

pairs of neurons was obtained, each for three different types of

intra-cortical projections. Complementing this, for the same three

datasets, the probability Pcon of a pair of neurons to be connected

with at least one active contact can be estimated [20]. The

distribution of the numbers of active synaptic contacts serve as

reference data in our study. For each of the three datasets, we

transform the reported data to the probability mass function

Pref (n)~
1{Pcon n~0
fnP
n

fn
Pcon n§1

(
: ð17Þ

we evaluate (14) and obtain the residuals

rn~
P(n){Pref (n)

maxn§1fPref (n)g , ð18Þ

for n§1. The residuals are scaled by the maximum of the

reference distribution to enable comparison of the quality of the

fits across reference datasets. We minimize the sum of squared

residuals

R~
XNmax

x~1

r2
x ð19Þ

using the Levenberg–Marquardt algorithm, applying its imple-

mentation from Scientific Python [48]. We call R the error of the

model. The optimization problem has several local minima, so we

initialize the optimization procedure at many points in the 8-

dimensional parameter space and compare the values of R to

which the optimization converged. Specifically, we choose four

different initial values in each parameter dimension, which makes

a total of 48~65536 distinct optimization runs per reference

dataset. The parameter sets which resulted in a minimal value of R
are shown in Tab. 1, along with additional information on the

model, and the resulting equilibrium distributions are shown in

Fig. 2.

We also obtained parameter sets which yield good fits to two

reference distributions simultaneously. The resulting distributions

for the connections L4-L4 and L5-L5 are displayed in Fig. 3. Here

the fit error was defined as the sum of the errors (19) of both

distributions, R~RL4{L4zRL5{L5. With respect to this the same

optimization procedure was performed.

Lifetime of synapses and turnover ratio
Here we compute the average lifetime of an inactive synaptic

contact and of an active contact in the equilibrium state of the

synapse model, see Fig. 1a for the possible transitions. We define

the lifetime T as the expected time until the contact is pruned.

Consider an active contact in a synapse. It may become an

inactive contact either through intrinsic or activity dependent

shrinkage. The mean time up to the transition from active to

inactive is tia(x)~1=(lizls(x)). An inactive contact, on the other

hand, might make a transition to the active state (maturation),

which would take the time tai(x)~1=(lizlm(x)), or to the

unrealized state (pruning) in the time tpi~1=(lizlp(x)). The

mean time until the first transition, either maturation or pruning,

is t̂ti(x)~1=(t{1
ai (x)zt{1

pi ). Either of the two transitions happens

with a probability given by the fraction of rates involved,

Pai(x)~t{1
ai (x)̂tti(x) and analogously

Ppi(x)~t{1
pi (x)̂tti(x)~1{Pai(x). If the inactive contact becomes

active, then it will become inactive eventually, and subsequently

might be pruned or become active again. Accounting for the

possible paths the inactive contact may take upon its first transition

we obtain the expected lifetime of the inactive contact as

Ti(x)~Ppi(x)̂tti(x)zPai(x) t̂ti(x)zTa(xz1)ð Þ, ð20Þ

where Ta(x) is the lifetime of an active contact in a synapse that

has x active contacts. In turn, starting from an active contact just

adds one active to inactive transition, so

Ta(x)~tia(x)zTi(x{1): ð21Þ

Inserting (21) and the definitions above into (20) yields

Ti(x)~
t̂ti(x)ztia(xz1)Pai(x)

1{Pai(x)
: ð22Þ

We average the lifetimes across the equilibrium probability

distribution of synapse states and obtain

STiT~
X

N

P(N)
X

i

p0
i (N)Ti(x(i)) ð23Þ

STaT~
X

N

P(N)
X

i

p0
i (N)Ta(x(i)): ð24Þ

To match the time scale of structural development of our model

to what is known from in-vivo studies we compute the spine

turnover ratio as it is defined in [10],

TOR~
ngainedznlost

2ntotal
: ð25Þ

Here ngained and nlost are the numbers of gained and lost spines

during a given period of time, and n is the number of spines

observed. In our model, the expectation values of these quantities

are given as

ngained~
X

N

P(N)
X

i

p0
i (N)lcz(i)

nlost~
X

N

P(N)
X

i

p0
i (N) lp(x(i))zli

� �
y(i)
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ntotal~
X

N

P(N)
X

i

p0
i (N) x(i)zy(i)ð Þ,

where lp and li are given in units of lc. So we obtain TORlc in

units of lc from (25). In rat somatosensory cortex [10] found

TOR~15:4%=day. Accordingly (25) sets the time scale lc of the

model to lc~15:4%=day=TORlc .

Necessity of inactive synapses for explanation of
experimentally observed distributions of synaptic
contacts

In this section we consider a simplified version of our model

which does not include inactive synaptic contacts (thin spines). In

that model, at a close apposition there can be either no synaptic

contact or an active synaptic contact. Between these two states

transitions are allowed just as between the inactive and the active

Figure 2. Single synaptic connection models. Best-fit individual models of the synaptic connections L4–L23 (a), L5-L5 (b) and L4-L4 (c). a1,b1,c1
(row 1): Equilibrium distributions of the total number of synaptic contacts in the structural plasticity model (blue, eq. 14) compared to reference data
(black). a2,b2,c2 (row 2): Transition rate functions (7) of the models in the row 1, respectively, in units of lc . Activity dependent maturation rate lm(x)
(green squares, eq. 8), shrinkage rate ls(x) (orange diamonds, eq. 9), pruning rate lp(x) (magenta circles, eq. 10) and intrinsic maturation, shrinkage,
and pruning rate li (dotted line). The spine creation rate lc sets the time scale and has a value of log10 lc~0. c1,c2,c3 (row 3): Joint equilibrium
distribution of the number of active (x) and inactive (y) synapses. a4,b4,c4 (row 4): Fit error (R, gray) and derivatives of active synaptic contact
number with respect to baseline correlation (dSxT=dp0 , magenta) for the best 40 parameter sets, ordered by error R. Blue markers indicate the model
that is displayed above (rows 1 to 3). Model parameters and further information are given in Table 1.
doi:10.1371/journal.pcbi.1002689.g002
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state in the full model (see Fig. 1B), but here we call them lc(x)
(creation) and lp(x) (pruning), which may yet be arbitrary

functions. Assume there are N close apposition between a pair

of neurons. Then the state of the synapse is defined by the number

of active connections x. Let us denote the probability of the state x

by px here. In stochastic equilibrium the probability fluxes into

and out of the state x must balance, so for 0ƒxƒN{1 it must

hold that

0~ N{xð Þlc(x)px{ xz1ð Þlp(xz1)pxz1

from which follows that

pxz1

px

~
N{x

xz1

lc(x)

lp(xz1)
: ð26Þ

Figure 3. Model of two synaptic connections. Best-fit model for both synaptic connections L5-L5 (a) and L4-L4 (b) (same model parameters).
a1,b1–a4,b4 (rows 1 to 4) as in Fig. 2. Model parameters and further information are given in Table 1.
doi:10.1371/journal.pcbi.1002689.g003
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Now consider the case of x~0. In all three reference datasets,

Pref (1)=Pref (0)~0, as can be seen in Fig. 2a1–a3. According to

(26) this requires lc(0)=lp(1)~0, which can only be achieved by

lc(0)?0 or lp(1)??. In contrast, around the secondary peak of

the reference distributions Pref , (26) entails that lc and lp must be

of comparable magnitude. More specifically, the right hand side of

expression (26) has to change from values larger than 1 to values

smaller than 1 as x passes the secondary peak from below. To

satisfy these requirements, even only approximately, demands

highly non-monotonous choices of the functions lc(x) and lp(x)

that are difficult to justify biophysically. Once the model includes

the intermediate state of the inactive synaptic contact, however, it

is possible to find biologically plausible parameter sets to explain

the reference distributions, as described in the rest of the paper.

Results

Overview of the model
Kasai et al. [22] monitored the temporal evolution of the

volume of dendritic spines and described it as a random walk with

volume dependent drift and diffusion components. According to

their findings, newly formed dendritic spines are small, and

accumulate AMPA receptors as the spine volume increases. Thus

a small spine can grow or disappear, and a large spine can shrink.

Spines of all volumes, however, were found to contain NMDA

receptors [42]. The study by Holtmaat et al. [10] suggests that thin

spines are more readily pruned than thick spines, and that they

may be of a lower efficacy or NMDA receptor-only (inactive)

synapses. It was previously suggested [43,49] that small spines

might correspond to silent synaptic contacts. In our model, we

distinguish between only three states that each synaptic contact

can occupy: active, inactive and unrealized, without considering

the spine volume and channel density of the dendritic spines

explicitly. These states correspond, respectively, to large spines,

thin spines and close appositions with no spine, as illustrated in

Fig. 1b. Note that we do not claim that the functional distinction

between thin and large spines is actually as clear-cut as assumed in

the model – the model merely represents a coarse-grained spine

state. In this model, transitions between the three morphological/

functional states are possible. Following [22] and [50], such

transitions can occur either due to intrinsic fluctuations, or

depending on the activity of the pre- and postsynaptic neuron.

Note also that, although the inactive synaptic contact is allowed as

a transitional state, it turns out to rarely occur in the optimized

models that will be discussed below.

The basic idea of the model put forward in this study is the

following: As described in [27] dendritic spines have the

biomolecular capability of detecting correlations in the relative

spike timing of the pre- and postsynaptic neuron. If there are

several active excitatory synaptic contacts from a presynaptic

neuron to a single postsynaptic cell, all these synaptic contacts

contribute to elicit spikes in the postsynaptic neuron. Hence each

of the contacts increases the correlation between the two cells,

measurable at each of the corresponding dendritic spines. So even

if there is no direct communication between the synaptic contacts,

they affect each other indirectly by increasing the correlation of

pre- and postsynaptic spikes. Spike-timing dependence of struc-

tural plasticity is thus a candidate mechanism for the cooperation

between synaptic contacts.

According to [27] the magnitude of calcium influx into the

dendritic spine depends on the proximity of pre- and postsynaptic

spikes in time. The calcium influx activates or deactivates CaMKII

macro-molecules and thus leaves a local memory. We call such a

memory of the spike-timing correlation a correlation trace. The

activation of the CaMKII subunits can be preserved for a long

time [51]. The model we consider here, however, does not rely on

the biophysical details of CaMKII activation, but just assumes a

correlation trace is available. For the purpose of this study, the

correlation trace could also come about by other mechanisms.

Employing this correlation trace, we introduce a phenomeno-

logical model for activity dependent maturation, shrinkage and

pruning of spines depending on the correlation of the spike-timing

of pre- and postsynaptic cell, as described in detail in Methods.

The model is based on [22] and incorporates the basic properties

of structural plasticity [21], activity-independent creation and

pruning of spines, intrinsic fluctuations of spine volume, and

activity-dependent spine remodeling. The set of all synaptic

contacts connecting a given pair of neurons constitute a synapse,

see also Fig. 1a. The state of a synapse is defined by the number of

active contacts (large spines) x and inactive contacts (thin spines) y.

The time-evolution of the synapse state is then described as a

Markov process. For a given parameter set, we solve for the

stationary probability distribution of the states (x,y).

Fits to reference data
The parameters of the model were then optimized so that the

distribution of the total number of synaptic contacts reproduces

the experimental reference data, shown in Fig. 2a1–c1, along with

the respective transition rates of the model (6) in a2–c2. For each

of the three reference datasets (a, b, c), we show the best model

that resulted from the optimization. The models can reproduce the

experimental distributions of synapse numbers.

The existence of such a stationary distribution means that the

average numbers of inactive, active and potential sites of the

synapse do not change in time. This is so despite the constant

creation and pruning of synaptic contacts since these processes

compensate each other in equilibrium. Implicitly, the model allows

that inactive, active and potential sites coexist between a given pair

of neurons.

The parameter sets for the displayed models are given in the

second section of Tab. 1. The fit of the connection L4–L23 takes

very different parameter values than the others. Nonetheless for all

three modeled connections, the time constant t of the correlation

trace is large compared to the time scale of fluctuations of

neuronal activity, in agreement with our assumption about the

distribution of the correlation trace. Concerning the parameters of

the activity dependent structural plasticity, we find qualitatively

similar results across datasets: In all three cases, both maturation

and shrinkage/pruning rates decrease with increasing active

synapse number, granting long-term stability to established

synapses.

The models of the intralaminar connections L4-L4 and L5-L5

show remarkable similarities. Both have a comparable t and the

rate of intrinsic, activity independent transitions li is low, although

this was not an a priori assumption. The parameter values for a
and h are difficult to interpret individually. Across all the models,

inactive synaptic contacts are rare, as indicated by the fraction of

SyT=SxT which ranges between and 0 and 0:5. A fit of both

connections L4-L4 and L5-L5 with a single parameter set is

displayed in Fig. 3. Although the model distributions in Fig. 3a1,b1
do not follow the reference data as closely as in Fig. 2, a good

agreement of the distributions and the reference is achieved.

Properties of the optimized models
For each of the three reference datasets we obtained many

models with a comparable fit error R. Fig. 2a4–c4 and Fig. 3a4,b4
show the error R (circles) of the best parameter sets obtained,

ordered by the value of R. We also investigate how the model

Spike-Timing Dependent Structural Plasticity
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distribution changes in response to an increase in the baseline

probability of causal spike pairing. Some models decrease their

contact number, while other models increase it, as can be seen

from the derivative dSxT=dp0 (squares in Fig. 3, 1, row 4). This

quantity can take very different values for comparable fit errors R.

We call a model Hebbian if the number of active contacts grows

upon an increase of causal spike pairings (dSxT=dp0w0).

Conversely we call a model anti-Hebbian if the number of

contacts decreases (dSxT=dp0v0). This diversity indicates that the

plasticity model used here is general enough to implement

Hebbian and anti-Hebbian learning, depending on the parame-

ters. In Tab. 1 the value of the derivative dSxT=dp0 is given along

with other properties of the selected models. For each dataset, we

selected the best model irrespective of it being Hebbian or anti-

Hebbian. Another characteristic property of a model is the joint

distribution of active synapses x and inactive synapses y (Fig. 2 and

2, row 3). Especially in the model connections L4-L4 and L5-L5 x
and y tend to be strongly correlated. While the expectation value

of xzy is largely determined by the reference data, the smaller

expectation value of y indicates that only a small proportion of

spines are small and functionally weak. The marginal distribution

of active and inactive synapses are shown for the three best models

in Fig. 4a. In all selected models, across the datasets, the

expectation values of x and y do not sum up to the expectation

value of the number of contacts N, which means that many

unrealized synapses (close appositions without inactive or active

contacts) are present, consistent with experimental findings [21].

Fig. 4b addresses the question whether a homeostasis of the

neuronal firing rate can be achieved by this structural plasticity

model. Here, a homeostasis means that an increase in firing rate

leads to pruning of input synapses, thus lowering the firing rate in

effect. Conversely a decrease in firing rate should lead to synapse

maturation. If that is the case, the plasticity rule establishes a

homeostatic control of the firing rate to a fixed value. In our

model, a negative derivative dSxT=dn means that the plasticity

rule acts as a firing rate homeostasis. From Eq. (5) we conclude

that a change in n can either increase or decrease the value of m(x)
for a given x, depending on the value of the baseline correlation

p0. Previously, we arbitrarily set p0 to 0:5. However, given a

parameter set, we can change the value of p0 to p
0

0 without

changing the transition rates (and all equilibrium properties of the

model) if we also shift the thresholds to

h
0
~2tn(p

0
0{p0)zh, ð27Þ

because then all the distances m(x){h to the threshold are

preserved. Thus p0 is effectively a free parameter of the model and

can be adjusted to set dSxT=dn, as is shown in Fig. 4b. Hence the

structural plasticity model we propose can establish a firing rate

homeostasis.

Furthermore we derived the expected lifetime of a synapse in

the model, which is also shown in Tab. 1. Here the lifetime is

defined as the expected time until the synapse is pruned. Before

being pruned, it can go back and forth between the states inactive

and active several times (fluctuate in volume). The lifetime is very

different for inactive and for active synapses, the latter exceeding

the former by about one order of magnitude or more. This is due

to the fact that typically several active contacts coexist and

mutually stabilize, which entails small rates lm, ls and lp (cf. Fig. 2

row 2). If an active synapse becomes inactive, the rate to go back

to the active state also increases, which promotes going back and

forth through these states. This behavior matches nicely with the

volume fluctuations of large dendritic spines described in [22].

Through (25) finally we can relate the time scale lc of the models

to experimental data [10]. The values for lc are listed in Tab. 1and

confirm our assumption of a time scale separation of structural

plasticity and neuronal activity. Using this estimate of the

timescale, the lifetimes of inactive contacts are about a couple of

days, while the lifetimes of active contacts span from a month up to

years. [10] called spines with a lifetime of less than 8 days

transient, and spines with longer lifetimes persistent. This

distinction roughly applies to the lifetimes of inactive and active

contacts in our model.

Discussion

We propose a model of structural plasticity to explain

cooperative synapse formation [20]. The transitions of the states

of synapses are assumed to depend on a signal locally available to a

spine that depends on the correlation between pre- and

postsynaptic activity, the correlation trace. There is strong

evidence that a correlation trace could indeed be implemented

in the dendritic spine through phosphorylation of the macromol-

ecule CaMKII [35,27,34]. CaMKII has also been shown to be

necessary for structural and long-term plasticity [52,53,4], and

may also drive presynaptic changes [54]. Here we assume an

abstract, effective correlation trace instead of explicitly modeling

the dynamics of CaMKII. This makes our results independent of

the specific mechanisms employed at the synaptic contact, since

also other processes may be available to form the correlation trace.

We assume the correlation trace at the spine is forgetful, such that

it integrates causal and anti-causal spike pairing events like a leaky

integrator with a certain time constant. This time constant affects

the location of the equilibrium probability distribution of the

correlation trace and its variance. Across the datasets L4-L4 and

L5-L5, the time constants are comparable. If the correlation trace

is implemented biologically by the cycle of expression, activation

and degradation of CaMKII, these time constants will be

observable in experiments. The optimized values for the time

constant t are well in the range of possible values that sustained

CaMKII activation can show [51] for all three reference datasets.

The differences in the model parameters of the connection L4–

L23 compared to the other two intralaminar connections might be

explained by the finding that most synaptic contacts of this

connection are formed on dendritic shafts rather than on spines

[55]. At dendritic shafts functionally similar plasiticity mechanisms

could be at work, but our model might be less appropriate for this

type of connection. However, although in early postnatal

development more shaft synapses exist, in later stages synapses

on spines dominate [56,57].

The rates of structural changes at the synapse are assumed to be

a function of the equilibrium correlation trace distribution. To

model this dependence mathematically we chose a versatile

functional form (7). This is necessary since a comprehensive

quantitative description of the correlation dependence of structural

plasticity is not known to date. Our optimization results for the

transition rates show a strong selectivity for specific numbers of

active contacts in a synapse: Transition rates are much higher in

case there are few active contacts between two neurons, and many

active contacts stabilize the system in all of the three modeled

intra-cortical synapse types. Future experiments could investigate

whether synaptic contact number (or EPSP amplitude) correlates

with calcium transient amplitudes at the spines and with rates of

spine maturation, shrinkage and pruning.

Using the optimized models we also computed the expected

lifetimes synaptic contacts. The lifetime of active contacts is about

ten to one hundred times larger than the lifetime of inactive
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contacts across our models. This can be understood given the

experimental references’ results that an active contact is always

accompanied by several others. For such synapses, our models

predict a vanishing rate of activity dependent transitions, which

lets the synapses stay in the active state for a long time. Thus

persistent spines here correspond to active contacts, and transient

spines to inactive contacts. Our finding constitutes a statistical

explanation of the existence of these two distinct classes of spines

[10].

Our best-fit models show functional differences. Most notably,

the models can be either Hebbian or anti-Hebbian, in the sense

that an increase in the frequency of causal spike pairing leads to

either increased or decreased numbers of active contacts. Both

Hebbian and anti-Hebbian connections have been observed in the

neocortex [58]. For all connections we found comparably good fits

of both types. Furthermore our model predicts a joint probability

distribution of active and inactive contacts which goes beyond

current experimental references. Future experiments which

determine both of these numbers for many neuron pairs will

allow further evaluation of our model. A possibility to optically

distinguish and monitor active and inactive synapses in experi-

ments might be to use fluorescent markers for AMPA and NMDA

receptors. Synaptic contacts that what we call ‘‘inactive’’ should

show less AMPA than ‘‘active’’ ones, but the inactive ones also

include those synapses with few AMPA receptors.

Previous models of structural plasticity have assumed a

homeostasis of the firing rate [59,3], in the sense that if neuronal

activity increases beyond an a-priori chosen set-point, synaptic

contacts are pruned to decrease the excitatory drive, and the

reverse for activity below the set-point. Indeed the correlation

dependent structural plasticity model [27] shows this behavior. We

have investigated whether our models show firing rate homeostasis

by computing how the expected number of active contacts changes

with the firing rate. This dependency can be chosen arbitrarily by

adjusting a free parameter of the model (see Fig. 4b). Our model

hence is capable of providing the proposed firing-rate homeostasis

for properly chosen parameters.

To obtain a simple Markov process, we used the discrete

categories ‘‘unrealized’’, ‘‘inactive’’ and ‘‘active’’ to describe the

state of a synaptic contact. Technically our model is similar to the

cascade synapse model of [60] but adds the morphological

interpretation of the synaptic states. The inactive contact might be

closely related to silent synapses, but in the actual biological system

such a clear-cut distinction between functional states can probably

not be made, see for example [38]. Busetto et al. [61] found that

silent synapses are abundant in the developing animal but vanish

in the adult. However, only spines that were morphologically

mature were included in their study, making no claim about

existence of thin spines with small heads. Quantal EPSC analysis

in the adult neocortex showed that close to all synaptic contacts of

the connection L4–L23 are functional [55]. Our model of this

connection also shows no inactive synapses in expectation, which

renders them unobservable in practice. Further [62] find in

cultured hippocampal slices that newly formed spines contain

AMPA receptors. Small spines, however, are generally easy to

miss, since they are often smaller than the resolution limit of

optical microscopy [10,61], and they may also be pruned again

quickly after formation [63]. After all there is ample evidence that

newly formed spines are small [21] and that AMPA receptor

density correlates with volume [22]. We thus follow [43] and

approximate thin, small spines as inactive synaptic contacts, and

large spines as active ones as described above in detail.

As a consequence of the coarse-grained description of the state

of synaptic contacts, all active synaptic contacts in our model

produce an EPSP of a fixed amplitude w. However, in biology this

amplitude varies from contact to contact. Including a fine grained

description of synaptic amplitudes in a structurally similar model

as the one presented here would result in a massive increase of the

dimension of the state space and is therefore potentially unfeasible.

Such a dispersion of synaptic amplitudes would result in a different

functional dependence of the mean (2) and variance (3) of the

correlation trace q on the number of active contacts x. However,

at a given synapse the mean would still be monotonically

increasing with x. On a population level, the dispersion of

synaptic amplitudes thus results in an additional contribution to

the width of the distribution of the correlation trace q in (3). We

can think of part of the noise g(t) added to q as representing this

contribution. This reduces the precision of correlation detection at

the dendritic spine. In a model with dispersion of synaptic

amplitudes, we therefore expect to find qualitatively similar fits for

our coarse grained model at a correspondingly reduced additional

noise.

We defined that inactive synaptic contacts host NMDA

receptors. The conductance of NMDA receptors increases upon

a postsynaptic depolarization if the magnesium block is removed.

At negative voltages NMDA channels have a smaller but non-

vanishing conductance and hence mediate excitatory postsynaptic

currents (EPSC). However, the time scale of NMDA activation is

much slower than that of AMPA channels. A postsynaptic action

potential partially caused by NMDA currents of one synaptic

Figure 4. Further properties of the single connection models. a: Marginal probabilities of active (x, filled circles, eq. 15) and inactive (y, empty
circles, eq. 16) synaptic contact numbers of the best-fit models shown in Fig. 1. b: Derivative of the number of active synaptic contacts by the
neuronal firing rate as a function of the baseline correlation p0 – values of the hm and hs are shifted to keep the equilibrium distribution unchanged
for all values of p0 (27). Negative values indicate a stable equilibrium (firing rate homeostasis). Colors as in a.
doi:10.1371/journal.pcbi.1002689.g004
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contact would thus occur much later than the presynaptic

glutamate release. The postsynaptic depolarization is therefore

less efficient in opening the NMDA receptors at another synaptic

contact of the same synapse. This, however, is the crucial

mechanism that allows correlation detection and cooperation in

our model. Hence one may assume that NMDA currents

contribute much less to the correlation trace, and thus have

vanishing impact on the cooperative plasticity of our model. We

therefore use the term ‘‘inactive’’ here in a functional sense.

In neonatal rat hippocampus also presynaptically silent synapses

have been observed, which show a very low probability of

transmitter release [64,65]. However, even a low probability of

release enables the formation of a postsynaptic correlation trace at

the dendritic spine as in our model. Moreover, even presynaptic

changes of the transmitter release have been reported to depend

on such a correlation trace in a similar way [54]. The dependence

of maturation and shrinkage/pruning on the correlation trace that

we use here is a sufficiently generic model to also include these

presynaptic mechanisms, although we do not intend to model

them here explicitly.

The term structural plasticity describes a broad range of

phenomena, many of which have not been addressed here.

Competition between synapses from distinct neurons to a common

postsynaptic neuron has been shown to be important for the

emergence of cortical network structure [66]. In the more detailed

models of structural plasticity in neuronal networks based on the

activity of CaMKII [27,67], cooperation and competition between

synaptic contacts necessarily occurs. Here we assumed that

synapses between different pairs of neurons develop independent-

ly, so inter-synaptic competition effects were not considered.

Furthermore, structural plasticity also includes changes to the

network structure that can come about by migration of axons on

much longer time scales. Our model rather describes the steady

state of the adult cortex, during which spines form and retract, but

the axonal arborization can be assumed to be constant [13]. In

lesion studies it has been shown that the steady state can become

unstable and axons again begin to migrate [68].

Although simple and abstract in its description of complex

cellular phenomena, our model can explain the cooperation of

synaptic contacts in the adult neocortex, postulated in [20]. The

model shows how continuously active structural plasticity can lead

to the global configuration of synaptic contact numbers that was

observed experimentally. The key ingredient of the model which

mediates the necessary cooperation is a trace of the spike-timing

correlations of the pre- and postsynaptic neuron. The resulting

synaptic learning rule is local (it solely requires mechanisms at the

synaptic contacts) but can nonetheless explain cooperative synapse

formation.
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32. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic

efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.

33. O’Donnell C, Nolan MF, van Rossum MCW (2011) Dendritic spine dynamics

regulate the long-term stability of synaptic plasticity. J Neurosci 31: 16142–

16156.

34. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of camkii action in

long-term potentiation. Nat Rev Neurosci 13: 169–182.

35. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function

in synaptic and behavioral memory. Nat Rev Neurosci 2: 175–190.

36. Helias M, Deger M, Rotter S, Diesmann M (2010) Instantaneous non-linear

processing by pulse-coupled threshold units. PLoS Comput Biol 6: e1000929.

Spike-Timing Dependent Structural Plasticity

PLOS Computational Biology | www.ploscompbiol.org 12 September 2012 | Volume 8 | Issue 9 | e1002689



37. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons. J Comput Neurosci 8: 183–208.

38. McMahon SA, Diaz E (2011) Mechanisms of excitatory synapse maturation by

trans-synaptic organizing complexes. Curr Opin Neurobiol 21: 221–227.

39. Lisman J (1989) A mechanism for Hebb and anti-Hebb processes underlying

learning and memory. Proc Natl Acad Sci U S A 86: 9574–9578.

40. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev

Mod Phys 15: 1–89.

41. Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic

connectivity. Trends Neurosci 28: 387–394.

42. Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, et al. (2001)

Dendritic spine geometry is critical for ampa receptor expression in hippocampal

ca1 pyramidal neurons. Nat Neurosci 4: 1086–1092.

43. Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of

long-term potentiation in single dendritic spines. Nature 429: 761–766.

44. Knoblauch A (2006) On compressing the memory structures of binary neuronal

associative networks. Technical Report HRI-EU 06-02, Honda Research

Institute Europe GmbH, D-63073 Offenbach/Main, Germany.

45. Knoblauch A (2009) The role of structural plasticity and synaptic consolidation

for memory and amnesia in a model of cortico-hippocampal interplay. In:

Mayor J, Ruh N, Plunkett K, editors. Connectionist Models of Behavior and

Cognition II: Proceedings of the 11th Neural Computation and Psychology

Workshop. Singapore: World Scientific, pp. 79–90.

46. van Kampen NG (1992) Stochastic Processes in Physics and Chemistry.

Amsterdam: North-Holland: Elsevier Science Publishers.

47. Behnel S, Bradshaw R, Seljebotn DS, Ewing G, et al. (2009). Cython: C-

Extensions for Python, version 0.11.2-1. Available: http://www.cython.org.

48. Jones E, Oliphant T, Peterson P, et al. (2001–). SciPy: Open source scientific

tools for Python, version 0.7.0-2. Available: http://www.scipy.org.

49. Atwood HL, Wojtowicz MJ (1999) Silent synapses in neural plasticity: Current

evidence. Learn Mem 6: 542–571.

50. Minerbi A, Kahana R, Goldfeld L, Kaufman M, Marom S, et al. (2009) Long-

term relationships between synaptic tenacity, synaptic remodeling, and network

activity. PLoS Biol 7: 1000136.

51. Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a

stochastic camkii switch: Dependence on the number of enzyme molecules and

protein turnover. PLoS Biol 3: e107.

52. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor

dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:

10831–10836.

53. Shouval H, Castellani G, Blais B, Yeung L, Cooper L (2002) Converging

evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern 87:
383–391.

54. Pratt KG, Watt AJ, Griffith LC, Nelson SB, Turrigiano GG (2003) Activity-

dependent remodeling of presynaptic inputs by postsynaptic expression of
activated camkii. Neuron 39: 269–281.

55. Silver RA, Lubke J, Sakmann B, Feldmeyer D (2003) High-probability
uniquantal transmission at excitatory synapses in barrel cortex. Science 302:

1981–1984.
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